CLEO: QELS-Fundamental Science

Executive Ballroom 210B

Executive Ballroom 210C

Executive Ballroom 210D

08:00–10:00 QM1A • Active and Nonlinear Metamaterials

Presider: Benjamin Eggleton; University of Sydney, Australia

QM1A.1 • 08:00

Limits of Plasmonic Enhancement of Third Order Nonlinear Optical Effects, Jacob Khurgin¹, Gregory Sun²; ¹Johns Hopkins Univ., USA; ²University of Massachusetts Boston, USA. We present a rigorous theory to show that while tremendous enhancement of $\chi(3)$ can be obtained in nanoplasmonic metamaterials, the overall efficiency remains very small, making them irrelevant for photonic switching and wavelength conversion applications.

QM1A.2 • 08:15

ndav, <u>10</u> June

Four Wave Mixing Propagation in Fishnet Metamaterials, Haim Suchowski', Kevin O'Brien', Zi Jing Wong', Xiaobo Yin', Xiang Zhang', 'University of California Berkeley, USA. We experimentally investigate the nonlinear propagation in thick optical negative index materials. The ratio of the forward to backward four wave mixing generation was shown to follow the prediction of the phasematching relations.

QM1A.3 • 08:30

Second Harmonic Generation in Transition Metamaterials, Zhaxylyk Kudyshev¹, Ildar R. Gabitov², Andrei I. Maimistov³, Natalia M. Litchinitser¹; ¹Department of Electrical Engineering. The State University of New York at Buffalo, USA; ³Department of Mathematics, University of Arizona, USA; ³Department of General Physics, Moscow Institute of Physics and Technology, Russian Federation. We show that resonant field enhancement of obliquely incident light in a quadratically nonlinear metamaterial with refractive index gradually changing from positive to negative values enables efficient second harmonic generation at significantly reduced input intensities. 08:00–10:00 QM1B • Near-field Imaging & Spectroscopy Presider: Jessie Chin; University of Stuttgart, Germany

QM1B.1 • 08:00

Strong Interaction between a Single Carbon Nanotube and an Optical Microresonator, Mian Zhang', Arthur Barnard', Gustavo S. Wiederhecker³, Paul L. McEuen²⁴, Michal Lipson¹⁴; 'Electric and Computer Engineering, Cornell University, USA; 'Laboratory of Atomic and Solid State Physics, Cornell University, USA; ³Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Brazil; 'Kavli Institute at Cornell, Cornell University, USA. We couple a single suspended carbon nanotube to the near field of a free standing optical microdisk. The strong interaction between the nanotube and the microcavity produces an ultrahigh photocurrent response as large as 0.35mA/W.

QM1B.2 • 08:15

OM1B.3 • 08:30

Nanoscale Temperature Mapping of Photonic and Plasmonic Devices, Boris Desiatov¹, Ilya Goykhman¹, Mor Tzur¹, Uriel Levy¹; 'Hebrew University of Jerusalem, Israel. We experimentally demonstrate nanoscale thermal mapping of light induced heat in photonic and plasmonic devices using a thermocouple AFM tip. Numerical simulations results and nanoscale temperature measurements are presented and discussed.

Nonlinear ultrasonics in gold-cobalt bilayer

structures probed with femtosecond surface

plasmons, Vasily V. Temnov¹, Christoph Klieber²,

Keith A. Nelson2, Tim Thomay3, Vanessa Knittel3,

Alfred Leitenstorfer3, Denys Makarov4, Manfred

Albrecht⁴, Rudolf Bratschitsch⁴; ¹Institut des

Molécules et Matériaux du Mans, CNRS, France;

²Department of Chemistry, MIT, USA; ³Department of Physics and Applied Photonics, University of

Konstanz, Germany; ⁴Institute of Physics, Chem

nitz University of Technology, Germany. Giant

(1%) picosecond strain pulses are generated in a

fs-laser-irradiated cobalt transducer sandwiched between a gold layer and sapphire substrate. Ul-

trafast plasmonic interferometry reveals nonlinear acoustic propagation effects in the (111) gold film. 08:00–10:00 QM1C • Nonclassical & Nonlocal Quantum States Presider: William Munro; NTT Basic Research Laboratories, Japan

QM1C.1 • 08:00 Tutorial

Non-Classical States of Light: Toward Scalable Photonic Quantum Networks, Ian A. Walmsley'; 'University of Oxford, United Kingdom. Non-classical states of light enable new modes of new modes of communications, sensing and computation. I describe current research on the construction of a scalable photonic quantum network that will facilitate the preparation of distributed quantum correlations among light beams.

Ian Walmsley is the Hooke Professor of Experimental Physics at the University of Oxford, where is also the Pro-Vice-Chancellor for Research and University Collections. His group's research covers a broad range of optical science and engineering, especially in the areas of ultrafast, nonlinear and quantum optics. In these areas the group has contributed to the development of methods for characterizing quantum states and ultrafast optical fields, and applied these to the study of the generation and utilization of nonclassical light and to the control of the interaction of quantum light and matter. These are used to investigate fundamental phenomena in quantum physics and toward realizing quantum information processing protocols.

08:00–10:00 QM1D • Coherent Effects in Excitons and Polaritons Presider: Hrvoje Petek; University of Pittsburgh, United States

QM1D.1 • 08:00 Invited

Time-resolved Terahertz Mapping of a Cold Exciton-Polariton Gas, Jean-Michel Menard¹, Christoph Poellmann¹, Michael Porer¹, Elisabeth Galopin², Aristide Lemaître², Alberto Amo², Jacqueline Bloch², Rupert Huber¹; ¹Physics, Universität Regensburg, Germany; ²CNRS-Laboratoire de Photonique et Nanostructures, France. Timeresolved terahertz absorption by intra-excitonic Is-2p transitions traces the matter part of cavity polaritons while they cool into a condensed phase. The population dynamics close to the zeromomentum state is correlated with simultaneous angle-resolved photoluminescence.

QM1D.2 • 08:30

Room Temperature Spin-Polarized Polariton Lasers, Feng-kuo Hsu¹, Yi-Shan Li², Sheng-Di Lin², Chih-Wei Lai¹; ¹Physics and Astronomy, Michigan State University, USA; ²Electronic Engineering, National Chiao Tung University, Taiwan. We report room temperature spin-polarize polariton lasing characteristics and dynamics of a planar InGaAs/ GaAs microcavity under non-reasonant circularly polarized picosecond optical excitation.

2013CLEO Monday.indd 1

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

08:00–10:00 QM1E • Novel Phenomena in Photonic Lattices

Presider: Zhigang Chen; San Francisco State Univ, United States

QM1E.1 • 08:00

Supersymmetric optics: Continuous and discrete 1D structures for selective mode filtering, Matthias Heinrich', Mohammad-Ali Miri', Simon Stützer', Ramy El-Ganainy', Stefan Nolte', Alexander Szameit², Demetrios N. Christodoulides'; ¹CREOL The College of Optics and Photonics, University of Central Florida, USA; ²Institute of Applied Physics, Friedrich-Schiller-University, Germany; ³Department of Physics, University of Toronto, Canada. We demonstrate that supersymmetry can furnish apparently dissimilar optical structures with the same scattering and guided-wave characteristics. We explore continuous one-dimensional SUSY arrangements in order to design a new class of versatile integrated filters.

QM1E.2 • 08:15

Photonic Topological Insulator-Solitons, Yaakov Lumer¹, Mikael C. Rechtsman¹, Yonatan Plotnik¹, Moti Segev¹; ¹Physics, Technion, Israel. We present photonic topological insulator-solitons: selftrapped wavepackets that form a self-localized edge states residing in the bulk of a photonic topological insulator (helical waveguide honeycomb lattice), while continuously rotating with a given directionality.

QM1E.3 • 08:30

Hybrid Bloch-Anderson localization of light, Simon Stützer¹, Yaroslav V. Kartashov^{2,3}, Victor A. Vysloukh¹, Andreas Tünnermann¹, Vladimir V. Konotop⁵, Stefan Nolte¹, Lluis Torner², Alexander Szameit¹; ¹Friedrich-Schiller-Universität, Institute of Applied Physics, Germany; ²ICFO-Institut de Ciencies Fotoniques, Universitat Politecnica de Catalunya, Spain; ³Russian Academy of Sciences, Institute of Spectroscopy, Russian Federation; ⁴Universidad de las Americas, Departamento de Fisica y Matematicas, Mexico; ⁵Faculdade de Ciencias Universidade de Lisboa, Centro de Física Teórica e Computacional and Departamento de Física, Portugal. We investigate the interplay of two qualitatively different localization mechanisms: Bloch oscillations and Anderson localization in a system of weakly-coupled optical waveguides.

Executive Ballroom 210G

CM1F • Microresonators I

Presider: Yoshi Okawachi, Cornell

Integrated high-quality factor silicon-on-sap-

phire resonators for Mid-infrared applications,

Raji Shankar¹, Irfan Bulu¹, Marko Loncar¹; ¹SEAS, Harvard University, USA. We demonstrate high-

quality (Q) factor grating-coupled silicon-on-

sapphire ring resonators, operating around 4.5 µm.

Total Q-factors of 151,000 and intrinsic Q-factors

of 278,000 are measured, enabling applications in

nonlinear wavelength generation and other areas.

Multi-modal optical microcavities for loss

avoidance, Jeffrey M. Shainline¹, Jason Orcutt²,

Mark T. Wade1, Roy Meade3, Ofer Tehar-Zehav4,

Zvi Sternberg⁴, Vladimir Stojanovic², Milos Popovic¹; ¹Electrical, Computer, and Energy Engineering,

University of Colorado, USA; ²Research Laboratory

of Electronics, Massachusetts Institute of Technol-

ogy, USA; ³Micron Technologies, USA; ⁴Micron

Semiconductor, Israel. We present optical cavities

wherein multiple guided modes interfere to avoid

loss at sidewall contacts. Cavities with 62 silicon

contacts show resonances with intrinsic quality

SNAP: Fabrication of Ultra-low-loss Miniature

Photonic Circuits with Sub-angstrom Preci-

sion, Misha Sumetsky¹; ¹OFS Laboratories, USA.

The SNAP (Surface Nanoscale Axial Photonics),

a technological platform enabling fabrication of

miniature photonic circuits with record low loss

factors near 40,000 across an 80nm spectral range

CM1F.3 • 08:30 Invited

and high precision, is reviewed.

08:00-10:00

University, USA

CM1F.1 • 08:00

CM1F.2 • 08:15

Executive Ballroom 210F

CLEO: Science & Innovations

08:00–10:00 CM1G • Advanced Modulation

Formats & Digital Signal Processing Presider: Ivan Djordjevic; University of Arizona, United States

CM1G.1 • 08:00

Generation of Optical 32QAM using Two Tandem IQ Modulators with Simplified Electronics, Guo-Wei Lu¹, Takahide Sakamoto¹, Tetsuya Kawanishi¹; 'Natl. Inst. of Info. & and Comm. Tech., Japan. We propose and demonstrate an optical 32QAM transmitter, consisting of two tandem IQ modulators driven by binary and 3-level electronics. Compared with the single-IQ modulator scheme requiring 6-level electronics, the complexity in electronics is reduced.

CM1G.2 • 08:15

Opto-Electronic Multi-Level Signal Regeneration, Masayuki Matsumoto¹, Sansa Kou², Shuhei Tanaka², ¹Wakayama University, Japan; ²Osaka University, Japan. A simple 3R DQPSK regenerator is demonstrated, where the input signal drives a dual-parallel Mach-Zehnder modulator after demodulation, balanced-detection and limiting amplification. Required bandwidth of the limiting amplification is numerically examined.

CM1G.3 • 08:30

On-chip single-shot and real-time self-referenced phase characterization of GHz-rate telecommunication signals, Hamed Pishvai Bazargani¹, Jean-Baptiste Quélène¹, Patrick Dumais², Antonio Malacarne³, Matteo Clerici¹, Roberto Morandotti¹, Claire Callender², Jose Azana¹; ¹Institut National de la Recherche Scientifique - Energie, Matériaux et Télécommunications (INRS-EMT),, Canada: ²Communications Research Centre Canada (CRC),, Canada; ³National Laboratory of Photonic Networks - CNIT, Italy. Phase Reconstruction using Optical Ultrafast Differentiation (PROUD) is implemented using an integrated Mach-Zehnder Interferometer, demonstrating self-referenced phase characterization of GHz-rate complex (up to 4-level amplitude and 4-level phase) modulation signals in a single-shot and real-time

Executive Ballroom 210E

08:00–10:00 CM1H • Laser Writing and Patterning

Presider: Emmanuel Haro-Poniatowski; Physics Department, UAM-Iztapalapa, Mexico

CM1H.1 • 08:00

Fentosecond laser direct writing of 3D highaspect-ratio nanofluidic channels in glass: a new platform for DNA analysis, Yang Liao¹, Changning Liu¹, Fei He¹, Lingling Qiao¹, Ya Cheng¹, Koji Sugioka², Katsumi Midorikawa²; '*ishanghai Inst of Optics and Fine Mech*, *China*; '*RIKEN - Advanced Science Institute, Japan.* We report on controllable production of 3D high-aspect-ratio (length to width ratio > 1,000) nanochannel with a width of ~40 nm in glass by femtosecond laser direct writing, and demonstrate its applicability for DNA analysis.

CM1H.2 • 08:15

Integrated Laser Processed Silver Nanowire Transparent Electrodes with Organic Electronic Devices, Joshua Spechler^{1,2}, Ken Nagamatsu^{1,3}, James C. Sturm^{1,3}, Craig B. Arnold^{1,2}, 'Princeton Institute for Materials Science Technology, Princeton University, USA; 'Mechanical and Aerospace Engineering, Princeton University, USA, 'Electrical Engineering, Princeton University, USA, UV pulsed laser irradiation coupled into a metal nanowire network through plasmonic absorption leads to localized welding of junction points. This approach enables direct integration of transparent metal films with organic photovoltaic and light emitting devices.

CM1H.3 • 08:30

Femtosecond Laser-Written Couplers in Fused Silica Fiber: Towards Fiber Cladding Optical Circuits, Ho Yiu Cheng', Jason Grenier', Peter R. Herman', 'The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Canada. Various means for coupling light from fiber core waveguide is examined to enable integration with fiber cladding optical circuits written by oil-immersion with femtosecond lasers. Coreless optical fiber and in-fiber Mach Zehnder interferometers are introduced.

Join the conversation. Follow @cleoconf on Twitter. Use hashtag **#CLE013**. , 10 June

212A-C

Meeting Room 212D-B

CLEO: Science & Innovations

08:00-10:00 CM1I • Mode-locked Fiber Lasers

Presider: Shinji Yamashita; University of Tokyo, Japan

CM1I.1 • 08:00

Passively Mode-Locked Fiber Laser Incorporating Adaptive Filtering and Dispersion Manage ment, Xin Yang¹, Hammani Kamal¹, David J. Richardson¹, Periklis Petropoulos¹; ¹Optoelectronic Research Centre, University of Southampton, United Kingdom. We demonstrate a passively mode-locked Erbium (Er)-doped fiber ring laser with a net dispersion which can be adjusted through a programmable filter placed inside the laser cavity.

av. 10 June

CM1I.2 • 08:15

Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward, Ruixin Wang¹, Kun Xu¹, Yitang Dai¹, Feifei Yin¹, Jianqiang Li¹, Yuefeng Ji¹, Jintong Lin¹; ¹Beijing Univ of Posts & Telecom, China. The supermode noise in an actively mode-locked laser is suppressed for the first time by pulse intensity feed-forward technique. Pulse train with >80 dB supermode-suppression ratio and 22.7-fs timing jitter (100 Hz-10 MHz) is obtained.

CM11.3 • 08:30

Multi-Bound Pulse State in a 250 GHz Mode-Locked Fiber Laser Based on a Silicon Micro-King Resonator, Siao-Shan Jyu', Ling-Gang Yang', Chien-Hung Yeh^{3,4}, Chi-Wai Chow', Hon Ki Tsang², Yinchieh Lai'; ¹Photonics, Electro-Optical Engineering National Chiao Tung University, Taiwan; ²Electronic Engineering, Electro-Optical Engineering Chinese University of Hong Kong, Hong Kong; 3Information and Communications Research Laboratories, Industrial Technology Research Institute (ITRI, Taiwan; 4Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, Taiwan. A 250 GHz passive mode-locked Er-doped fiber laser with a silicon-based micro-ring resonator is demonstrated experimentally. Besides the single pulse operation at 250 GHz, we also observe an interesting multi-bound pulse operation state.

08:00-10:00 CM1J • THz Metamaterials & Plasmonics I Presider:TBA

CM1J.1 • 08:00 Tutorial

molecular cross sections

Terahertz Nano Antennas: Fundamentals and

Applications, Dai-Sik Kim¹; ¹Department of Phys-

ics and Chemistry, Seoul National University, South

Korea. Terahertz waves focus onto nano antennas,

resulting in field enhancements of 100-10.000.

Kirchhoff integral and Poynting theorem will be

used to decipher energy-field relationships, and

Fermi's golden-rule will lead to giant terahertz

Dai-Sik Kim is a professor of physics at Seoul

National University. He heads Center for Subwave-

length Optics, funded by the National Research

Foundation. He got his B. S. in physics from Seoul

National University (1985). He obtained M. A. degree in biophysics (1986) and Ph. D. in physics (1990), both from U. C. Berkeley. He continued to work on ultrafast spectroscopy of semiconduc tors at AT&T Bell Laboratories (Holmdel) and at Oklahoma State University (Stillwater), before he joined the physics department of Seoul National

University. His current research interests include

terahertz spectroscopy of metal nanostructures

and nano antennas on dielectric substrate or strongly correlated systems such as VO2, where

l/10.000-l/1,000,000 feature sizes are routine. Another interest of his is the detection of the

magnetic field of light. He is an OSA fellow and

an APS fellow.

Meeting Room

08:00-10:00 CM1K • Mid-infrared QCL's Presider: Mikhail Belkin;

University of Texas at Austin, United States

CM1K.1 • 08:00

High frequency modulation of Mid-infrared Quantum Cascade Laser embedded into a micro-strip line, ariane calvar¹, Maria Amanti¹, Margaux Renaudat Saint-Jean¹, Pierre Gellie¹ Stefano Barbieri¹, Alfredo Bismuto², Mattias Beck², Emilio Gini², Jérôme Faist², Carlo Sirtori¹; ¹MPQ University Paris 7, France; ²Institute for Quantum Electronics, ETH Zurich, Switzerland. We present a Mid-infrared quantum cascade laser embedded into a micro-strip line for high frequency modulation. Modulating with less than 10mW at the round trip frequency, we observe beat-note injection locking within a range in the order of 1 MHz.

CM1K.2 • 08:15

High-speed Modulation Characteristic of a Quantum Cascade Laser, Andreas Hangauer Georg Spinner^{1,2}, Michal Nikodem^{1,3}, Gerard Wysocki¹; ¹Princeton University, USA; ²ETH Zu-rich, Switzerland, ³Wroclaw Research Centre EIT+, Poland. A high-frequency (100kHz-1GHz) modulation of the quantum cascade laser amplitude and phase is presented. Plasma-effect tuning with coefficients in 0.5-1.7MHz/mA range is observed depending on bias current. Carrier dynamics effects appear at frequencies >100MHz.

CM1K.3 • 08:30

Physical Origin of Frequency Noise and Linewidth in Mid-IR DFB Quantum Cascade Lasers, Lionel Tombez¹, Stéphane Schilt¹, Gianni Di Domenico¹, Stéphane Blaser², Antoine Muller², Tobias Gresch², Borislav Hinkov³, Mattias Beck³, Jérôme Faist³, Daniel Hofstetter¹; ¹University of Neuchatel, Switzerland; ²Alpes Lasers SA, Switzer land; 3ETH Zurich, Switzerland. Frequency noise and linewidth properties of different Mid-infrared DFB-QCLs using buried-heterostructures and ridge waveguides are compared. The physical origin of frequency noise and the impact of the different lasers parameters are discussed.

For Conference News & Insights Visit blog.cleoconference.org

CLEO: 2013 • 9–14 June 2013

08:00-10:00 CM1L • NLO in Microresonators and Waveguides **D**

Marriott San Jose

Salon I & II

Presider: Valdas Pasiskevicius; Royal Institute of Technology (JORCEP), Sweden

CM1L.1 • 08:00 🖸

Spectral broadening of microresonator based frequency combs for self-referencing, Tobias Herr¹, John D. Jost¹, Victor Brasch¹, Martin H. P. Pfeiffer¹, Christine Y. Wang¹, Michael Gorodetsky2, Tobias J. Kippenberg1; École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; ²Faculty of Physics, Moscow State University, Russian Federation. We demonstrate spectral broadening of a low noise microresonator based near-infrared frequency comb to almost two thirds of an octave as required for self-referencing. The low noise properties of the unbroadened spectrum are preserved.

CM1L.2 • 08:15 D

Improved spectral flatness and sub-two-cycle pulse generation in octave-spanning Kerr frequency combs using microresonators with two zero-dispersion wavelengths, Lin Zhang¹, Jianwei Mu1, Vivek Singh1, Pao T. Lin1, Neil Patel1, Anu Agarwal¹, Lionel Kimerling¹, Jurgen Michel¹; ¹MIT, USA. We show spectral flatness of Kerr frequency combs can be improved with a power fluctuation of <20 dB over one-octave bandwidth, using flattened dispersion profile with two ZDWs. Sub-two-cycle optical pulses are generated from combs.

CM1L3 • 08:30 On-chip high sensitivity laser frequency sensing

with Brillouin mutually-modulated cross-gain modulation, Feng Gao^{1,2}, Ravi Pant¹, Enbang Li¹, Christopher G. Poulton^{1,3}, Duk-Yong Choi⁴, Steve J. Madden⁴, Barry Luther-Davies⁴, Benjamin J. Eggleton¹; ¹Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Australia; ²MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, China; 3School of Mathematical Sciences, University of Technology Sydney, Australia; ⁴CUDOS, Laser Physics Centre, Australian National University, Australia. We report the first demonstration of a photonic-chip based laser frequency sensor using Brillouin mutually-modulated cross-gain modulation (MMXGM) in a 7cm long chalcogenide waveguide. A large sensitivity (9.45mrad/kHz) of the modulation phase shift was demonstrated

Marriott San Jose Salon III	Marriott San Jose Salon IV	Marriott San Jose Salon V & VI
CLEO: Science & Innovations		JOINT
08:00–10:00 CM1M • Optofluidic Particle Manipulation Presider: Dmitry Dylov, GE Global Research, USA	08:00–10:00 CM1N • Concepts for Scaling & Extending Laser Performance Presider: Karoly Osvay; ELI-HU Nonprofit Kft., United States	08:00-10:00 JM10 • Symposium on Novel Light Sources for Biomedical Applications: Light Sources for Optical Coherence Tomography Presider: Mircea Mujat; Physical Sciences Inc., United States
CM1M.1 • 08:00 Microparticle Guiding and Acceleration in Opti- cal Lattices Generated by Silicon-on-Insulator Multimode-Interference Waveguide-based Ar- rayed Optical Tweezers (SMART), Ting Lei ¹ , Andrew W. Poon ¹ ; 'Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong. We demonstrate opti- cal guiding and acceleration of 2.2um polystyrene particles in a fluidic flow using uniform and non-uniform optical lattices generated at 1550nm wavelengths by silicon-on-insulator multimode- interference waveguide-based arrayed optical tweezers (SMART).	CM1N.1 • 08:00 Power Scaling Concept for Solid-State Lasers Based on a Rotating Cavity Configuration, Matthew Eckold ¹ , Jacob I. Mackenzie ¹ , W. An- drew Clarkson ¹ ; ¹ Optoelectronics Research Centre, University of Southampton, United Kingdom. A laser architecture for scaling output power and avoiding deleterious thermal effects based on a resonator with a rotating periscope is described. Preliminary results for continuous-wave and Q- switched operation are presented.	JM10.1 • 08:00 Invited O OCT Sources: Current Limitations and Future Development Needs, Benjamin J. Vakoc'; 'Har- vard Medical School, USA. Swept-wavelength laser sources are an essential and enabling technology in the growing clinical adoption of optical coherence tomography (OCT). In this talk, we will review the advantages and limitations of available OCT source technologies.
CM1M.2 • 08:15 Single nano-particle sensing exploiting crossed polarizers to improve the signal-to-noise ratio, Jon Olav Grepstad', Peter Kaspar ² , Olav Solgaard ³ , Ib-Rune Johansen ⁴ , Aasmund Sudbo ⁵ ; ¹ Electronics and Telecommunications, Norwagi ² Electronics Laboratory, ETH Zurich, Switzerland, ³ Electrical Engineering, Stanford University, USA; ⁴ ICT, Microsystems and Nanotechnology, SINTEF, Norway; ⁵ Physics, University in Oslo, Norway, Crossed polarized excitation and detection has been used to improve signal-to-noise ratio in an optical nano-particle sensor exploiting guided- resonance-modes in photonic crystal membranes. The sensor can detect particles with a diameter less than 40 nm.	CM1N.2 • 08:12 Energy-scaling of DPSS Picosecond Amplifiers for OPCPA Pumping, Andreas Vaupel ^{1,2} , Nathan Bodnar ¹ , Benjamin Webb ¹ , Lawrence Shah ¹ , Eric Cormier ² , Martin Richardson ¹ ; ¹ CREOL - The College of Optics and Photonics, University of Central Florida, USA; ² Centre Lasers Intenses et Applications (CELIA), Université de Bordeaux 1, France. High power, high energy, picosecond amplifier systems are required for the next gen- eration of OPCPA systems. We address energy scaling and challenges of thermal loading and depolarization in high repetition rate amplifiers for OPCPA pumping.	
CM1M.3 • 08:30 3D Pulsed Laser Triggered High Speed Mi- crofluidic Fluorescence Activated Cell Sorter, Yue Chen ¹ , Ting-Hsiang Wu ^{1,2} , Yu-Chun Kung ¹ , Michael A. Teitell ² , Pei-Yu Chiou'; ¹ Mechanical and Aerospace Engineering, UCLA, USA; ² Pathology and Laboratory Medicine, UCLA, USA. Ve report a 3D PDMS microfluidic pulsed laser triggered fluorescence activated cell sorter capable of sorting at 11,000 cells/sec with >95% purity or at 45,000 cells/sec with 45% purity within a single channel.	CM1N.3 • 08:30 Invited C Plasma as an Amplifying Medium: Chirped Pulse Raman Amplification and the Transition to the Nonlinear Regime, Dino A. Jaroszynski'; ¹ Univ. of Strathclyde, United Kingdom. A density echelon exited in plasma is a robust amplifying medium. Raman CPA in plasma is studied in both the low and high pump power regimes where gains of up to seven orders of magnitude are measured and the nonlinear regime explored.	JM10.2 • 08:30 Invited High Speed Wavelength-swept Laser for Next Generation Optical Coherence Tomography, Wang-Yuhl Oh'; ¹ . Development of high-speed wavelength-swept lasers is one of the essentials for recent advances of the second generation OCT technology. In this talk, we will briefly review key wavelength-swept laser developments in the past decade and discuss its future direction for the next generation OCT.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 51

۲

Monday, 10 June

Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D **CLEO: QELS-Fundamental Science** OM1A • Active and Nonlinear QM1B • Near-field Imaging & QM1C • Nonclassical & Nonlocal OM1D • Coherent Effects in **Metamaterials**—Continued Spectroscopy—Continued Quantum States—Continued Excitons and Polaritons-Continued QM1A.4 • 08:45 QM1D.3 • 08:45 QM1B.4 • 08:45 Ultralow-threshold cavity Raman laser via Sub-diffraction Imaging of Resonant Scattering Observation of BKT Transition in BEC of Labels Using Polarization Spectro-Tomography, Farbod Shafiei¹, Chihhui Wu¹, Xiaoqin Li¹, free-space excitation, Xue-Feng Jiang¹, Qihuang Exciton-Polaritons in a Semiconductor Micro-Gong¹, Yun-Feng Xiao¹; ¹Department of Physics, cavity, Wolfgang H. Nitsche¹, Na Young Kim¹, Peking University, China. We observed ultralow Gennady Shvets¹; ¹University of Texas at Austin, Georgios Roumpos^{1,2}, Sven Hoefling³, Alfred Forchel³, Yoshihisa Yamamoto^{1,4}; ¹E. L. Ginzton threshold Raman lasing using direct free-space USA. We propose and experimentally realize a far-field imaging technique, polarization spectro-tomography, capable of detecting small resonant excitation of whispering gallery modes in a deformed microtoroid. This simple and robust Laboratory, Stanford University, USA; ²JILA, University of Colorado, USA; ³Technische Physik, excitation method can overcome the inadequacies objects (quantum dots, plasmonic nanorods) on Universitaet Wuerzburg, Germany; ⁴National the surface of a plasmonic nanosphere. The tech-Institute for Informatics, Japan. The first-order of taper coupling. nique is based on Fano interference. spatial correlation function of a Bose-Einstein condensate of exciton-polaritons in a semiconductor microcavity is measured. It behaves as the Berezinskii-Kosterlitz-Thouless theory predicts and decays with a power-law. QM1A.5 • 09:00 QM1B.5 • 09:00 QM1C.2 • 09:00 QM1D.4 • 09:00 Second Harmonic Generation with Optical Broadband Near-Field Detection with Multi-Towards a loophole free Bell test, Siddarth Ko-All-optical polariton transistor, Dario Balla-Vortices in Negative-Index Metamaterials, duru Joshi¹, Chen Ming Chia¹, Qixiang Leong², rini^{1,2}, Milena De Giorgi^{1,2}, Emiliano Cancellieri³, Frequency Probe Microscopy, Dana C. Kohlgraf-Antia Lamas-Linares³, Sae Woo Nam³, Christian Kurtsiefer^{1,2}; ¹Center for Quantum Technologies, National University of Singapore, Singapore; ²Physics Department, National University of Sin-Romuald Houdré⁴, Elisabeth Giacobino⁵, Roberto Mikhail I. Shalaev¹, Zhaxylyk A. Kudyshev¹, Owens¹, Léo Greusard², Sergey Sukhov¹, Yannick Alexander Cartwright¹, Natalia M. Litchinitser¹; ¹Electrical Engineering, The State University of New York, University at Buffalo, USA. We discuss De Wilde², Aristide Dogariu¹; ¹CREOL, The College of Optics and Photonics, University of Cingolani¹, Alberto Bramati⁵, Giuseppe Gigli^{2,6}, Daniele Sanvitto^{1,2}; ¹Istituto Italiano Tecnologia, Central Florida, USA; ²Institut Langevin, France. Italy; ²CNR- NANO, Italy; ³Universidad Autonoma the backward phase-matched process in negative Using scanning probe microscopy with modulated gapore, Singapore; 3National Institute of standards de Madrid, Spain; ⁴EPFL, Switzerland; ⁵CNRSand Technology, USA. Using a highly efficient (74%) PPKTP source of narrowband polariza-*LKB, France; ⁶University of Salento, Italy.* We experimentally demonstrate the working principle index metamaterials with quadratic nonlinearity, resulting in generation of a backward propagating illumination, we demonstrate simultaneous measurement of topography and optical forces exerted on a probe. Broadband optical field detection is vortex with simultaneously doubled frequency, tion entangled photon pairs (as measured with of an all-optical transistor in semiconductor planar orbital angular momentum and reversed rotation possible using a single probe. TES detectors) together with a fast polarization microcavities, based on the non-linear interactions direction of the wavefront. modulator (11 ns) we should be capable of a between two polariton fluids. The operation as AND/OR gate is shown, validating the connectivloophole free Bell test ity of the system. QM1A.6 • 09:15 QM1B.6 • 09:15 QM1C.3 • 09:15 QM1D.5 • 09:15 Electrically-driven Permeability-controlled Near field imaging of complex metal nanostruc-Violation of Continuous Variable EPR Steering Bright soliton and shock waves in an exciton with Discrete Measurements, James Schnee-loch¹, P. Ben Dixon², Gregory A. Howland¹, polariton condensate, Lorenzo Dominici^{1,2}, Milena De Giorgi^{1,2}, Dario Ballarini^{1,2}, Emil-iano Cancellieri³, Fabrice Laussy⁴, Elisabeth tures based on the use of azobenzene nanomo-tors, Renaud Bachelot¹, Jerome Plain¹; ¹LNIO, Optical Modulator using Mach-Zehnder Interferometer with Metamaterial, Tomo Amemiya1, Curtis J. Broadbent^{1,3}, John C. Howell¹; ¹Physics Toru Kanazawa1, Atsushi Ishikawa2, Seiji Myoga1, Universite de technologie de Troyes, France. We Eijun Murai¹, Takahiko Shindo¹, JoonHyung present a review on the use of molecular nanomoand Astronomy, University of Rochester, USA; Giacobino3, Alberto Bramati3, Giuseppe Gigli12, Kang', Nobuhiko Nishiyama', Yasuyuki Miya-moto', Takuo Tanaka', Shigehisa Arai', 'Tokyo Institute of Technology, Japan; 'RIKEN, Japan. An electrically-driven permeability-controlled GaIntors to probe the near field of metal nanoparticles. ²Research Laboratory of Electronics, Massachusetts Daniele Sanvitto^{1,2}; ¹IIT-Lecce, Istituto Italiano di Institute of Technology, USA; ³Rochester Theory Center, University of Rochester, USA. We create a Tecnologia, Italy; ²NNL, Istituto Nanoscienze, CNR, Both the experimental and theoretical point of view will be presented and discussed. Italy; ³Laboratoire Kastler Brossel, UPMC-Paris 6, stronger EPR-steering inequality for continuous École Normale Supérieure et CNRS, France; ⁴Fisica AsP/InP optical modulator was experimentally variables using entropic uncertainty. We explore Teorica de la Materia Condensada, Universidad demonstrated using Tri-gate metamaterial struc-ture. An extinction ratio of 6.9 dB was obtained at the asymmetry in this inequality and develop a Autonoma de Madrid, Spain. We demonstrate for the first time the generation of shock waves and standing bright soliton in an exciton polariton new symmetric inequality. We also violate these

 (\blacklozenge)

inequalities in experiment.

dav. <u>10</u> June

CLEO: 2013 • 9–14 June 2013

1550-nm wavelength with a gate swing of 2-12 V.

condensate resonantly created in a semiconductor microcavity, showing few ps rise time and 20ps

persistence after 100fs excitation.

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QM1E • Novel Phenomena in Photonic Lattices—Continued

QM1E.4 • 08:45

Beam dynamics in optical mesh lattices, Mohammad-Ali Miri¹, Alois Regensburger², Ulf Peschel², Demetrios N. Christodoulides¹; 'CREOL, College of Optics and Photonics, University of Central Florida, USA; 'Institute of Optics, Information and Photonics,, University of Erlangen-Nuernberg, Germany. We study propagation dynamics in a new class of optical lattices which are bi-periodic and discrete in both coordinates. These mesh structures exhibit peculiar linear and nonlinear properties which are unattainable in traditional optical lattices.

QM1E.5 • 09:00

Compact Fano states embedded in the continuum of waveguide arrays, Steffen Weimann¹, Yi Xu², Roert Keil¹, Andrey E. Miroshnichenko², Stefan Nolte¹, Andrey A. Sukhorukov², Yuri S. Kivshar², Alexander Szameit¹; ¹Institut für angewandte Physik, Freidrich-Schiller-Universität Jena, Germany; ²Nonlinear Physics Center, Australian National University, Australia. We predict and observe a compact surface bound state in the continuum due to optical Fano resonances in waveguide arrays. Except in the 4 surface sites, the localized mode amplitude vanishes in the entire lattice.

QM1E.6 • 09:15

 $(\mathbf{\Phi})$

Generation of multipartite single photon W states in waveguide lattices, Armando P. Leija^{1,2}, Markus Gräfe¹, Julio Cesar Hernandez-Herrejon¹, Hector Moya-Cessa¹, Alexander Szameit², Demetrios N. Christodoulides¹; ¹University of Central Florida, CREOL, USA; ²Ultrafast Optics, Institute of Applied Physics, Germany. We propose a versatile platform for generating multipartite W-states in appropriately engineered on-chip photonic lattices. One and two dimensional waveguide configurations are investigated for producing W-states with predesigned probability amplitudes and relative phases.

Executive Ballroom 210G

CM1F • Microresonators I—

Continued

Executive Ballroom 210F

CLEO: Science & Innovations

CM1G • Advanced Modulation Formats & Digital Signal Processing—Continued

CM1G.4 • 08:45

Stokes Space Based Digital PolDemux for Polarization Switched-QPSK Signals, Nelson J. Muga¹², Fernando P. Guiomar¹², Armando N. Pinto¹², ¹Instituto de Telecomunicações, Portugal; ²Department of Electronic, Telecommunications, and Informatics, University of Aveiro, Portugal. A polarization demultiplexing technique for polarization-switched QPSK signals is proposed. Compared to existing methods, this Stokes space based technique permits a gain of more than one order of magnitude in terms of convergence speed.

CM1G.5 • 09:00

Transmission Reach Study of Three Optical Fibers for 200 Gb/s PM-16QAM Systems with 100 km Spans, John D. Downie¹, Jason Hurley¹, Dragan Pikula¹, Sergey Ten¹, Chris Towery¹; ¹Corning Incorporated, USA. Transmission results are given for 256 Gb/s PM-16QAM systems over three optical fibers, using 100 km span lengths and EDFA amplification. Ultra-low loss, large effective area fiber provides ~85% reach advantage over standard single-mode fiber.

CM1H • Laser Writing and Patterning—Continued

Executive Ballroom

210E

CM1H.4 • 08:45

Polymer-Nanocomposite Anti-Reflective Coating Fabricated by Resonant IR Matrix-Assisted Pulsed Laser Evaporation, Daniel C. Mayo¹, Senthilraja Singaravelu², Hee K. Park², Costas P. Grigoropoulos³, Kenneth E. Schriver³, Richard F. Haglund^{1,4}, ¹Interdisciplinary Materials Science Program, Vanderbilt University, USA; ²AppliPlex LLC, USA; ³Mechanical Engineering, University of California, USA; ⁴Physics and Astronomy, Vanderbilt University, USA. We demonstrate a multilayer anti-reflective conformal coating for polycarbonate substrates, using a a polymer nanocomposite, fabricated by resonant infrared pulsed laser evaporation. The coating has 97% transmission, and less than 0.6% reflectivity over the visible spectrum.

CM1H.5 • 09:00 Invited

Ultrafast Lasers in Industrial Solutions, David M. Gaudiosi¹, Michael R. Greenberg¹, Dale Nussdorfer¹, Michael Shirk¹, Eric Juban¹, Michael M. Mielke¹, Tim Booth¹; *'Raydiance Inc, USA*. Precision processing of a variety of materials, ranging from metals to dielectrics, has been demonstrated with a high degree of reliability and repeatability, at industrially feasible processing speeds.

Monday, 10 June

۲

CM1F.5 • 09:15

polarizations.

CM1F.4 • 09:00

Improving the Dimensional Tolerance of Microrings with Adiabatically Widened Bends, Jared C. Mikkelsen', Wesley D. Sacher', Hasitha Jayatilleka', Richard J. Bojko², Joyce K. Poon'; ¹Electrical and Computer Engineering, University of Toronto, Canada; ²Microfabrication Laboratory, University of Washington, USA. Silicon microrings with widened waveguides have higher dimensional tolerances than conventional designs with singlemode wire waveguides. We show microrings where the resonance wavelength shifts from waveguide width variations are reduced by a factor of 2.5.

High-Q Resonators on Bi-Layer Si Platform

Using Wafer Bonding, Hesam Moradinejad¹,

Amir H. Atabaki¹, Amir H. Hosseinia¹, Ali Asghar

Eftekhar¹, Ali Adibi¹; ¹Georgia Institute of Technology, USA. We report the development of a high

quality bi-layer silicon material platform using


wafer bonding. We have experimentally demon

strated high quality-factor resonators (>200,000)

in this material platform for both TE and TM

CM1G.6 • 09:15

Averaging of Phase Noise in NRZ-PSK Signals by Using an Optical and Electrical Feed-Forward Circuit, Kyo Inoue¹, Masato Ohta¹; 'Osaka University, Japan. We propose an optical and electrical feed-forward circuit that reduces phase noise in PSK signals by averaging the noise. A phasefluctuating PSK signal is phase-modulated with a feed-forward signal from differential detectors and signal processing.

Meeting Room

212A-C

CM1J • THz Metamaterials &

Plasmonics I—Continued

Meeting Room 212D-B

CM1K • Mid-infrared QCL's-

Electrically pumped Mid-infrared random

lasers, Houkun Liang¹, Bo Meng², Guozhen Liang²

Qijie Wang², Ying Zhang¹; ¹Precision measurement Group, Singapore Institute of Manufacturing Technology, Singapore; ²School of Electrical and

Electronic Engineering, Nanyang Technological

University, Singapore. Electrically pumped random lasers in the Mid-infrared regime at $\lambda \sim 10$

µm have been demonstrated for the first time to

our knowledge. The laser is based on a quantum

cascade (QC) gain media with designed filling

CLEO: Science & Innovations

Continued

CM1K.4 • 08:45

 (\blacklozenge)

CM1I • Mode-locked Fiber Lasers—Continued

Meeting Room

211D-B

CM1I.4 • 08:45

285 mW High Power, Dissipative-Soliton Mode-Locked, Er-doped Fiber Laser using Carbon Nanotube, Yuto Nozaki¹, Norihiko Nishizawa¹, Hiromichi Kataura^{3,3}, Emiko Omoda², Youichi Sakakibara^{2,3}, 'Electrical Engineering and Computer Science, Nagoya University, Japan; ²AIST, Japan; ³JST CREST, Japan. Dissipative soliton modelocked Er-doped ultrashort pulse fiber laser using carbon nanotube polyimide film was investigated both experimentally and numerically. The highest output power of 285 mW was achieved for passively mode-locked nanotube fiber laser.

Monday, 10 June

org

۱.

(

CM1I.5 • 09:00

A Low-Loss Carbon-Nanotube-Based Linear Cavity Fiber Laser for High Energy Pulse Generation, Huan Huan Liu¹, Ye Yang¹, Kin Kee Chow¹; ¹School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. We demonstrate a low-loss linear cavity fiber laser incorporating carbon-nanotubes for high energy pulse generation. A pump efficiency of 47% for the intra-cavity power is obtained with an output pulse energy of 114 nJ.

CM1I.6 • 09:15

Dissipative Soliton Resonance in an All-Normal-Dispersion Graphene Oxide Mode-Locked Yb-Doped Fiber Laser, Zhaochen Cheng¹, Wu Sida², Shi Hongxing¹, Jia Xu¹, Quan-hong Yang², Pu Wang¹; *Beijing University of Technology, China*, *²Tianjin University, China.* We observed dissipative soliton resonance in graphene oxide mode-locked Yb-doped fiber laser, which delivered squareshaped nanosecond pulses of 0.52ns-60.8ns and single pulse energy of 137.1nJ at 1064.9nm. The 3dB-bandwidth of Lorentz-shaped spectrum was 0.19nm.

CM1J.2 • 09:00

Active Metamaterial Diffraction Grating, Nicholas Karl¹, Kimberly S. Reichel¹, Hou-Tong Chen², Antoinette Taylor³, Igal Brener³, Alexander Benz³, John L. Reno³, Rajind Mendis¹, Daniel Mittleman¹; ¹Electrical and Computer Engineering, Rice University, USA; ²Los Alamos National Laboratory, USA; ³Sandia National Laboratories, USA. We design and test a switchable diffraction grating based on active metamaterials for terahertz modulation. We observe off-axis diffraction which permits operation of the device as a narrowband high-contrast modulator.

CM1J.3 • 09:15

Metamaterial-Based, Gradient Index Beam Steerer for Terahertz Radiation, Jens Neu¹, Marco H. Rahm¹; 'Electrical and Computer Engineering, University of Kaiserslautern, Germany. We designed and fabricated a metamaterial-based beam steerer that deflects an incident terahertz beam by 4.2° due to an implemented gradient index structure. We characterized it using THz-TDS with three-dimensional subwavelength spatial resolution.

CM1K.5 • 09:00

fractions of scatterers.

High Power Continuous Wave Operation of Distributed Bragg Reflector Quantum Cascade Laser, Feng Xie¹, Catherine Caneau¹, Herve LeBlanc¹, Ming-tsung Ho¹, Lawrence C. Hughes¹, Chung-en Zah¹; ¹Corning Incorporated, USA. We demonstrate 2W CW output power with a DBR QCL mounted epi-down at 20 °C, with a CW WPE of 10.3 %. Single mode operation with a SMSR of 30 dB was achieved with the wavelength around 4.48 μ m.

CM1K.6 • 09:15

Room-Temperature Operation of Index-Coupled Distributed-Feedback 4.75 μ m Quantum Cascade Lasers Fabricated without Epitaxial Regrowth, Ryan M. Briggs¹, Clifford Frez¹, Carl E. Borgentun¹, Siamak Forouhar¹; *IPL_USA*. We demonstrate single-mode distributed-feedback quantum cascade lasers at 4.75 μ m with etched index-coupled surface gratings and spin-on dielectric infilling. We observe continuous wave laser emission at room temperature with 5 W of electrical power consumption.

using dispersion engineered chalcogenide glass waveguides, Barry Luther-Davies¹, Xin Gai¹, Steve J. Madden¹, Duk-Yong Choi¹, Zhiyong Yang¹, Rongping Wang¹, Pan Ma¹, Ivy Yu¹; ¹CUDOS, Australian National University, Australia. We report the generation of a mid-IR supercontinuum created by passing ~8psec duration pulses at ~3260nm through dispersion-engineered As2S3 and Ge11.5As24Se64.5 waveguides.

Supercontinuum generation in the Mid-infrared

Marriott San Jose

Salon I & II

CM1L • NLO in Microresonators

and Waveguides—Continued

CM1L.4 • 08:45 D

CM1L.5 • 09:00 D

Four-Wave Mixing in Si3N4-Clad Silicon-on-Insulator Waveguides for the Mid-infrared Region, Ryan K. Lau¹, Michael Menard², Yoshitomo Okawach¹¹, Michal Lipson^{2,3}, Alexander L. Gaeta^{1,3}; ¹School of Applied and Engineering Physics, Cornell University, USA; ²School of Electrical and Computer Engineering, Cornell University, USA; ³Kavil Institute at Cornell for Nanoscale Science, Cornell University, USA. We introduce novel SOI waveguides with a Si3N4 top cladding for nonlinear photonics in the Mid-infrared wavelength region. We demonstrate continuous-wave frequency conversion via four-wave mixing and obtain a conversion bandwidth of over 300 nm.

CM1L.6 • 09:15 D

Modal phase-matching of second-order nonlinearities at silicon-oxy-nitride interfaces in multilayer waveguides, Dylan Logan¹, Ali B. Alamin Dow¹, Dmitri Stepanov², Payam Abolghasem¹, Nazir P. Kherani^{1,3}, A. S. Helmy¹; ¹The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Canada, ²Department of Materials Science and Engineering, University of Toronto, Canada. We establish multi-layer dielectric waveguides as a platform for exploiting interface second-order nonlinearities. We demonstrate phase-matched second-harmonic generation in a silicon-oxy-nitride waveguide with an external efficiency of ~6×10⁻⁴ %/W.

2013CLEO Monday.indd 7

 $(\mathbf{\Phi})$

Executive I	Ballroom
210	Α

Executive Ballroom 210B

QM1B • Near-field Imaging &

Spectroscopy—Continued

Executive Ballroom 210C

QM1C • Nonclassical & Nonlocal

Optical Hybrid Quantum Information: Ex-

ample of a Continuous-Variable Trustworthy

Witness for Single-Photon Entanglement, O

ivier MORIN1, Jean-Daniel Bancal2, Melvyn Ho2,

Pavel Sekatski², Virginia D'Auria¹, Claude Fabre¹,

Nicolas Gisin², Julien Laurat¹, Nicolas Sangouard²;

Laboratoire Kastler Brossel, Université Pierre et

Marie Curie, France; ²Group of Applied Physics,

University of Geneva, Switzerland. We demonstrate

a novel trustworthy witness for single-photon entanglement based only on local homodyne

measurements. This operational test is well suited

for quantum networks, and highlights the potential

Quantum States—Continued

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

QM1A • Active and Nonlinear Metamaterials—Continued

QM1A.7 • 09:30

Negative differential thermal emitter, Mikhail Kats¹, Romain Blanchard¹, Shuyan Zhang¹, Patrice Genevet¹, Changhyun Ko¹, Shriram Ramanathan¹, Federico Capasso¹; *'School of Engineering and Applied Sciences, Harvard University, USA.* We experimentally demonstrate a thermal emitter comprising sapphire and a vanadium dioxide thin film, which exhibits large negative differential emittance: over a temperature range of > 10 °C, the thermal emittance decreases by over 10%.

QM1B.7 • 09:30 Tailored Superoscillatory Beams: Controlling Symmetry, Broadening, Width, and Orientation, Elad Greenfield', Ilan Hurwitz', Ran Schley', Mordechai Segev'; 'Physics, Technion Israel Institute of Technology, Israel. We present, theoretically and experimentally, non-broadening optical beams having arbitrarily small superoscillatory features. Our design facilitates control over the symmetry, width, and rotational orientation of the superoscillating beams.

of the optical hybrid approach.

QM1C.4 • 09:30

QM1C.5 • 09:45 Demonstration of nonlocal dispersion cancellation in Franson interferometry, Tian Zhong¹, Franco N.C. Wong¹; *IResearch Laboratory of Electronics, Massachusetts Institute of Technology, USA.* We report the first demonstration of nonlocal cancellation of differential dispersion between the long-short paths of a fiber-based Franson interferometer, restoring the otherwise limited visibility to an unprecedented 99.6% for time-energy entangled photons.

QM1D • Coherent Effects in Excitons and Polaritons— Continued

QM1D.6 • 09:30

Superfluorescence from a Dense Electron-Hole Plasma in Pulsed High Magnetic Fields, Gary T. Noe II¹, Hiroyuki Nojiri², Jean Leotin³, Gary Woods¹, Alexey Belyanin⁴, Junichiro Kono¹; ¹Department of Electrical and Computer Engineering, Rice University, USA; ²Institute for Materials Research, Tohoku University, Japan; ³Laboratoire National des Champs Magnitiques Intenses, CNRS-UJF-UPS-INSA, France; ⁴Department of Physics, Texas A&M University, USA. We have observed intense superfluorescent emission from a highdensity electron-hole plasma in semiconductor quantum wells in high magnetic fields up to 30 T by developing a unique magneto-optical system with a table-top mini-coil pulsed magnet.

QM1D.7 • 09:45

Realization of sub-100 mK excitons in cuprous oxide for a stable Bose-Einstein condensate, Yusuke Morita', Kosuke Yoshioka', Kenta Fukuoka', Makoto Kuwata-Gonokami'^{1,3}, 'Department of physics, the University of Tokyo, Japan; 'Department of applied physics, the University of Tokyo, Japan; 'Photon Science Center, the University of Tokyo, Japan. We demonstrate generation of trapped ultracold paraexcitons in bulk Cu2O. The unprecedentedly low exciton temperature is realized by a newly found cooling channel. It is ideal for experiments on exciton Bose-Einstein condensates.

QM1A.8 • 09:45

Functional Metamaterials for Wireless Phase Conjugation, Alexander Katko¹, Steven Cummer¹; ¹Department of Electrical and Computer Engineering, Duke University, USA. Functional metamaterials provide useful properties for the design of electromagnetic devices. In this work we demonstrate that functions including high nonlinearity and amplification can be included in metamaterials to realize time reversal imaging.

QM1B.8 • 09:45

Super-oscillatory optical needle for heat assisted magnetic recording, Guanghui Yuan', Edward Rogers², Brendan Lafferty³, Marcus Mooney³, Zexiang Shen¹, Nikolay Zheludev^{1,2}; ¹Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore; ²Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, United Kingdom; ³Seagate Technologies, Ireland. We demonstrate an alternative to plasmonic focusing, a superoscillatory focusing lens capable of producing a 51nm spot for optical heating in heat assisted magnetic recording using a diode laser operating at 473 nm wavelength.

10:00–10:30 Coffee Break, Concourse Level

	7	
	NOTES	

۲

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

OM1E • Novel Phenomena in **Photonic Lattices—Continued**

QM1E.7 • 09:30

Speckle Statistics of Anderson-localized Light in Disordered Waveguide Arrays, Hasan E. Kondakci1, Ayman F. Abouraddy1, Bahaa Saleh1; ¹University of Central Florida, CREOL, USA. We show that coherent light travelling through a 1-D lattice of waveguides with off-diagonal disorder exhibits super-thermal statistics (g^(2)>2), a manifestation of constrained disorder with underlying symmetries. Sub-thermal statistics may be exhibited for diagonal disorder.

CM1F • Microresonators I-Continued

Executive Ballroom

210G

CM1F.6 • 09:30

CM1F.7 • 09:45

than using Sagnac effect.

Light Scattering from Silicon Nitride Microdisks, David McCloskey^{1,2}, John Donegan^{1,2} School of Physics, Trinity College Dublin, Ireland; ²Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland. High intensity sub-wavelength spots and low divergence nanojets are observed in a system of 400 nm thick Si3N4 microdisks with diameters ranging from 1 μ m to 10 μ m, illuminated with linearly polarised light of wavelength 532 nm.

Effect of Rotation on Resonant Modes of De-

formed Dielectric Microcavities, Raktim Sarma¹,

Li Ge², Hui Cao¹; ¹Applied Physics, Yale University,

USA; ²Electrical Engineering, Princeton University,

USA. We showed numerically rotation causes

much larger changes of quality factor and emis-

sion pattern of resonant modes than frequency

shift in open dielectric microcavities, providing

possible alternative schemes of rotation sensing

CM1G.8 • 09:45

Rate-Adaptive Irregular QC-LDPC Codes from Pairwise Balanced Designs for Ultra-High-Speed Optical Transport, Ivan B. Djordjevic1, Ting Wang²; ¹ECE Dept., College of Engineering; College of Optical Sciences, University of Arizona, USA; ²Optical Networking, NEC Labs, USA. A rate-adaptive coded-modulation scheme based on irregular-quasi-cyclic-LDPC codes designed using the concept of pairwise-balanced-designs is proposed. Proposed scheme outperforms the corresponding scheme based on regular-LDPC codes, and eliminates the error-floor phenomenon of regular-LDPC codes.

CM1H.7 • 09:45

Nanosecond Pulsed Laser Color Marking of Titanium: Analysis of Oxide Layer Phase, David Adams¹, Ryan Murphy¹, Mark Rodriguez¹, Deidre Hirschfeld¹, David Saiz¹; ¹Sandia National Laboratories, USA. Nanosecond-pulsed, infrared laser irradiation has been used to create metal oxide coatings on the surface of polished Ti for application as unique tags/identifiers. X-ray diffraction and electron microscopy demonstrate that coatings are titanium monoxide.

Monday, 10 June

۲

OM1E.8 • 09:45

(

Supersymmetric optics: SUSY fibers for integrated angular momentum multiplexing, Mohammad-Ali Miri1, Matthias Heinrich1, Ram El-Ganainy², Demetrios N. Christodoulides¹; ¹CREOL The College of Optics and Photonics, University of Central Florida, USA; ²Department of Physics, University of Toronto, Canada. We show that supersymmetry can provide a versatile plat-form for a new class of optical structures. Here we introduce SUSY to two-dimensional fiber geometries that could pave the way towards integrated optical angular-momentum multiplexing schemes.

10:00–10:30 Coffee Break, Concourse Level

	NOTES	

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 57

Executive Ballroom

CLEO: Science & Innovations

210F

CM1G • Advanced Modulation Formats & Digital Signal Processing—Continued

CM1G.7 • 09:30

Optimum Signal Constellation Design and Mapping Rule for Few-Mode Fiber based LDPC-Coded CO-OFDM, Ding Zou¹, Tao Liu¹, Ivan B. Djordjevic¹, Ting Wang²; ¹University of Arizona, USA; ²NEC Labs, USA. We propose an OSCD-based LDPC-coded mode-multiplexed CO-OFDM system as multi-Tb/s enabling technology, and demonstrate that 16-OSCD with optimized mapping rule outperforms the 16-QAM by 0.9dB over 1000km of few-mode fiber in strong coupling regime.

Executive Ballroom 210E

CM1H • Laser Writing and

Laser annealing and simulation of a:Si thin

films for solar cell applications, Ioanna Zergioti¹;

National Technical University of Athens, Greece.

Laser annealing experiments for the crystallization

of amorphous silicon layer and improvement of

its solar cell efficiency are presented here. Tem-

perature simulation to define the depth profile

Patterning—Continued

distribution was also performed.

CM1H.6 • 09:30

Meeting Room Meeting Room Meeting Room Marriott San Jose 211D-B 212D-B 212A-C Salon I & II **CLEO: Science** & Innovations CM1I • Mode-locked Fiber CM1J • THz Metamaterials & CM1K • Mid-infrared QCL's-CM1L • NLO in Microresonators Lasers—Continued **Plasmonics I—Continued** Continued and Waveguides—Continued CM1I.7 • 09:30 CM1K.7 • 09:30 CM1J.4 • 09:30 Invited CM1L.7 • 09:30 Directly Imprinted Graphite Nano-Particle Single Mode Tuning in Quantum Cascade Light-matter Interaction in Terahertz Meta-Wavelength-Selective All-Optical Switching in with Improved Quality for Sub-400 fs Passively Lasers with Asymmetric Mach-Zehnder Inatoms, Daniel Dietze¹, Karl Unterrainer¹, Juraj Cascaded Silicon Micro-rings, Yanan H. Wen¹, terferometer-type Cavities, Mei Chai Zheng¹, Peter Q. Liu^{1,2}, Xiaojun Wang³, Jun-Yu Fan³, Mariano Troccoli³, Claire F. Gmachl¹; ¹Electrical Mode-Locked Fiber Laser, Yung-Hsiang Lin¹, Darmo1; 1Institute of Photonics, Vienna University Lian-Wee Luo², Michal Lipson^{2,3}, Alexander L. Gong-Ru Lin¹; ¹Graduate Institute of Photonics of Technology, Austria. Effective coupling between Gaeta^{1,3}; ¹Applied & Engineering Physics, Cornell and Optoelectronics, National Taiwan University, intersubband optical transitions and planar University, USA; ²Electrical & Computer Engineer-Taiwan. The continually exfoliated graphite nano-Engineering, Princeton University, USA; ²Institute metallic resonators is presented. We discuss and ing, Cornell University, USA; ³Kavli Institute at of Quantum Electronics, Switzerland; ³AdTech Optics Inc., USA. Two separate contacts are inparticle with reduced layer number achieved by demonstrate features unique to such a system and Cornell for Nanoscale Science, Cornell University, USA. We demonstrate all-optical modulation of two contacted fiber connecter is demonstrated as point out the consequences for active terahertz a fast saturable absorber to passively mode-lock corporated into the different arms of Quantum metamaterial devices individual resonances of a two-ring silicon microan erbium-doped fiber laser for obtaining sub-400 Cascade lasers with asymmetric Mach-Zehnder resonator switching fabric using Raman-induced fs pulsewidth. interferometer type cavities. Preliminary results loss. The number of unique output states for such reveal an almost-continuous single mode tuning a switching fabric scales exponentially with the range of 20 cm^-1 at 80K. number of signals. CM1I.8 • 09:45 CM1K.8 • 09:45 CM1L.8 • 09:45 Importance of Growth Direction in Mid-High-energy noise-like pulses generated by Raman Scattering Emission in High Q Factor a dispersion-mapped Yb-doped fiber laser, Alexey Zaytsev¹, Chih-Hsuan Lin², Yi-Jing You², infrared Quantum Cascade Lasers, Pierre M. Bouzi¹, YenTing Chiu¹, Christoph Deutsch^{1,2}, As2S3 Microspheres, Francis Vanier¹, Martin Rochette², Yves-Alain Peter¹; ¹Department of En-gineering Physics, Ecole Polytechnique de Montreal, Chia-Chun Chung¹, Chi-Luen Wang³, Ci-Ling Vadim Tokranov³, Serge Oktyabrsky³, Claire F. Pan^{1,2}; 1Department of Physics, National Tsing Hua Gmachl¹; ¹Electrical Engineering, Princeton Uni-Canada; ²Department of Électrical and Computer versity, USA; ²Photonics Institute, Vienna Institute Engineering, McGill University, Canada. We pres-

ent measurements of Raman scattering emission in high Q factor As2S3 microspheres. Emission is observed for input powers down to 120 µW and for resonances with Q factor below 10^7.

۲

58

2013CLEO Monday.indd 11

۲

NOTES

10:00–10:30 Coffee Break, Concourse Level

of Technology, Austria; ³College of Nanoscale Sci-ence and Engineering, University at Albany-SUNY, USA. We report on the effect of growth direction

in Quantum Cascade lasers by using symmetric


structures. Dopant migration causes strong wavefunction overlap with dopants for positively biased devices, resulting in ~40% lower performance than

those biased negatively.

()

University, Taiwan; ²Institute of Photonics Tech-nologies, National Tsing Hua University, Taiwan; ³Cleverwave Tech. Inc., Taiwan. Noise-like pulses (NLP) up to 45 nJ are generated in a dispersionmapped Yb-doped fiber laser. A spatial spectral filter is used to control temporal and spectral characteristics of generated NLP.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 59

button.

Presentations

button.

 $(\mathbf{\Phi})$

Executive Ballroom 210A

JOINT

10:30-12:30

JM2A · Symposium on **Fundamentals of Absorption** and Emission in Nanostructures and Composites: Novel Optics in Plasmonic and Hyperbolic Systems

Presider: Viktor Podolskiy; University of Massachusetts Lowell, United States

JM2A.1 • 10:30 Invited

Taming light-matter interaction on the nanoscale, Romain Quidant1; 1ICFO- Institut de Ciencies Fotoniques, Spain. We first present different experimental strategies to accurately control the interaction of top-down metallic nanostructures with few to single molecules or artificial atoms. We then discuss some applications to different areas including nanochemistry and quantum optics.

JM2A.2 • 11:00

Monday, 10 June

Control of Förster energy transfer with hyperbolic metamaterials and metallic surfaces, Thejaswi Tumkur¹, John K. Kitur¹, Carl E. Bonner¹, Evgenii E. Narimanov², Mikhail A. Noginov¹; ¹Center for Materials Research, Norfolk State University, USA; ²Department of Electrical and Computer Engineering, Purdue University, USA. We show that Förster energy transfer is inhibited in the vicinity of hyperbolic metamaterials and metals the environments, which enhance spontaneous emission rates. The effect is attributed to high local densities of photonic states

Executive Ballroom 210B

Executive Ballroom 210C

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

10:30-12:30 QM2C • Single Photon Sources Presider: Ian Walmsley; University of Oxford, United Kingdom

10:30-12:30 QM2D • Dynamics of Excitons and Plasmons

Presider: Steven Cundiff; NIST/ University of Colorado, United States

OM2B.1 • 10:30

Optical State Transfer via Optomechanical Dark **Mode**, Hailin Wang¹, Chunhua Dong¹, Victor Fiore¹, Mark C. Kuzyk¹; ¹University of Oregon, USA. We demonstrate an optomechanical dark mode that converts fields between two optical modes, but is decoupled from the mechanical oscillator. The dark mode can enable mechanically-mediated quantum-state-transfer, without cooling the mechanical system to its ground state.

QM2B.2 • 10:45

Ground state cooling of mechanical motion through coupled cavity interactions in the unresolved sideband regime, Yong-Chun Liu^{1,2}, Yun-Feng Xiao¹, Xingsheng Luan², Chee Wei Wong²; ¹State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, China; ²Optical Nanostructures Laboratory, Columbia University, USA. We describe coupled-cavity scheme to achieve ground-state cooling of mechanical motion in highly-unresolved sideband regimes. Through EIT lineshapes, both quantum Langevin and master equations confirm the quantum noise characteristics and achieve ĸ/wm greater than 10000.

QM2B.3 • 11:00

Towards observation of quantum optomechanical correlations, Daniel Garcia Sanchez¹, Alexandros Tavernarakis¹, Aurélien G. Kuhn¹, Leonhard Neuhaus¹, Salim Zerkani¹, Thibaut Karassouloff¹, Jean Teissier¹, Samuel Deleglise¹, Pierre-Francois Cohadon¹, Tristan Briant¹, Antoine Heidmann¹; Laboratoire Kastler Brossel, France. The quantum radiation pressure noise gives rise to mirror displacement fluctuations and sets a limit in the displacement sensitivity. We have designed a table-top experiment to demonstrate this effect and realize quantum optomechanical experiments.

OM2C.1 • 10:30 Quantum Feedback Preparation and Stabiliza-

tion of Photon Number States of Light in a Cavity, Igor Dotsenko¹, Xingxing Zhou¹, Bruno Peaudecerf¹, Theo Rybarczyk¹, Stefan Gerlich¹, Sebastien Gleyzes¹, Michel Brune¹, Jean-Michel Raimond¹, Serge Haroche^{1,2}; ¹Laboratoire Kastler Brossel, C.N.R.S., France; ²College de France, France. We present a cavity QED experiment on quantum feedback in a microwave superconducting cavity with Rydberg atoms used as quantum sensors and actuators. Our feedback scheme prepares and stabilizes against decoherence photon-number states of light.

QM2C.2 • 10:45

Deterministic Generation of an on-Demand Photon Fock State from a solid-state system, Keyu Xia¹, Jason Twamley¹, Gavin K. Brennen¹ Demosthenes Ellinas²; ¹ARC Centre for Engi-neered Quantum Systems, Physics and Astronomy, Macquarie University, Australia; ²Department of Sciences M\$\Phi\$Q Research Unit, Technical University of Crete, Greece. Using an optical toroidal cavity coupled to a Nitregon-vacancy center in a nanodiamond, we present a method to deterministically and on-demand generate photon Fock states with high photon occupation in the visible light frequency.

QM2C.3 • 11:00

A Room Temperature Single Photon Source in Silicon Carbide, stefania castelletto¹, Brett Johnson^{2,5}, Victor Ivady³, Nikolas Stavrias², Takaede Umeda⁴, Adam Gali³, Takeshi Oshima⁵; ¹*Physics*, Macquarie University, Australia; ²University of Melbourne, Australia; ³Hungarian Academy oj Sciences,, Hungary; 4University of Tsukuba, Japan; ⁵Japan Atomic Energy Agency, Japan. We report the first observation of stable single photon sources in an electronic and photonic device-friendly material, silicon carbide (SiC). SiC is a viable material for implementing quantum communication, computation and photonic technologies.

QM2D.1 • 10:30

Sequential Superfluorescent Bursts from a Dense Electron-Hole Plasma via Fermi-Edge Gain Enhancement, Ji-Hee Kim¹, Tim Noe¹, Junichiro Kono¹, Yongrui Wang², Aleksander Wojcik², Alexey Belyanin², Stephen McGill³; ¹Electrical and Computer Engineering, Rice Univeristy, USA; ²Physics and Astronomy, Texas A&M University, USA; ³National High Magnetic Field Lab, USA. A high-density electron-hole plasma in InGaAs/GaAs quantum wells emits a series of sequential bursts of intense superfluorescent radiation with photon energies corresponding to the separation between the electron and hole quasi-Fermi energies.

QM2D.2 • 10:45

Manybody-Correlated Tunneling in Mixed-Type Quantum Wells at High Magnetic Field, Thom K. Baldwin¹, Stephen McGill², Hailin Wang¹; ¹Department of Physics, University of Oregon, USA; ²National High Magnetic Field Laboratory, USA. We report on optical studies of interlayer hole tunneling effects in Mixed-Type Quantum Wells (MTQW) in high magnetic fields.

QM2D.3 • 11:00 Invited

Transient Excitons at Metal Surfaces, Hrvoje Petek¹; ¹Department of Physics and Astronomy, Univ. of Pittsburgh, USA. We employ multiphoton photoemission to study resonant and nonresonant transitions between the occupied and unoccupied surface states at noble metal surfaces. At resonance, nondispersive bands give evidence for the existence of transient excitons at metal surfaces.

۲

10:30-12:30

Systems

QM2B • Novel Quantum

University, United States

Presider: Michal Bajcsy; Stanford

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

10:30–12:30 QM2E • Self-accelerating Beams

Presider: Oded Yaakobi, INRS-EMT, University of Quebec, Canada

QM2E.1 • 10:30 Invited

Self-Accelerating Beams in Photonic Crystal Slabs, Ido Kaminer¹, Jonathan Nemirovsky¹, Konstantinos G. Makris², Mordechai Segev¹; ¹⁷lechnion Israel Institute of Technology, Israel; ²Princeton University, USA. We find beams that self-bend to highly nonparaxial angles in a general periodic optical system, demonstrating how light can be guided in structures by only tailoring the incoming field, without altering the structure itself.

Executive Ballroom 210G

CM2F • Nanoantennas and

Presider: Wolfgang Freude,

CM2F.1 • 10:30 Invited

Karlsruhe Institute of Technology

Nano-plasmonics on Silicon and their Applica-

ic Engineering, KTH Royal Institute of Technology,

Sweden; ²Centre for Optical and Electromagnetic

Research, JORCEP,, Zhejiang University, China.

Our recent theoretical and experimental work on

hybrid nano-plasmonic structures and devices will

be reviewed. Effects of nonlocal optical response,

etc., are presented, as well as some applications

including guiding and harvesting of light.

tions, Sailing HE^{1,2}; ¹Department of Electron

10:30-12:30

Plasmonics

(KIT), Germany

Executive Ballroom 210F

CLEO: Science & Innovations

10:30–12:30 CM2G • Approaching Fundamental Limits in Optical Communication Presider: David Caplan; Massachusetts Inst of Tech Lincoln Lab, United States

The Pursuit of Ultimate Photon Efficiency,

Xiang Liu1; 1Bell Labs, USA. We review recent

advances in the pursuit of photon-efficient modu-

lation and detection for optical communications.

Hybrid modulation superimposing coherent

modulation on pulse-position-modulation and

4-dimensional modulation are presented. Applica-

CM2G.1 • 10:30 Invited

tions will be discussed.

Executive Ballroom 210E

10:30-12:30

CM2H • Microcavity Optofluidic Sensors Presider: Ofer Levi, Univ. of

Tronto, Canada

CM2H.1 • 10:30

Microfluidic Optomechanics, Kyu Hyun Kim¹, Gaurav Bahl², Wonsuk Lee^{1,3}, Jing Liu³, Matthew Tomes¹, Xudong Fan³, Tal Carmon¹; *'EECS*, University of Michigan, USA; '2MSE, University of Ilinois at Urbana-Champaign, USA; 'BME, University of Michigan, USA. We bridge between optomechanics and microfluidics by experimentally demonstrating optically excited vibrations. Our device enables extending optomechanics to non-solid phases of matter in a fluid containing microcapillary.

CM2H.2 • 10:45

Highly Sensitive Optofluidic FRET Lasers with Genetically Encoded Fluorescent Protein Pairs, Qiushu Chen¹, Xingwang Zhang², Yuze Sun¹, Mike Ritt³, Sivaraj Sivaramakrishnan³, Xudong Fan¹; ¹Biomedical Engineering, University of Michigan, USA; ²Department of Optical Science and Engineering, Fudan University, China; ³Department of Cell and Developmental Biology, University of Michigan, USA. We achieved optofluidic FRET lasers using genetically encoded fluorescent protein pairs linked by length-tunable peptides. 10-fold enhancement in the FRET sensing signal was demonstrated with the optofluidic FRET laser compared to the conventional FRET detection.

CM2H.3 • 11:00

Gain Controlled Optofluidic Lasers with Selfassembled DNA Tetrahedron, Qiushu Chen¹, Huajie Liu², Wonsuk Lee^{1,3}, Yuze Sun¹, Dan Zhu², Hao Pei², Chunhai Fan², Xudong Fan¹, ¹Biomedical Engineering, University of Michigan, USA; ²Laboratory of Physical Biology, Shanghai Institute of Applied Physics, China, ³Department of Electrical Engineering and Computer Science, University of Michigan, USA. Using self-assembled DNA tetrahedron, we were able to precisely control the gain in optofluidic FRET lasers. 3.8 times reduction in the lasing threshold and 28-fold enhancement in the lasing efficiency were demonstrated.

Mathieu and Weber accelerating beams beyond the paraxial limit, Peng Zhang¹, Yi Hu^{2,3}, Tongcang Li¹, Drake Cannan⁴, Xiaobo Yin^{1,5}, Roberto Morandotti², Zhigang Chen^{3,4}, Xiang Zhang^{1,5}, ¹University of California, USA;²Institut National de la Recherche Scientifique, Canada; ³TEDA Applied Physics School, Nankai University, China; ⁴Department of Physics and Astronomy, San Francisco State University, USA; ⁵Materials Science Division, Lawrence Berkeley National Laboratory, USA. We demonstrate nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. Such beams bend into large angles along elliptical or parabolic trajectories but still retain nondiffracting and selfhealing capabilities.

CM2F.2 • 11:00

Inverse Design of Optical Antennas for Sub-Wavelength Energy Delivery, Samarth Bhargava¹, Owen Miller¹, Vidya Ganapati¹, Eli Yablonovitch¹; ¹Electrical Engineering and Computer Science, UC Berkeley, USA. We report using Inverse Electromagnetic Design to computationally optimize optical antenna shapes. Optimized antennas deliver 10% of incident power to a 50x40x10 nm3 spot in a practical magnetic recording medium for Heat Assisted Magnetic Recording.

CM2G.2 • 11:00

Polar Coded Optical Communications with Weak Coherent States, Jonathan L. Habif', Zachary Dutton', Saikat Guha'; 'Quantum Information Processing Group, Raytheon BBN Technologies, USA. We present results from an optical communications testbed demonstrating polar coded pulse position modulation transmitted to a direct detection receiver. Using weak coherent states we achieve a photon information efficiency of 4.8 bits per received photon.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 61

2013CLEO Monday.indd 14

onday, 10 June

Meeting Room Meeting Room Meeting Room Marriott San Jose 212D-B 211D-B 212A-C Salon I & II **CLEO: Science** & Innovations 10:30-12:30 10:30-12:30 10:45-12:15 10:30-12:30 CM2I • Ultrafast Fiber Sources CM2J • THz Metamaterials & CM2K • Mid-infrared **CM2L** • Ultrafast Parametric **Semiconductor Lasers** Sources **D** Presider: Axel Ruehl: Center Plasmonics II for Free Electron Laser Science, Presider: Juraj Darmo; Technische Presider: Paul Crump, FBH-Presider: Antoine Godard; ONERA - the French Aerospace Germanv Universität Wien, Austria Berlin, Germany Lab, France CM2K.1 • 10:30 CM2I.1 • 10:30 CM2J.1 • 10:30 Invited CM2L.1 • 10:30 Extended Self-Similar Pulse Evolution in a Terahertz Plasmonics and Metamaterial-Based Optics, T. Fip¹, M. Volk¹, B. Reinhard¹, Jens Neu¹, Withdrawn 500-MHz Mid-IR Frequency Comb Source Laser with Dispersion-Decreasing Fiber, Hui Based on a Compact Subharmonic OPO, Kirk Liu¹, Fei Yu², Andy Chong³, Jonathan C. Knight², Frank W. Wise¹; ¹Applied and Engieering Physics, Cornell University, USA; ²Physics, University of M. Hoh¹, Marco H. Rahm¹; ¹Technische Univ. Ingold¹, Alireza Marandi¹, Charles W. Rudy¹, Kaiserslautern, Germany. We demonstrate gradi-Vladimir Pervak², Robert Byer¹, Konstantin Vodopyanov¹; ¹Stanford University, USA; ²Ludwigent index optics for terahertz radiation based on Bath, United Kingdom; ³Physics & Electro-Optics, passive and active metamaterials. Furthermore, we Maximilians-Universität München, Germany. We University of Dayton, USA. A mode -locked fiber experimentally investigate the tailored focusing demonstrate a degenerate Mid-infrared frequency laser with self-similar pulse evolution in a segment of a highly confined terahertz surface wave on a comb OPO with a fractional cavity length pumped by an ultrafast 100-MHz Er-fiber laser. This of dispersion-decreasing fiber is demonstrated. gradient index meta-surface. Generation of ~6-cycle pulses shows the promise produces a 600-nm wide output near 3µm with a of the approach. repetition rate of 500 MHz. CM2I.2 • 10:45 CM2K.2 • 10:45 CM2L.2 • 10:45 Carrier Envelope Offset of Nondegenerate, Ytterbium Fiber Oscillator with Higher-Order-Low threshold interband cascade lasers in the Doubly-Resonant, Midinfrared GaAs Optical wavelength range between 3 and 6 µm, Robert

Mode Fiber Generating 7-nJ, 60-fs Pulses at 1035 nm, Alma Fernández¹, Lingxiao Zhu¹, Vladimir Kalashnikov¹, Aart Verhoef¹, Dusan Lorenc¹, Andrius Baltuska¹; ¹Institut für Photonik, Technische Universität Wien, Austria. We present a modelocked Yb-fiber oscillator with higher-order-mode fiber operating in the normal-dispersion regime, delivering 7.2 nJ pulses compressible down to 62 fs. Theoretical predictions reveal an operation regime with highest pulse fidelity.

CM2I.3 • 11:00

Mode-locked Nd-doped fiber laser at 930 nm. Ammar Hideur¹, Kai Qian¹, Hongjie Wang¹, Mathieu Laroche²; ¹CNRS UMR 6614 CORIA, France; ²CIMAP, France. We report on a passively modelocked Neodymium-doped oscillator featuring a double-clad W-type fiber and emitting around 930 nm. The laser generates 4.5 ps pulses with 24 mW average power corresponding to 1.8 nJ energy.

CM2J.2 • 11:00

Tunable Graphene-based Metamaterial Terahertz Modulators, Rusen Yan¹, Subrina Rafique¹ Wei Li^{2,3}, Xuelei Liang³, Debdeep Jena¹, Lei Liu¹, Berardi Sensale-Rodriguez¹, Huili Xing¹; ¹Department of Electrical Engineering, University of Notre Dame, USA; ²Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology (NIST), USA; ³Key Laboratory for the Physics and Chemistry of Nano Devices, Peking University, China, We demonstrate metamaterialbased electro-absorption THz modulators employing frequency-selective-surfaces (FSS) and graphene. By placing the graphene layer at an optimal distance from the FSS, the sensitivity of THz transmittance can be greatly enhanced.

Tuning Curves of Parametric Light Generated sers, Payam Abolghasem¹, Bhavin J. Bijlani¹, A. where $\chi^{(2)}$ is phase-matched. These curves exhib-

CM2K.3 • 11:00

using $\chi^{(2)}$ Nonlinearities in Semiconductor La-S. Helmy¹; ¹Electrical and Computer Engineering, University of Toronto, Canada. This work explains the observed parametric fluorescence tuning curves generated in the first semiconductor lasers ited dispersion opposite to previously reported fluorescence due to effects including temperature and free carriers.

Parametric Oscillators, Kevin Lee1, Jie Jiang1, Christian Mohr¹, Jens Bethge¹, Nick Leindecker^{1,2}, Konstantin Vodopyanov^{2,3}, Peter G. Schunemann⁴, Martin E. Fermann¹, Ingmar Hartl¹; ¹*IMRA Amer*ica, Inc., USA; ²E.L. Ginzton Laboratory, Stanford University, USA; 3CREOL, College of Optics and Photonics, Univ. Cent. Florida, USA; ⁴BAE Systems, USA. We demonstrate that the carrier-envelope offset frequency of a Mid-infrared frequency comb from a nondegenerate and doubly-resonant GaAsbased optical parametric oscillator is locked to that of the 2 µm thulium-fiber pump laser.

CM2L.3 • 11:00 Invited

High Average Power Few-cycle Pulses in the Mid-IR, Self-compression and Continuum Generation, Michaël Hemmer¹, Alexandre Thai¹, M. Baudish², Francisco Silva¹, Dane R. Austin¹, Hideki Iskizuki², Takunori Taira², Arnaud Couairon³, Daniele Faccio⁴, Jens Biegert^{1,5}; ¹ICFO -The Institute of Photonic Sciences, Spain; ²Laser Research Center for Molecular Science, Inst. for Molecular Science, Japan; ³Centre de Physique Théorique, CNRS, École Polytechnique, France; ⁴Heriot-Watt University, Edinburgh Campus, United Kingdom; ⁵ICREA - Institució Catalana de Recerca i Estudis Avançats, Spain. We present latest results towards a high average power and CEP-stable few-cycle mid-IR OPCPA for extreme nonlinear optics and strong field physics. Supercontinuum generation and self-compression to 3-cycles will be highlighted.

Weih1, Martin Kamp1, Sven Hoefling1; 1Chair of Applied Physics, University of Wuerzburg, Germany. Within the last decade interband cascade lasers have strongly improved their performance. The latest design variations together with record threshold current densities in the MIR wavelength region are presented.

۲

62

۲

(

<u>Monday, 10 June</u>

Marriott San Jose Marriott San Jose Marriott San Jose Salon III Salon IV Salon V & VI **CLEO: Science** JOINT & Innovations 10:30-12:30 10:30-12:30 10:30-12:30 CM2M • Fundamentals of Laser-JM2N • Optical Resonators for JM20 • Symposium on Novel Laser Systems and Material Interactions **Light Sources for Biomedical** Presider: Wayne Hess; Pacific Metrology D **Applications: Multimodal Imaging Light Sources and** Northwest National Laboratory, Presider: Todd Clatterbuck; United States Raytheon SAS, United States Applications D Presider: Nicusor Iftimia; Physical Sciences Inc., United States CM2M.1 • 10:30 Tutorial JM2N.1 • 10:30 🖸 JM20.1 • 10:30 Invited Employing Supercontinuum Technology for Biomedical Applications, Carsten L. Thomsen¹; ¹Koheras A/S, Denmark. Supercontinuum sources Mechanisms of Nanoscale Materials Modifica-Absolute Frequency Stability Measurements of tion by Photon Beams, Alexander Shluger¹; a Semiconductor-based, Etalon-stabilized 10 ¹Physics and Asronomy, Univ. College London, GHz Optical Frequency Comb, Josue Davila-United Kingdom. The tutorial will introduce Rodriguez¹, Peter J. Delfyett¹; 'University of Central continue to experience a strong growths within the mechanisms of materials modification by Florida, CREOL, USA. We present a semiconbiomedical applications as they span both the electronic excitation and will describe theoretical ductor optical frequency comb stabilized to an intracavity, 10,000 Finesse etalon which is held in visible and near infrared spectrum, and thereby offers unprecedented flexibility with respect methods and models used for studying the behavior of atoms inside solids and at surfaces under a vacuum chamber and temperature stabilized. to spectral coverage, and continuous multi-The frequency instability is <90 kHz in >12 min laser excitation wavelength tuning. of operation. JM2N.2 • 10:45 🖸 Crystalline coatings for ultra-low-noise optical cavities, Garrett D. Cole^{1,2}, Wei Zhang³, Michael J. Martin³, Jun Ye³, Markus Aspelmeyer²; ¹Crystalline Mirror Solutions GmbH, Austria; ²Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Austria; ³JILA, National Institute of Standards and Technology, and University of Colorado, USA. We demonstrate Alexander Shluger graduated from the Latvia substrate-transferred crystalline coatings, based on State University, Riga, USSR in 1976, received Ph.D and Doctor of Science degrees from the L. epitaxial Bragg mirrors directly-bonded to fused silica, exhibiting an unprecedented tenfold reduction in Brownian noise. These mirrors promise a Karpov Physics and Chemistry Research Institute, Moscow in 1981 and 1988, respectively. He joined significant advancement in the performance of the Royal Institution of Great Britain, London in precision optical interferometers 1991 and the faculty of the University College London in 1996, where he is a Professor of Phys-JM20.2 • 11:00 🖸 JM2N.3 • 11:00 🛛 💭 ics from 2004. He has been appointed a head of Coherent control of microresonator comb Highly Nonlinear Robust Step-Index Chal-Condensed Matter and Materials Physics group cogenide Nanotapers for Octave-Spanning generation via parametric-gain seeding, Scott Papp¹, Pascal Del'Haye¹, Daniel Cole¹, Scott A. in 2006. He is a Fellow of the Institute of Physics Supercontinuum Generation, Soroush Shabahand of the American Physical Society, a Foreign ang¹, Guangming Tao¹, Peter J. Delfyett¹, Ayman F. Abouraddy¹; ¹University of Central Florida, CREOL, USA. We fabricate highly nonlinear and Diddams1; 1Time and Frequency Division, NIST, Member of the Latvian Academy of Sciences and USA. We discuss coherent control of parametric a Principal Investigator at the WPI-Advanced frequency-comb generation in microresonators. Institute of Materials Research, Tohoku University, mechanically robust step-index chalcogenide Pumping a microresonator with multiple optical Japan. Main research interests concern the mechananotapers with high index contrast for stable frequencies enables not only robust control over nisms of defect related processes in the bulk and the resulting comb's line spacing, but also access Mid-infrared supercontinuum generation. By at surfaces of insulators and the mechanisms of to low-noise comb spectra. pumping the nanotapers with low peak-power photo-induced processes in metals and insulators. pulses, one-octave of spectral broadening was generated.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 63

۲

(

Monday, 10 June

۲

Executive Ballroom

210B

Manipulating NV centers with Optomechanical

Crystals, Behzad Khanaliloo^{1,2}, Paul E. Barclay^{1,2};

Institute for Quantum Science and Technology.

University of Calgary, Canada; ²National Institute

for Nanotechnology, National Research Council,

Canada. Nanophotonic optomechanical devices allow efficient control of localized, high quality

factor, nanoscale mechanical resonances. By op-

tically actuating these resonances, the properties of embedded diamond nitrogen vacancy centers

can be modulated with far off resonance photons.

Observation of the Quantum Zeno Effect on

the Nitrogen Vacancy Center in Nanodiamond,

Janik Wolters¹, Max Strauss¹, Rolf S. Schönfeld¹, Oliver Benson¹; ¹Humboldt Universität zu Berlin,

Germany. We observe the quantum Zeno effect

on a solid state spin, namely the nitrogen vacancy

center in nanodiamond. A semi-classical model is analyzed to support our experimental findings.

QM2B • Novel Quantum

Systems—Continued

QM2B.4 • 11:15

QM2B.5 • 11:30

Executive Ballroom 210A

JOINT

JM2A • Symposium on Fundamentals of Absorption and Emission in Nanostructures and Composites: Novel Optics in Plasmonic and Hyperbolic Systems—Continued

JM2A.3 • 11:15 Invited

Quantum Plasmonics and Plexcitonics, Peter J. Nordlander'; '*Rice Univ., USA*. Plasmons in strongly coupled nanostructures can induce strong electric fields and enhance electron transfer processes. A quantum mechanical description of this process reveals several novel effects that would be absent in classical modeling.

JM2A.4 • 11:45

Zeroth-Order Transmission Resonance in Hyperbolic Metamaterials, ZUN HUANG^{1,2}, Evgenii E. Narimanov^{1,2}; ¹*Purdue University, USA*; ²*Birck Nanotechnology Center, USA*. We describe a novel resonance in planar hyperbolic metamaterials. In conventional Fabry-Perot mode numbering, the resonance corresponds to 0-th order, and can be observed in planar hyperbolic media with arbitrary small thickness.

QM2B.6 • 11:45

Top-Down, Scalable Fabrication of High Purity Fluorescent Nanodiamonds, Matthew Trusheim¹, Luozhou Li³, Ophir Gaathon², Edward H. Chen¹, Dirk Englund¹; ¹EECS, MIT, USA; ²APAM, Columbia University, USA; ³EE, Columbia University, USA. We demonstrate a fabrication technique for high volume production of high quality nanocrystals from bulk chemical vapor deposition diamond. Ramsey and Spin-Echo measurements confirm the long spin coherence of nitrogen vacancy centers in these nanocrystals. QM2C • Single Photon Sources—Continued

Executive Ballroom

210C

CLEO: QELS-Fundamental Science

QM2D • Dynamics of Excitons and Plasmons—Continued

Executive Ballroom

210D

QM2C.4 • 11:15

Temporal filtering via amplitude modulation to improve quantum dot single photon sources, Imad Agha^{1,2}, Serkan Ates^{1,2}, Angelo Gulinatti³, Ivan Rech³, Antonio Badolato⁴, Kartik Srinivasan¹; ¹Center for Nanoscale Science and Technology, National Inst of Standards & Technology, USA; ²Maryland Nanocenter, University of Maryland, USA; ³Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy; ⁴department of Physics and Astronomy, University of Rochester, USA. Starting with a single InAs quantum dot in a fiber-coupled microdisk cavity, we demonstrate significant improvement in both indistinguishibility and purity of the single photon emission by employing temporal filtering via synchronized amplitude modulation.

QM2C.5 • 11:30

Erasing spectral distinguishability in quantum dot based single photon sources using quantum frequency conversion, Serkan Ates^{1,2}, Imad Agha^{1,2}, Angelo Gulinatti³, Ivan Rech³, Matthew T. Rakher¹, Antonio Badolato⁴, Kartik Srinivasan¹; ¹Center for Nanoscale Science and Technology, National Inst of Standards & Technology, USA; ²Maryland NanoCenter, University of Maryland, USA; ³Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy; 4\$Department of Physics and Astronomy, University of Rochester, USA. Using background-free quantum frequency conversion, two spectrally separate excitonic transitions from a single semiconductor quantum dot are converted to a single wavelength, and two-photon interference on the frequency-converted signal is demonstrated

QM2C.6 • 11:45

Demonstrating High Symmetric Single-Mode Single-Photon Heralding Efficiency in Spontaneous Parametric Downconversion, Jingyun Fan'; 'National Inst of Standards & Technology, USA. We demonstrate a symmetric, single-spatial mode, single-photon heralding efficiency of 84% for a type-II spontaneous parametric downconversion process. High efficiency, single-spatial mode collection is key to enabling many quantum information processing and quantum metrology applications

QM2D.4 • 11:30

Observation of Coherent Acoustic Plasmons in Photoexcited GaAs, Prashant Padmanabhan¹, Steve Young¹, Meredith Henstridge¹, Sishir Bhowmick², Pallab K. Bhattacharya², Roberto Merlin¹; ¹*Physics, University of Michigan, USA; 'Electrical Engineering & Computer Science, University of Michigan, USA.* We report on the observation of confined coherent acoustic plasmon waves in photoexcited GaAs using ultrafast pump probe experiments. Results are in good agreement with theoretical predictions under the random phase approximation.

QM2D.5 • 11:45

Coupling in InGaAs Double Quantum Wells Studied with 2D Fourier Transform Spectroscopy, Gaël Nardin¹, Rohan Singh^{1,2}, Travis M. Autry^{1,2}, Galan Moody^{1,2}, Hebin Li¹, François Morier-Genoud³, Steven T. Cundiff^{1,2}, '*JILA*, University of Colorado & NIST, USA; ²Department of Physics, University of Colorado, USA; ³ICMP, EPFL, Switzerland. We study asymmetric double InGaAs quantum well samples, featuring three different barrier widths, using optical two-dimensional Fourier transform spectroscopy. Depending on the barrier width, we observe different coupling mechanisms between the two wells.

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QM2E • Self-accelerating Beams—Continued

QM2E.3 • 11:15

Nonspreading Electron-Beams that Balance Self-Repulsion, Ido Kaminer', Dikla Oren', Maor Mutzafi', Levi Schächter', Mordechai Segev'; 'Technion Israel Institute of Technology, Israel. By introducing concepts of beam shaping from nonlinear optics into quantum mechanics, we show how interference of electrons wavefunctions can exactly balance the nonlinear self-repulsion of an electron-beam, creating nonspreading shapepreserving propagation in free-space.

QM2E.4 • 11:30

Free-space Trajectory Management of Self-Accelerating Beams Through Fourier-space Phase Engineering, Yi Hu¹, Domenico Bongiovanni¹, Zhigang Chen²³, Roberto Morandotti¹; ¹/INRS-EMT, Canada; ²TEDA Applied Physics School, Nankai University, China; ³Department of Physics and Astronomy, San Francisco State University, USA. We propose and demonstrate a scheme to control the trajectories of single/multiple selfaccelerating beams through analyzing the Fourierspace phase in both the paraxial and non-paraxial regimes. Our method is also applicable to vector self-accelerating beams.

QM2E.5 • 11:45

Self-accelerating Bessel-like beams along arbitrary trajectories, juanying zhao^{1,2}, Ioannis Chremmos⁴, Peng Zhang¹, Jingjiao Liu², Dongmei Deng^{1,5}, Yuanmei Gao^{1,6}, Nikos Efremidis⁴, Demetrios N. Christodoulides³, Zhigang Chen^{1,2}; ¹San Francisco State University, USA; ²Beijing Institute of Technology, China; ³CREOL/College of Optics, University of Central Florida, USA; ⁴University, China; ⁶Shandong Normal University, China; ⁶Shandong Normal University, China; ⁶Shandong Normal University, China; ⁶Shandong Normal University, China; ⁶CBDA, Applied Physics School, Nankai University, China. We theoretically and experimentally demonstrate self-accelerating Bessel-like optical beams propagating along arbitrary trajectories in free space. Such beams possess nearly symmetric nondiffracting main lobes and exhibit self-healing properties, promising for a variety of applications.

Executive Ballroom 210G

CM2F • Nanoantennas and

Ultrathin Plasmonic Subtractive Color Filters,

Beibei Zeng¹, Yongkang Gao¹, Filbert J. Bartoli¹; ¹*ECE*, *Lehigh University*, USA. We present the

design and demonstration of ultra-thin plasmonic

color filters, providing a powerful approach for

subtractive color filtering with high spatial

resolution and ultra-compact architectures on

Plasmonics—Continued

CM2F.3 • 11:15

Executive Ballroom 210F

CLEO: Science & Innovations

CM2G • Approaching Fundamental Limits in Optical Communication—Continued

CM2G.3 • 11:15

Fundamental limits on the energy consumption in fiber-optic communications, Cristian Antonelli¹, Antonio Mecozzi¹, Mark Shtaif, Peter J. Winzer², ¹Department of Physical and Chemical Sciences, Universita degli Studi dell'Aquila, Italy; ²Tel Aviv University, Israel; ³Alcatel Lucent Bell Labs, USA. We show that optically amplified multi-span transmission systems are suboptimal in terms of fundamental energy consumption. Using generalized on-off keying with photon-counting inline regeneration improves the fundamental energy consumption by orders of magnitude.

Executive Ballroom

210E

CM2H • Microcavity Optofluidic Sensors—Continued

CM2H.4 • 11:15

Single Molecule Detection with an Yb-doped Microlaser, Tao Lu²¹, Hansuek Lee¹, Tong Chen¹, Steven Herchak²; ¹Applied Physics, California Institute of Technology, USA; ²Electrical and Computer Engineering, University of Victoria, Canada. We demonstrate the detection of single protein molecules in an aqueous environment with an Ybdoped silica microlaser. With the employment of a real-time spectrum analyzer, a fast sampling speed of sub-milliseconds per spectrum was adopted.

CM2F.4 • 11:30

sub-micrometer scales.

Experimental Demonstration of an Integrated Hybrid Plasmonic Polarization Rotator, Jan Niklas Caspers¹, Mo Mojahedi'; 'Department of Electrical and Computer Engineering, University of Toronto, Canada. We demonstrate an ultra-compact (4.5 µm long) hybrid plasmonic polarization rotator operating at telecommunication wavelength for integrated silicon photonic circuits. The polarization is rotated with >11 dB polarization extinction ratio and a low total insertion losses of 3.6 dB.

CM2F.5 • 11:45

Enhancement of Raman Scattering Efficiency by a Metallic Nano-antenna on Top of a High Index Contrast Waveguide, Frédéric Peyskens¹, Ananth Subramanian¹, Ashim Dhakal¹, Nicolas Le Thomas¹, Roel Baets¹; *Photonics Research Group, Ghent University, Belgium.* We theoretically study coupling of dipole radiation into integrated Si₃N₄ strip waveguides functionalized with a nanoplasmonic antenna. This structure enables efficient coupling of enhanced Raman signals into the fundamental TE-mode of the waveguide.

CM2G.4 • 11:30 Invited

Experimental Turbulence Effects on Crosstalk and System Power Penalty over a Free Space Optical Communication link using Orbital Angular Momentum Multiplexing, Yongxiong Ren¹, Hao Huang¹, Guodong Xie¹, Nisar Ahmed¹, Baris I. Erkmen², Nivedita Chandrasekaran³, Martin Lavery⁴, Jeffrey H. Shapiro³, Nicholas Steinhoff5, Moshe Tur6, Miles Padgett4, Robert W. Boyd7, Alan E. Willner1; 1Department of Electrical Engineering, University of Southern California, USA; ²Jet Propulsion Laboratory, California Institute of Technology, USA; 3Research Laboratory of Electronics, Massachusetts Institute of Technology, USA; 4School of Physics and Astronomy, University of Glasgow, United Kingdom; 5The Optical Sciences Company, USA; ⁶School of Electrical Engineering, Tel Aviv University, Israel; 7Department of Physics and Astronomy, The Institute of Optics, University of Rochester, USA. The atmospheric turbulence effects on crosstalk and system penalty over an OAM-based multiplexed FSO link is experimental investigated. Our results shows that the power penalty for OAM multiplexed system is >10 dB at weak turbulence condition due to the severe turbulence induced crosstalk.

CM2H.5 • 11:30

reflection detection of nanoparticles using whispering gallery microresonators, Jiangang Zhu', Sahin K. Ozdemir', Lan Yang', '*Electrical* and System Engineering, Washington University, USA. We report real time detection of individual nanoparticles down to R=20 nm using a high-Q whispering gallery mode (WGM) microresonator. The detection is based on resonance enhanced particle induced reflection and does not require monitoring resonance spectra.

10

۲

CM2H.6 • 11:45

A Self-Referencing Biosensor Based upon a Dual-Mode External Cavity Laser, meng zhang¹, Chun Ge², Meng Lu², Zhixiong Zhang³, Brian T. Cunningham²⁴; ¹Department of Physics, University of Illinois at Urbana-Champaign, USA; ²Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA; ³Department of Electronic Engineering, Tsinghua University, China; ⁴Department of Bioengineering, University of Illinois at Urbana-Champaign, USA; ⁴We demonstrated a dual-mode external cavity laser biosensor, and developed a self-referencing technique utilizing one of the two lasing modes as reference signal. This system achieves high-Q resonance, high sensitivity label-free detection and eliminates common-mode sources of sensor noise.

NO CAMERAS

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 65

2013CLEO Monday.indd 18

Meeting Room Meeting Room Meeting Room Marriott San Jose 211D-B 212D-B 212A-C Salon I & II **CLEO: Science** & Innovations CM2I • Ultrafast Fiber CM2J • THz Metamaterials & CM2K • Mid-infrared CM2L • Ultrafast Parametric Sources—Continued **Plasmonics II—Continued** Semiconductor Lasers— Sources—Continued Continued CM2I.4 • 11:15 CM2J.3 • 11:15 CM2K.4 • 11:15 3 GHz, femtosecond Raman soliton source, Near-Field Probe Mapping of the THz Elec-GaInAsSb-AlGaAsSb laterally coupled distrib-Guoqing Chang^{1,2}, Hung-Wen Chen¹, Jinkang Lim¹, Shanhui Xu³, Zhongmin Yang³, Franz X. Kärtner^{1,2}, ¹Electrical Engineering and computer tric Field Distribution on Metallic Surfaces, uted-feedback metamorphic laser grown on Michele Natrella¹, Oleg Mitrofanov¹, Raimund a GaAs substrate at 2 µm, Paveen Apiratikul^{1,2} Mueckstein¹, Chris Graham¹, Cyril Renaud¹, Lei He^{1,2}, Christopher Richardson¹; ¹Laboratory Science, MIT, USA; ²CFEL, DESY, University of Alwyn Seeds¹; ¹Electronic & Electrical Engineerfor Physical Sciences, USA; ²Electrical Engineering, Hamburg, Germany; ³Institute of Optical com-munication materials, South China University of University of Maryland at College Park, USA. We report a metamorphic GaSb-based laterally couing, University College London, United Kingdom. We demonstrate for the first time the accuracy of Technology, China. A 3-GHz femtosecond Raman the interpretation of images detected by the subpled distributed-feedback laser grown on a GaAs soliton source (tunable between 1.06-1.22 µm) is wavelength aperture near-field THz probe, which substrate that operates continuous wave at room demonstrated based on an Yb-fiber laser. The enables mapping the distribution of THz electric temperature with a total output power of 40 mW. resulting source produces 350-mW average power at 1.22 μm with 40-nm bandwidth and ~100 fs field on antennas and metallic surfaces. pulse duration CM2I.5 • 11:30 CM2J.4 • 11:30 CM2K.5 • 11:30 CM2L.4 • 11:30 110 MHz Soliton Mode-Locked High Power 3 μm GaSb-based Type-I Quantum-well Diode THz near-field microscopy of graphene nano-New Design Opportunities for Ultrafast Devices Based On Quasi-Phasematching, Christopher R. ribbon arrays, Oleg Mitrofanov^{1,3}, Robert Lasers with Cascade Pumping Scheme, Rui Er-doped Fiber Laser using Carbon Nanotube Thompson¹, Igal Brener^{2,3}, Wei Pan², Wenlong Polyimide Film, Hiroyuki Kawagoe¹, Shutaro Liang¹, Takashi Hosoda¹, Gela Kipshidze¹, Leon Phillips^{1,2}, Lukas Gallmann², Martin Fejer¹; ¹Stan-Ishida¹, Mitsutoshi Aramaki¹, Youichi Sakaki-Yu⁴, Clair Berger^{4,5}, Walt deHeer⁴, Zhigang Jiang⁴; Shterengas1, Gregory Belenky1; 1Department ford University, USA; ²ETH Zurich, Switzerland. bara^{2,3}, Emiko Omoda², Hiromichi Kataura^{2,3}, Norihiko Nishizawa¹; ¹Nagoya University, Japan; ²AIST, Japan; ³JST CREST, Japan. 110 MHz high ¹UCL, United Kingdom; ²Sandia National Lab, USA; ³CINT, SNL, USA; ⁴Georgia Institute of Technology, USA; ⁵CNRS/Institut Neel, France. We use THz of Electrical and Computer Engineering, State University of New York at Stony Brook, USA. GaSb-based type-I quantum-well diode lasers We will discuss new quasi-phasematching design techniques and opportunities, including OPCPA gain-narrowing suppression and custom pulse with two-cascade active region were designed and repetition rate soliton mode-locked fiber laser with near-field microscopy with broadband THz pulses synthesis, based on convex optimization. We will 40 mW high average power was demonstrated to image graphene nano-ribbons and to probe fabricated. The devices operate in continuous wave also discuss how apodization can be performed systematically for chirped-QPM devices using carbon nanotube polyimide film. Super surface plasmon excitation and uniformity of graat room temperature and demonstrate improved continuum at 1.7 um was generated and ultrahigh resolution OCT was demonstrated. phene response. 3.3nm and 7nm thick graphene injection efficiency. layers induce (~10%) absorption from 0.5-2.5THz. CM2I.6 • 11:45 CM2K.6 • 11:45 CM2J.5 • 11:45 CM2L.5 • 11:45 Enhanced Bandwidth Generation in an Er Spatial confinement of broadband THz pulses Mid-infrared Lasing in a Single Lead Sulfide Demonstration of Bandwidth and Conversion

 (\blacklozenge)

Enhanced Bandwidth Generation in an Er Amplifier Similariton Fiber Laser, Hui Liu¹, Frank W. Wise¹; ¹Applied and Engineering Physics, Cornell University, USA. The addition of a passive nonlinear segment to a similariton laser allows the bandwidth to be enhanced significantly. Numeri

are presented.

cal and experimental results for an Er fiber laser

Spatial confinement of broadband THz pulses with a twin-needle probe for THz spectroscopy, Oleg Mitrofanov¹, Cyril Renaud¹, Alwyn Seeds¹; ¹UCL, United Kingdom. Spatial confinement of broadband terahertz (THz) pulses to a 10 micrometer spot is achieved using a twin-needle probe. Combined with a THz subwavelength aperture near-field probe, it enables broadband THz spectroscopy of single micrometer-size objects. Mid-infrared Lasing in a Single Lead Sulfide Subwavelength Wire at 180 K, Fan Fan'; 'Electrical Engineering, Arizona State University, USA. We report Mid-infrared lasing around 3 μ m from a single PbS subwavelength wire, with a cavity volume less than the wavelength cubed at 0.44 λ^3 . The maximal lasing temperature is 180 K under pulse operation. Demonstration of Bandwidth and Conversion Efficiency Improvements beyond Phase-Matching Limitations in Cavity-Enhanced Optical Parametric Chirped Pulse Amplification, Aleem M. Siddiqui', Kyung-Han Hong', Jeffrey Moses¹, Franz X. Kärtner¹²; ¹Massachusetts Institute of Technology, USA; ²Center for Free-Electron Laser Science, DESY and Dept. of Physics, University of Hamburg, Germany. Cavity-enhanced optical parametric chirped-pulse amplification (OPCPA) extends the capabilities of nonlinear crystals beyond material property limitations, namely nonlinear-coefficient and dispersion. Here we show a dramatic increase in conversion and a three-fold increase in gain bandwidth.

Papers are available online for download. Visit www.cleoconference.org and click on the Download Digest Papers

button.

CLEO: 2013 • 9-14 June 2013

y

dav. <u>10</u> June

Marriott San Jose Salon III

CLEO: Science & Innovations

CM2M • Fundamentals of Laser-Material Interactions-Continued

CM2M.2 • 11:30

3/2 Harmonic Generation - The Clue to the Mechanism of Ultrafast Laser Nanostructuring, Aabid Patel¹, Mindaugas Gecevičius¹, Rokas Drevinskas¹, Martynas Beresna¹, Peter G. Kazansky¹; ¹Optoelectronics Research Centre, University of Southampton, United Kingdom. The correlation between (3/2)w harmonic generation and selfassembling nanostructuring during ultrafast laser writing in glass has been observed. Interference between light and two-plasmon decay is proposed.

СМ2М.3 • 11:45 🕻 Evidence of New High-Pressure Silicon Phases

in Fs-Laser Induced Confined Microexplosion, Ludovic Rapp¹, Bianca Haberl², Jodie E. Bradby², Eugene G. Gamaly¹, Jim S. Williams², Saulius Juodkazis³, Andrei V. Rode¹; ¹Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Australia; ²Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Australia; ³Swinburne University of Technology, Australia. We report on formation of high-pressure polymorphs of Si in confined microexplosion experiments. The results show that Si has undergone pressure-induced transitions into the realm of the metallic phases conventionally formed above 11 GPa.

Marriott San Jose Salon IV

()

Marriott San Jose Salon V & VI

JM20 • Symposium on Novel

Light Sources for Biomedical

Two-photon fluorescence imaging with 30 fs

laser system tunable around 1 micron, Bojan Resan1, Rodrigo Aviles-Espinosa2, Sarah Kurmulis1,

Jacob Licea-Rodriguez³, Felix Brunner¹, Andreas Rohrbacher¹, Hubert Ammann¹, David Artigas²,

Pablo Loza-Alvarez², Kurt J. Weingarten¹; ¹Time-

Bandwidth Products AG, Switzerland; ²Institute of Photonic Sciences, Spain; ³Department of Optics, CICESE, Mexico. We performed high signal-to-

noise ratio TPF imaging of mouse intestine with a laser system exhibiting 30 fs, tunable within

800-1200 nm, 50 mW average power, based on a compact Yb-doped laser seeding a microstruc-

Applications: Multimodal Imaging Light Sources and Applications—Continued

JM20.3 • 11:15 D

JOINT

JM2N • Optical Resonators for Laser Systems and Metrology-Continued

JM2N.4 • 11:15 🖸

Stablization of fiber lasers using chip-based high-Q optical resonators, Myoung-Gyun Suh¹, Hansuek Lee¹, Jiang Li¹, Scott Diddams², Kerry J. Vahala¹; ¹Laboratory of Applied Physics, California Institute of Technology, USA; ²Time and Frequency Division, National Institute of Standards and Technology, USA. High-Q disk resonators are used to frequency stabilize two fiber lasers. The improved phase noise of the devices is measured by heterodyne detection and compared to theoretical limits set by thermo-refractive noise

JM2N.5 • 11:30 🛛 💭

upconversion lasing for index sensing and strong amplitude modulation of wgms in Er-Yb **co-doped tellurite spheres**, Yinlan Ruan¹, Keiron Boyd¹, Hong Ji¹, Heike Ebendorff-Heidepriem¹, Jesper Munch¹, Monro M. Tanya¹; ¹Institute of notonics and Advancing Sensing, University of Adelaide, Australia. We fabricated Er-Yb codoped tellurite spheres for strong upconversion \dot{WGM} lasing with Q up to 27,000 for 15um diameter and achieved the index sensitivity of 8.8nm/RIU. Strong amplitude modulation in the modes was also observed.

JM2N.6 • 11:45 🛛 🖸 Sub 100 fs pulse generation via a Si3N4 micro-

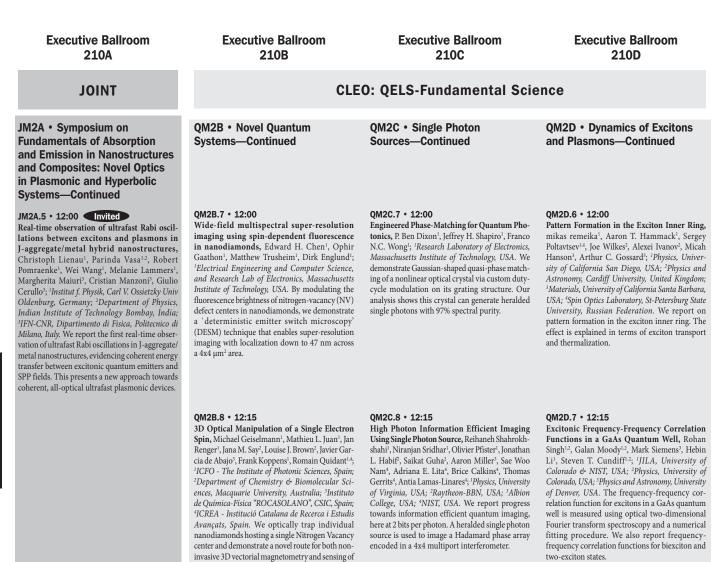
resonator based frequency comb, James F. McMillan¹, Shu-Wei Huang¹, Jinghui Yang¹, Heng Zhou¹, Mingbin Yu², Dim-lee Kwong², Chee Wei Wong¹; ¹Columbia University, USA; ²Institute of Microelectronics, Singapore. Ultrashort optical pulses have been generated on chip from a frequency comb generated within a Si3N4 micro-resonator. The pulses are measured using frequency resolved optical gating and found to have a FWHM of 74 fs.

JM20.4 • 11:30 🖸

tured fiber.

Nonlinear Optical Microscopy with Few-Cycle Laser Pulses, Gabriel Tempea¹, W. Hui², S. Gomes da Costa², H. B. De Aguiar², A. Volkmer²; ¹FEM-TOLASERS Produktions GmbH, Austria; ²3. Institute of Physics, University of Stuttgart, Germany. Near bandwidth-limited 7-fs-pulses were delivered at the foci of high-NA objectives by employing broadband mirrors for dispersion compensation. The impact of 7-fs-pulses on the signal generation efficiency and contrast in nonlinear optical imaging was investigated.

JM20.5 • 11:45 🖸


scattering mediums, hu li1, Jianhong Shi1, Guihua Zeng¹; ¹ShangHai Jiaotong University, China. We demonstrate an experiment of imaging through strongly scattering layers based on period diffraction correlation imaging. The implementation of this experiment is quite simple. This technique could find applications in imaging biological tissues

۲

A simple method of imaging through strongly

 $(\mathbf{\Phi})$

12:00–13:30 Lunch Break (on your own)

the local density of states in a liquid environment.

NOTES

68

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QM2E • Self-accelerating Beams—Continued

QM2E.6 • 12:00

Linear and Nonlinear Accelerating Beams in Curved Space, Rivka Bekenstein', Jonathan Nemirovsky¹, Ido Kaminer¹, Mordechai Segev'; '*Physics, Technion, Israel.* We present the first study on linear and nonlinear accelerating beams in curved space. These shape-invariant wavepackets propagate along various trajectories arising from the interplay between the curvature of space and the interfrence effects.

QM2E.7 • 12:15

Generation and propagation of partially spatially incoherent Airy beams, Yi Liang¹, Daohong Song¹, Cibo Lou¹, Xinzheng Zhang¹, Jingjun Xu¹, Zhigang Chen¹², ¹The MOE Key Laboratory of Weak-Light Nonlinear Photonics, and TEDA Applied Physics School and School of Physics, Nankai University, China; ²Department of Physics and Astronomy, San Francisco State University, USA. We present an experimental study of partially-spatially incoherent Airy beams. Our results suggest that spatial coherence affects the exponential truncation factor and self-healing property of Airy beams but has little effect on their self-acceleration trajectories.

CM2F.6 • 12:00

All-Semiconductor Plasmonic Perfect Absorber, Stephanie Law¹, Christopher Roberts², Torin Kilpatrick¹, Lan Yu¹, Troy Ribaudo³, Eric Shaner³, Viktor A. Podolskiy², Daniel Wasserman¹; ¹Electrical and Computer Engineering, University of Illinois, USA; ²Physics and Applied Physics, University of Massachusetts Lowell, USA; ³Sandia National Labs, USA. We demonstrate a Mid-infrared perfect absorber fabricated only from highly-doped semiconductors. A strong (>98%) absorption resonance is observed which is effectively independent of lateral geometry, but highly dependent on the vertical profile.

Executive Ballroom

210G

CM2F • Nanoantennas and

Plasmonics—Continued

CM2F.7 • 12:15

Surface-Normal Plasmonic Modulation for Three-Dimensional Optical Interconnects, Fanghui Ren¹, Xiangyu Wang¹, Alan X. Wang¹, 'Electrical Engineering and Computer Science, Oregon State University, USA. We present theoretical design and experimental demonstration of surface-normal modulation on a gold metallic photonic crystal slab. It requires a moderate index modulation of 0.0043 that is induced by thermal-optical effects of the glass substrate.

CM2G.5 • 12:00

Efficient Crosstalk Mitigation of OAM Based 400-Gbit/s QPSK Data Transmission in 1.1-km Vortex Fiber by Using Soft-Decision LDPC codes, Yongxiong Ren¹, Yequn Zhang², Yang Yue¹, Nenad Bozinovic², Guodong Xie¹, Hao Huang¹, Moshe Tur⁴, Poul Kristensen⁵, Ivan B. Djordjevic², Siddharth Ramachandran³, Alan E. Willner¹; ¹University of Southern California, USA; ²Department of Electrical and Computer Engineering, University of Arizona, Tucson, USA; ³Boston University, USA; ⁴School of Electrical Engineering, Tel Aviv University, Israel; ⁵OFS-Fitel, Denmark. The efficient mitigation of crosstalk effect-induced "error floor" in system performance by using soft-decoding LDPC codes in an OAM multiplexed fiber transmission system is experimentally studied. A significant coding gain of >15.5 dB is achieved.

Executive Ballroom

210F

CLEO: Science

& Innovations

Fundamental Limits in Optical

Communication—Continued

CM2G • Approaching

CM2G.6 • 12:15

Wireless optical telecommunications using non trivial beams, Dimitris Papazoglou^{1,2}, Anastasia Giannakopoulou¹, Antigoni Papadaki¹, Stelios Tzortzakis^{1,2}, 'Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Greece; ¹Materials Science and Technology Department, University of Crete, Greece. We demonstrate using experiments and simulations that the use of accelerating optical beams such as Airy and ring-Airy beams, considerably benefits wireless optical telecommunications both in respect of range and robustness to atmospheric turbulence.

Executive Ballroom

210E

CM2H • Microcavity Optofluidic Sensors—Continued

CM2H.7 • 12:00

Enhancement of the Sensitivity of an Open Micro-Cavity Based Optoacoustic Sensor, Ralph Peterson¹, Steven Solis¹, Bailin Zhang¹, He Huang¹, Jing Yong Ye¹; ¹University of Texas at San Antonio, USA. We present a new method for sensitive ultrasound detection using an open-cavity optoacoustic sensor. Our results have demonstrated significant enhancement of detection sensitivity when the open-cavity sensor is used in media with large isothermal compressibility.

CM2H.8 • 12:15

High Sensitivity Biosensing Based on Symmetric Coupled Cavity Structure of Photonic Crystal Microcavities, Cheng-Chih Hsieh¹, Swapnajit Chakravarty², Yi Zou¹, Liang Zhu¹, Ray T. Chen¹; ¹UT Austin, USA; ²Omega Optics Inc., USA. We demonstrate that coupled cavity-waveguide architectures can lead to enhanced experimentally measured detection limit of 300 fM (20pg/ml) for sensing the binding of avidin to biotin in photonic crystal micro-cavity based biosensor. 10

۲

12:00–13:30	Lunch Break (on your own)
	NOTES

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 69

Meeting Room Meeting Room Meeting Room Marriott San Jose 211D-B 212D-B 212A-C Salon I & II **CLEO: Science** & Innovations CM2I • Ultrafast Fiber CM2J • THz Metamaterials & CM2K • Mid-infrared CM2L • Ultrafast Parametric Sources—Continued **Plasmonics II—Continued** Semiconductor Lasers— Sources—Continued Continued CM2I.7 • 12:00 CM2J.6 • 12:00 CM2K.7 • 12:00 CM2L.6 • 12:00 Stable frequency comb derived from a narrow-Terahertz cross-phase modulation of an optical Optimized All-optical Amplitude and Frequen-Tunable Supercontinuum-Seeded 130fs OPA for NIR and MIR with 25 nJ Pulse Energy band Yb-fiber laser: pre-chirp management for self-referenced fCEO stabilization, Jinkang Lim¹, mode, Andrei V. Lavrinenko¹, Andrey Novitsky^{1,2} cy Modulation of Quantum Cascade Laser, Tao Maksim Zalkovskij¹, Radu Malureanu¹, Peter U. Yang¹, Gang Chen², Chao Tian¹, Rainer Martini¹; and 5 MHz Repetition Rate, Thomas Hansel¹, Hung-Wen Chen¹, Guoqing Change^{1,2}, Franz Jepsen¹; ¹Department of Photonics Engineering, ¹Department of Physics and Engineering Physics, Wolfgang Köhler², Andreas Assion², Jens Bethge¹, X. Kärtner^{1,2}; ¹EECS, Massachusetts Institute of Technical University of Denmark, Denmark; ²De-Stevens Institute of Technology, USA; ²Key Labora-Edlef Büttner¹; ¹APE Angewandte Physik & Elektronik GmbH, Germany; ²Femtolasers Produktions GMBH, Austria. A novel 5 MHz OPA based *Technology, USA; ²DESY, University of Hamburg, Germany.* We demonstrate the feasibility of impletory for Optoelectronic Technology & System-Edu-cation Ministry of China, School of Optoelectronic partment of Theoretical Physics and Astrophysics, Belarusian State University, Belarus. We discuss an optical scheme which facilitates modulation of menting frequency combs from a narrowband Engineering, Chongqing University, China. We femtosecond light source tunable in the NIR (5-nm, 415-fs transform-limited pulse) laser, an optical waveguide mode by metallic-nanoslitdemonstrate that by optimizing excitation photon and MIR spectral region with 25nJ maximum paving the way for large line-spacing frequency enhanced THz radiation. The waveguide mode energy in optical modulation of quantum cascade pulse energy is presented. The system generates a laser, both amplitude and frequency modulation depth are increased. Also, optical switch on and combs based on multi-GHz lasers which emit acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments. supercontinuum in a YAG-crystal for self-seeding. long (>200 fs) pulses. off can be controlled by excitation wavelength. CM2I.8 • 12:15 CM2J.7 • 12:15 CM2L.7 • 12:15 D All-fiber fundamentally mode locked 12 GHz High-resolution THz Reflection Measurements Chirp optimization of pulsed parametric of Resonant Hole-arrays, Yuping Yang^{1,2}, Daniel amplifier, Andreas O. Wiberg1, Zhi Tong1, Lan

 (\blacklozenge)

All-fiber fundamentally mode locked 12 GHz laser comb for stable microwave generation, Rajesh Thapa', Eric Wilson', Dan Nguyen', Jie Zong', Arturo Chavez-Pirson', '*NP Photonics Inc, USA.* We have developed a compact, yet very stable all-fiber fundamentally mode-locked 12 GHz laser system. The passively mode-locked laser centered at 1535 nm has temporal bandwidth of ~2 ps, average power of 3m W and timing jitter of 44 fs/pulse.

Monday, 10 June

12:00–13:30 Lunch Break (on your own)

R. Grischkowsky²; ¹School of Science, Minzu University of China, China; ²Oklahoma State Uni-

versity, USA. The high-resolution THz amplitude

spectrum as well as the phase shift of the reflection

of a thin metal hole-array are measured, and an

unexpected Wood's anomaly dip, as well as an unusual step-like 2 pi phase shift are observed.

NOTES

۲

Liu¹, Evgeny Myslivets¹, Nikola Alic¹, Stojan Radic¹; ¹University of California San Diego, USA.

We have investigated the pump-chirp impact on

idler generation in a pulsed fiber-optic parametric

amplifier in transparency, broadband operation.

The optimization of idler chirp (spectral width) is important in many applications.

Marriott San Jose Salon III	Marriott San Jose Salon IV	Marriott San Jose Salon V & VI
CLEO: Science & Innovations	JOINT	
CM2M • Fundamentals of Laser-Material Interactions— Continued	JM2N • Optical Resonators for Laser Systems and Metrology— Continued	JM20 • Symposium on Novel Light Sources for Biomedical Applications: Multimodal Imaging Light Sources and Applications—Continued
CM2M.4 • 12:00 Surpassing the Optical Diffraction Limit with Photo-Inhibited Super-Resolution (PInSR) Lithography, Darren Forman ¹ , Michael Cole ¹ , Robert McLeod ¹ ; 'University of Colorado at Boulder, USA. We present our progress towards nano-patterning with focused visible and near-UV light, using a novel photo-polymerizable resist. Special attention will be given to the difficulties presented by diffusion of reactive photo-generated molecules.	JM2N.7 • 12:00 C High-efficiency, monolithic coupling to optome- chanical cavities for quantum-limited position detection, Justin D. Cohen', Sean M. Meenehan', Oskar Painter', 'Thomas J. Watson, Sr. Laboratory of Applied Physics, California Institute of Technol- ogy, USA. We demonstrate a high-efficiency optical-fiber coupling platform for optomechani- cal cavities. Through adiabatic mode conversion, a continuous position measurement with an imprecision of only 0.7 phonons at the optimal standard quantum limit probe power is achieved.	JM20.6 • 12:00 Invited O Multi-modal Imaging Using a Novel and Portable Ultrafast Laser Source, Tuan Le ¹ , An- gelika Unterhuber ² , Boris Povazay ²³ , Hans Georg Breunig ⁴ , ¹ Femtolasers GmbH, Austria; ³ Medical University Vienna, Austria; ³ Bern University of Applied Sciences, Switzerland; ⁴ Jenlab, Germany, A novel low-cost and portable fs laser designed for biomedical imaging is presented. The poten- tial of the worlds smallest sub-10 fs Tissapphire laser to serve multi modal imaging applications is demonstrated.
CM2M.5 • 12:15 C Condensation of polaritons through optical confinement: increased coherence and reduced threshold, Alexis Askitopoulos', Hamid Ohadi', Pavlos Savvidis ^{3,4} , Hatzopoulos Zaharias ^{3,4} , Alexey Kavokin ¹ , Pavlos Lagoudakis ¹ ; 'Faculty of Physics and Astronomy, University of Southampton, United Kingdom; 'Department of Physics, University of Crete, Greece; 'Department of Materials science and Technology, University of Crete, Greece; 'Institue of Electronic Structure and Laser, Foundation of Research and Technology - Hellas, Greece. We report on a fully optically confined polariton condensate, spatially separated from the pump induced exci- tonic reservoir. The optically trapped condensate has improved coherence features and an order of magnitude lower excitation density threshold with respect to previous excitation schemes.	JM2N.8 • 12:15 O Sobervation and analysis of generalized higher- order Bessel-Gauss beams in optical resonators, Damian N. Schimpf ² , William P. Putnam ¹ , Jan Schulte ¹ , Franz X. Kärtner ^{1,2} , ¹ Massachusetts Insti- tute of Technology, USA; ² Center for Free-Electron Laser Science, DESY, Germany. We propose and experimentally demonstrate new beam solutions in form of razimuthally symmetric higher-order Bessel-Gauss beams. We experimentally observe these beams as higher-order eigenmodes in optical resonators consisting of aspheric mirrors.	
12	:00–13:30 Lunch Break (on your ow	n)
12	:00–13:30 Lunch Break (on your ow	vn)
	NOTES	

۲

NOTES

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 71

Executive Ballroom 210A

JOINT

13:30-15:30

JM3A • Symposium on Fundamentals of Absorption and Emission in Nanostructures and Composites: Optics of Low-dimensional and Quantum **Structures**

Presider: Peter Nordlander; Rice University, United States

JM3A.1 • 13:30 Invited Classical and Quantum Effects in Graphene Plasmons, Javier Garcia de Abajo¹; ¹CSIC Înst de Estructura de la Materia, Spain. We will review current results in graphene plasmonics and describe distinct features of these excitations that can only be understood from quantum theory.

JM3A.2 • 14:00

<u>Monday, 10</u> June

Quantum-limited, cavity-free nano-optomechanical vectorial coupling with SiC nanowires and Carbon nanotubes, Arnaud Gloppe¹, Pierre Verlot¹, Eva Dupont-Ferrier¹, Aurélien G. Kuhn¹, Benjamin Pigeau¹, Sven Rohr¹, Alessandro Siria², Philippe Poncharal², Pascal Vincent², Guillaume Bachelier¹, Olivier Arcizet¹; ¹Institut Néel, CNRS, France; ²Laboratoire de Physique de la Matière Condensée et Nanostructures, CNRS, France. We investigate the nano-optomechanical properties between a nanowire and a focused beam of light. Based on such a system, we report unprecedently sensitive vectorial detection of nanomechanical motion using SiC nanowires and Carbon nanotubes.

JM3A.3 • 14:15

Enhancing far-field thermal emission with thermal extraction, Yu Zongfu¹, Nicholas Sergeant¹, Torbjorn Skauli¹, Gang Zhang¹, Hailiang Wang¹, Shanhui Fan1; 1Stanford University, USA. We show that the thermal emission of a finite-size blackbody emitter can be enhanced. We experimentally observe a four-fold enhancement of the far-field thermal emission of a carbon-black emitter having an emissivity of 0.85.

13:30-15:30 QM3B • Quantum Optics with Quantum Dots Presider: Oliver Benson; Humboldt University of Berlin, Germany

Executive Ballroom

210B

QM3B.1 • 13:30

Third-order photon correlations from a quantum dot coupled to a photonic-crystal nanocav-ity, Michal Bajcsy¹, Armand Rundquist¹, Arka Majumdar², Tomas Sarmiento¹, Konstantinos G. Lagoudakis¹, Jelena Vuckovic¹; ¹E. L. Ginzton Laboratory, Stanford University, USA; ²Department of Physics, U C Berkeley, USA. We measure the third-order autocorrelation function of a photon stream from a single quantum dot coupled to a photonic-crystal nanocavity. This is the first measurement of the higher-order photon correlation function on a solid state quantum emitter.

OM3B.2 • 13:45

Zeeman Splitting of Deterministically Charged Quantum Dots Coupled to Photonic Crystal Nanoresonators, Konstantinos Lagoudakis¹, Kevin Fischer¹, Arka Majumdar², Armand Rundquist¹, Michal Bajcsy¹, Jesse Lu¹, Tomas Sarmiento¹, Jelena Vuckovic¹; ¹E. L. Ginzton Laboratory, Stanford University, USA; ²Department of Physics, Univer-sity of California, USA. We observe deterministic charging of quantum dots embedded in a p-n-i-n junction coupled to photonic crystal nanoresonators by spectroscopic means and demonstrate Zeeman splitting under applied magnetic field in the Voigt configuration.

QM3B.3 • 14:00

Fano Quantum Interference Effects in Exciton-Biexciton Coherently Coupled System in Quantum Dots, Hideki Gotoh¹, Haruki Sanada¹, Hiroshi Yamaguchi¹, Tetsuomi Sogawa¹; ¹NTT Basic Research Laboratories, Japan. Optical nonlinear effects are examined using a two-color micro-photoluminescence method in a coherently-coupled exciton-biexciton system in a single quantum dot. The exciton nonlinear absorption spectrum shows an unusual asymmetric shape induced by Fano interference effects.

OM3B.4 • 14:15

Direct Detection of Optical Rabi Oscillations from a Single Quantum Dot, Alex Burgers1, John Schaibley¹, Gregory McCracken¹, Duncan Steel¹, Daniel Gammon², Allan Bracker², Lu Sham³; ¹Physics, University of Michigan, USA; ²Naval Research Lab, USA; ³Physics, University of California San Diego, USA. We use coherent transient resonance fluorescence to follow the time evolution of Rabi oscillations in a semiconductor quantum dot. We obtain a lifetime limited decoherence rate.

QM3C.1 • 13:30 Invited

13:30-15:30

Information

Quantum Information and Simulation with Circuit-QED, Juan Jose Garcia-Ripoll1; 1Instituto de Fisica Fundamental, CSIC, Spain. In this talk I will review a number of contributions to the field of superconducting quantum circuits, also known as circuit-QED. I will cover both fundamental topics, such as the design of artificial atoms and photons, and concrete applications to the fields of Quantum Optics, Quantum Simulation and Quantum Information. The emphasis will be set on the new tools that this exciting field provides: ultrastrong light-matter interactions, a precise control of propagating photons, and the engineer ing of photon interactions.

Executive Ballroom

210C

CLEO: QELS-Fundamental Science

QM3C • Solid State Quantum

Presider: Renato Renner,

Eidgenossische Technische

QM3C.2 • 14:00

Hybridization of superconducting flux qubits and diamond ensembles, William Munro^{1,2} Shiro Saito¹, Xiaobo Zhu¹, Yuichiro Matsuzaki¹, Robert Amsüss^{4,1}, Kosuke Kakuyanagi¹, Takaaki Shimo-Oka3, Norikazu Mizuochi3, Kae Nemoto2, Kouichi Semba²; ¹NTT Basic Research Laboratories, Japan; ²National Institute for Informatics, Japan; ³University of Osaka, Graduate school of Engineering Science, Japan; ⁴Vienna Center for Quantum Science and Technology, Austria. Superconducting flux qubits are well known for their processing ability while electron-spin nitrogen-vacancy centers in diamond are a natural memory candidate. Here we report on the realization of a quantum memory operation.

OM3C.3 • 14:15

Ouantum Device and Architecture based on NV Centers for Quantum Networks, Kae Nemoto¹ Simon Devitt¹, Joerg Schmiedmayer³, Michael Trupke³, William J. Munro^{2,1}; ¹National Institute of Informatics, Japan; ²Basic Reserach Laboratories, NTT, Japan; ³Vienna Center for Quantum Science and Technology, Austria. We present a way to construct quantum networks based on NV- diamond centers. We discuss the physical imperfections and their effects to the network, and show how to control them with the required accuracy.

Los Alamos National Laboratory, Hochschule Zurich, Switzerland United States

13:30-15:30

1D Systems

OM3D.1 • 13:30

Exciton Localization Probed via Excited-State Resonant Impulsive Stimulated Raman Spec-troscopy, Jason G. Mance¹, Josef J. Felver¹, Susan L. Dexheimer¹; ¹Washington State University, USA. We probe the transition from a delocalized to a localized electronic state in a quasi-onedimensional system by the change in vibrational frequency detected by resonant impulsive Raman excitation of the excited state in a pump-pumpprobe measurement.

Executive Ballroom

210D

QM3D • Ultrafast Dynamics in

Presider: Rohit Prasankumar;

OM3D.2 • 13:45

Ultrafast optical-pump terahertz-probe spectroscopy of individual silicon nanowires, Taeyong Kim¹, Sangwan Sim¹, Jungmok Seo¹, Jaehong Lee¹, Heetak Han¹, Taeyoon Lee¹, Hyun-yong Choi¹; ¹Yonsei University, Republic of Korea. We present terahertz dynamics in individual silicon nanowires by ultrafast optical-pump and terahertz-probe spectroscopy. Density-dependent study reveals that surface traps play a major role in the carrier dynamics observing the conductivity changes.

QM3D.3 • 14:00

Auger-type Hole Trapping Process at Green Emission Centers of ZnO Nanowires, Tze Chien Sum¹, Mingjie Li¹, Guichuan Xing¹, Guozhong Xing², Tom Wu¹; ¹Division of Physics & Applied Physics, Nanyang Technological University, Singapore; ²School of Materials Science and Engineering, The University of New South Wales, Australia. Transient absorption spectroscopy uncovered the first experimental evidence of ZnO green emission originating from charge transitions of ZnO divacancies proposed recently in DFT calculations. Hole trapping to this state occurs via an ultrafast Auger-like process.

OM3D.4 • 14:15

Ultrafast intra-excitonic quasiparticle annihila-tion by exciton-exciton scattering in individually isolated single-walled carbon nanotubes, Sangwan Sim¹, Jeongmook Choi¹, Seongchu Lim², Young Hee Lee², Hyunyong Choi¹; ¹School of Electrical and Electronic Engineering, Yonsei Uni-versity, Republic of Korea; ²Department of Physics, Sungkyunkwan University, Republic of Korea. We present direct measurement of exciton-exciton an-nihilation as fast photo-bleaching at exactly twice the lowest exciton energy in SWCNTs. Excitonexciton scatterings were identified by determining the 1s-2p transition using ultrafast mid-IR intraexcitonic spectroscopy.

2013CLEO Monday.indd 25

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

13:30-15:30 QM3E • Non-conventional

Beams and Optical Vortices Presider: Peng Zhang; University of California Berkeley, United States

OM3E.1 • 13:30

Generation of femtosecond optical vortices by molecular modulation in a Raman-active crystal, Miaochan Zhi¹, Kai Wang¹, James Strohaber¹ Alexei Sokolov1; 1 Texas A&M University, USA. We have realized the coherent transfer of orbital angular momentum in PbWO4 crystal by using two-color femtosecond laser pulses. Ultrashort optical vortices at various wavelengths can be generated.

OM3E.2 • 13:45

Quasi-real-time Measurement of Orbital Angular Momentum Spectra of Ultra-broadband Optical Vortices from Fork-like Interferograms, Zhili Yang¹, Keisaku Yamane^{1,2}, Yasunori Toda^{1,2}, Ryuji Morita^{1,2}; ¹Hokkaido University, Japan; ²JST CREST, Japan. We experimentally demonstrate a simple and high-precision method for measuring orbital angular momentum spectra of femtosecond ultra-broadband optical-vortex pulses from fork-like interferograms. This method enables quasi-real-time OAM measurement for ultra-short or ultra-broadband optical vortices.

QM3E.3 • 14:00

cal Forces at Dielectric Interfaces, Veerachart Kajorndejnukul¹, Sergey Sukhov¹, Weiqiang Ding², Cheng-Wei Qiu², Aristide Dogariu¹; ¹University of Central Florida, CREOL, USA; ²Electrical and Computer Engineering, National University of *Singapore, Singapore.* We demonstrate for the first time that paraxial beams can exert long range optical pulling forces on objects at soft interfaces due to the increase of linear momentum of light in higher index dielectrics.

OM3E.4 • 14:15

Evolution dynamics of vectorial Bessel beams. Parinaz Aleahmad¹, Hector Moya Cessa^{1,3} Mohammad-Ali Miri¹, Armando Perez-Leija¹, Ido Kaminer², Mordechai Segev², Demetrios N. Christodoulides¹; 'CREOL/College of Optics, University of Central Florida, USA; ²Physics Department and Solid State Institute, Technion-Israel Înstitute of Technology, Israel; ³Coordinacion de Optica, INAOE, Mexico. We investigate the acceleration dynamics of non-paraxial Bessel beams. We show that this acceleration behavior can persist even in the presence of evanescent components. Our study can be useful in plasmonic and other sub-wavelength settings.

Executive Ballroom 210G

Presider: Sailing HE; KTH Royal

Dark State Lasers, Cale Gentry¹, Milos Popovic¹;

¹University of Colorado at Boulder, USA. We

propose a novel laser cavity based on imaginary-

frequency resonance splitting in coupled resona-

tors. Using different free-spectral ranges (FSRs),

a Vernier-like effect where only one longitudinal

mode lases allows for ultra-wide tuning of single-

Single Wavelength Microring Laser, Amir

Arbabi1, Lynford L. Goddard1; 1Univ of Illinois

at Urbana-Champaign, USA. We report a novel

microring single mode laser that operates based on engineering radiation quality factors of its resonant

modes using a second order grating. A theoretical

description, fabrication details and measurement

Institute of Technology, China

13:30-15:30

Photodetectors

CM3F.1 • 13:30

frequency lasers.

CM3F.2 • 13:45

results are presented.

CM3F.3 • 14:00

CM3F.4 • 14:15

Plasmonic-Polarization Enhancement of Novel

GaN/AlN Quantum Cascade Detector, Asaf

Pesach¹, Salam Sakr², Etienne Giraud³, Maria

Tchernycheva², Meir Orenstein¹, Nicolas Grand-

jean³, Francois Julien², Gad Bahir¹, ¹Department of Electrical Engineering, Technion-Israel Institute of

Technology, Israel; ²Institut d'Electronique Fonda-

mentale, University of Paris-Sud, France; ³Institute

of Condensed Matter Physics, Ecole Polytechnique

Fédérale de Lausanne, Switzerland. A novel GaN/ AlN quantum cascade detector with simplified

alloy extractor is integrated with metallic holes

array. Rotation of polarization by surface plasmons

under normal incidence results in ×10 enhance ment of responsivity at room temperature.

CM3F • Nanolasers &

Executive Ballroom 210F

CLEO: Science & Innovations

13:30-15:30 CM3G • RF over Fiber Presider: David Hillerkuss: ETH Zurich, Switzerland

CM3G.1 • 13:30

A Novel Full-Duplex 60-GHz Radio-over-Fiber Transmission System for Next-Generation Wireless Access Networks, Lan Rao^{1,2}, Cheng Liu², Ming Zhu2, Jing Wang2, Gee-Kung Chang2; 1Beijing Univ of Posts & Telecom, China; ²School of ECE, Georgia Institute of Technology, USA. A novel fullduplex LO-free 60-GHz radio-over-fiber (RoF) transmission system is proposed. Full-duplex error-free transmission without optical/electrical LO required in either remote antenna units or mobile terminals is successfully demonstrated for next generation wireless communications.

CM3G.2 • 13:45

60-GHz and 100-GHz Wireless Transmission of High-Definition Video Services in Converged Radio-over-Fiber Systems, Lin Cheng¹, Cheng Liu¹, Ze Dong^{1,2}, Jianjun Yu², Gee-Kung Chang¹; ¹Georgia Institute of Technology, USA; ²ZTE USA, Inc., USA. An end-to-end dual-band millimeter-wave radio-over-fiber access system with independent high-definition video services carried on both 60-GHz and 100-GHz radios is demonstrated for the first time based on converged radio-over-fiber techniques.

CM3G.3 • 14:00

CM3G.4 • 14:15

Optical dual-pulse sampling for direct detection of vector modulated radio frequency signal, He Wen¹, Wang Ye¹, Xiaoping Zheng¹, Hanyi Zhang¹, Bingkun Zhou¹; ¹Tsinghua University, China. Optical dual-pulse sampling for detection of vector signal is proposed to alleviate the bandwidth requirement on optoelectronic devices. An experi-ment on receiving 4-Gbaud QPSK 16-GHz radio over fiber has been demonstrated experimentally.

A full-duplex CATV/RoF/16-OAM OFDM

lightwave transport system, Po-Yi Wu1, Chia-Yi

Chen¹, Ying-Pyng Lin¹, Hai-Han Lu^{1,2}; ¹National

Taipei University of Technology, Taiwan; ²Tungnan

University, Taiwan. A full-duplex lightwave trans-port system based on intensity-modulated CATV,

phase-modulated RoF, and intensity-remodulated

16-QAM OFDM signals is proposed and demon-

strated. Our proposed systems present brilliant

performances in transmitting hybrid CATV/

RoF/16-QAM OFDM signals over fiber links.

Processing with Shaped Beams Presider: Richard Haglund; Vanderbilt University, United

CM3H • Laser Materials

13:30-15:30

Executive Ballroom

210E

CM3H.1 • 13:30

States

Formation and interaction of self-guided optical beams in a pre-engineered soft-matter system, Shima Fardad^{1,2}, Matthew Mills¹, Peng Zhang², Zhigang Chen^{2,3}, Demetrios N. Christodoulides1, Weining Man2; 1CREOL/College of Optics, University of Central Florida, USA; ²Department of Physics and Astronomy, San Francisco State University, USA; ³TEDA Applied Physics School, Nankai University, China. We demonstrate stable beam self-trapping in soft-matter systems with artificial saturable self-focusing nonlinearities. Our experiments reveal optical beam interactions that can vary from attractive to repulsive as well as an energy exchange

CM3H.2 • 13:45

All-Optical Switch at Telecom Wavelength based on the Quantum Zeno Effect (QZE), Subramanian Krishnamurthy¹, Ye Wang¹, Yanfei Tu¹, Shih Tseng¹, Selim M. Shahriar¹; '*Northwestern University, USA*. We present experimental realizations and numerical simulations of an optically controlled Polarizer and Waveplate at telecom wavelength using ladder transitions in 87Rb. When combined, it can be used to realize a QZE based all-optical switch

CM3H.3 • 14:00

Femtosecond Laser Desorption of Thin Polymer Films from a Dielectric Surface, Laurent Mercadier¹, Jiahui Peng¹, Yasir Sultan², David M. Rayner¹, Paul B. Corkum¹; ¹Joint University of Ottawa/National Research Council Laboratory for Attosecond Science, Canada; ²Emerging Priorities Division, Environment Canada, Canada. We desorb polymer films from fused silica with a femtosecond laser and characterize the results by atomic force microscopy. Our study as a function of beam geometry and energy reveals two ways of achieving spatially controlled nanodesorption.

CM3H.4 • 14:15

Explaining the Giant Difference in Surface Plasmon Enhancement of Fluorescence, Resonance and Non-Resonance Raman Scattering, Gregory Sun¹, Jacob Khurgin²; ¹University of Massachusetts Boston, USA; ²Johns Hopkins Univ., USA. We present a comparative theory to show the origin of giant difference in the degrees of enhancement that have been observed in experimental measurements between fluorescence, resonance and nonresonance Raman scattering by surface plasmons.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 73

Monday. 10 June

۲

Metal Cavities as the Efficiency Killer in Nano-Experimental Demonstration of Negative Optilasers and Spontaneous Light Sources, Dennis G. Deppe¹, Li Mingxin¹, Xu Yang¹; ¹University of Central Florida, CREOL, USA. Here we show that nearly (all) recent studies of metal-coupled lasers or spontaneous light emitters leave out near-field interactions that seriously degrade the emission efficiency. This near field interaction limits the usefulness of metal cavity lasers and spontaneous light emitters

Meeting Room 211D-B

CLEO: Science & Innovations

13:30-15:30

CM3J.1 • 13:30

junctions

CM3J.2 • 13:45

polycrystalline silicon.

CM3J.3 • 14:00

Nanotech, Denmark

Sensing

Meeting Room

212A-C

CM3J • THz Spectroscopy and

Presider: Anders Kristensen, DTU

THz Spinplasmonic Spectroscopy of Surface

Magnetization States at Magnetic/Non-Mag-

netic Metal Interfaces, Abdulhakem Y. Elezzabi

Cameron E. Straatsma¹, Mark Johnson²; ¹Electrical

& Computer Engineering, University of Alberta, Canada; ²Naval Research Laboratory, USA. We

report novel, unusual effects in sub-subwavelength

spinplasmonic media using THz-TDS. THz field

shape, amplitude, hysteretic effects, and time delay

are sensitive to surface magnetization states and

ferromagnetic/non-ferromagnetic (F/N) metallic

Investigation of Photoexcited Carrier Responses

in a Solar Cell with a Dynamic Terahertz Emis-sion Microscope, Hidetoshi Nakanishi¹, Akira

Ito1, Kazuhisa Takayama2, Iwao Kawayama2, Hi-

ronaru Murakami², Masayoshi Tonouchi²; 1Dainip-

pon Screen Mfg. Co.,Ltd, Japan; ²Institute of Laser

Engineering, Osaka University, Japan. We applied a pump-probe laser terahertz emission microscope

to investigate dynamic response of photoexited

carriers in a solar cell. We could observe the change

of terahertz radiation at the grain boundary in the

Terahertz Conductivity of Lithium Salt-Succinonitrile Plastic Crystals, Daniel Nickel¹,

Daniel Mittleman¹, Hongtao Bian², Junrong

Zheng²; ¹Electrical and Computer Engineering,

Rice University, USA; ²Chemistry, Rice University,

USA. The terahertz conductivity of succinonitrile

decreases when doped with lithium salts, contrary

to their DC behavior. In addition, a lattice phonon

mode at 1.1THz is observed in only the crystalline

phase of the undoped succinonitrile.

13:30-15:30 CM3I • Special Fiber Design & Fabrication

Presider: Jacques Albert; Carleton University, Canada

CM3I.1 • 13:30 Angle splice of large-core kagome hollow-core

photonic crystal fiber for gas-filled microcells, Chenchen Wang^{1,2}, Thomas Bradley^{1,3}, Yingying Wang^{1,3}, Kristan L. Corwin², Frédéric Gérôme¹, Fetah Benabid^{1,3}; ¹Gas-Phase Photonic and Microwave Materials, Xlim Research Institute, France; ²Physics, Kansas State University, USA; ³Physics, University of Bath, United Kingdom. A repeatable, robust, low-loss angle splice between large-core kagome hollow-core photonic crystal fiber and a solid single-mode fiber is achieved. Saturated absorption spectroscopy is performed inside acetylene-filled kagome with one end angle spliced to SMF.

CM3I.2 • 13:45

Long rubidium vapor lifetime in aluminosilicate sol-gel coated hypocycloidal core shape kagome HC-PCF, Thomas Bradley^{1,2}, John J. McFerran¹, Jenny Jouin3, Philippe Thomas3, Fetah Benabid1,2; ¹GPPMM, Xlim Research Institute, France; ²CPPM, University of Bath, United Kingdom; 3SPCTS UMR CNRS 7315, Centre Européen de la Céramique, 12 rue Atlantis, France. We present aluminosilicate sol-gel coated rubidium-vapor loaded hollow core kagome fiber. We show experimentally that the rubidium vapor is preserved within the hollow core for greater than 500 hours with no vapor-source.

CM3I.3 • 14:00

Design of single-moded, large-mode-area fibers with symmetric bend compensation, John M. Fini¹, Jeffrey W. Nicholson¹; ¹OFS Laboratories, USA. A partially bend-compensated index profile can accomplish robust single-modedness for fibers with Aeff~1000µm2, much larger than conventional designs, and does not require asymmetric fabrication or oriented deployment.

CM3I.4 • 14:15

Low-Loss, Single-Mode Propagation in Large-Mode-Area Leakage Channel Fiber from 1 to 2 μm, Clemence Jollivet¹, Kanxian Wei², Bryce Samson², Axel Schulzgen¹; ¹CREOL, the College of Optics and Photonics, University of Central Florida, USA; ²Nufern, USA. Recent design of large-mode-area leakage channel fiber is measured with low-attenuation and bend-induced single-mode propagation between 1 µm and 2 µm. We demonstrate remarkable low-loss, diffraction-limited output at 2 μm for coiling radii <30 cm.

CM3J.4 • 14:15

Remote THz Monitoring of an Evolving Gas-Phase Mixture, Joseph Melinger¹, Yihong Yang², Maboubeh Mandeghar², Daniel R. Grischkowsky²; ¹US Naval Research Laboratory, USA; ²School of Electrical and Computer Engineering, Oklahoma State University, USA. We show how THz time-domain spectroscopy can be used for the remote detection of an evolving gas phase mixture containing D2O and HDO and to characterize the reaction kinetics of: H2O + D2O -> 2HDO.

CLEO: 2013 • 9–14 June 2013

Meeting Room 212D-B

JOINT

13:30-15:30

JM3K • Symposium on Midinfrared Lasers: Mid-infrared Laser Sources I Presider: Axel Ruehl: Center for Free Electron Laser Science, Germany

JM3K.1 • 13:30 Invited

requency comb sources and techniques for Mid-infrared spectroscopy and sensing, Scott A. Diddams¹; ¹National Inst of Standards ප Technology, USA. We review broad bandwidth Mid-infrared frequency comb sources based on Yb, Er, and Tm fiber-laser technology and describe their use in spectroscopic approaches aimed at quantitative detection of trace gases.

Dual-comb Spectrometer Based on Mid-IR Quantum Cascade Laser Frequency Combs, Andreas Hugi¹, Gustavo Villares¹, Stéphane Blaser², H.c Liu³, Jérôme Faist¹; ¹Institute for Quantum Electronics, ETH Zürich, Switzerland;²Alpes Lasers SA, Switzerland; ³Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, China. We realize a dual-comb spectrometer covering 14 cm-1 centered at 1430 cm-1. It is based on mid-IR QCL frequency combs featuring a frequency-modulated like output. The measured individual tooth linewidth is 4 MHz.

JM3K.3 • 14:15

Precision spectroscopy of NH₃ at 9.1 µm by a comb-referenced quantum cascade laser, Andrew Mills¹, Davide Gatti², Maria D. De Vizia³ Ingmar Hartl⁴, Livio Gianfrani³, Martin E. Fermann¹, Marco Marangoni²; ¹IMRA America, Inc, USA; ²Politecnico di Milano and IFN-CNR, Italy; ³Seconda Universita di Napoli, Italy; ⁴Deutsches Elektronen-Synchrotron, Germany. Absorption spectroscopy of NH3 at 9.1 µm is demonstrated with a quantum-cascade-laser absolutely referenced to a Tm-fiber frequency-comb. Highlyaccurate spectroscopic parameters are retrieved by a multiple-line fitting approach applied to the spectral manifold.

Marriott San Jose Salon I & II

CLEO: Science & Innovations

13:30-15:30 **CM3L** • Solitons and Nonlinear

Propagation **D** Presider: Colin McKinstrie; Alcatel-Lucent Bell Labs, United States

CM3L.1 • 13:30

Accelerating Pulses via Multistage Four-Wave-Mixing, Alessandro Farsi1, Moti Fridman1, Alexander L. Gaeta1; 1 Applied and Engineering Physics, Cornell University, USA. Accelerating wavepackets in the time domain are demonstrated using four-wave-mixing (FWM). By incorporating two FWM interactions, acceleration of the wavepacket beyond the limit set by the temporal aperture of the pump pulse is achieved

CM3L.2 • 13:45 D

Coherent interference of nonlinearities in nanoscale silicon waveguides: The interplay between Kerr, free-carrier dispersion, and Brillouin nonlinear responses, Heedeuk Shin^{1,2}, Wenjun Qiu3, Zheng Wang4, Peter Rikich2,1; 1Sandia National Laboratories, USA; ²Yale University, USA; ³Massachusetts Institute of Technology, USA; ⁴University of Texas at Austin, USA. The nonlinear of a nanoscale Brillouin-active silicon waveguide is examined through heterodyne four-wave mixing experiments. The interference between Brillouin scattering, Kerr, and dispersive free-carrier nonlinearities are analytically described to explain the characteristic line-shapes observed.

CM3L.3 • 14:00 D

Ultrafast phase-resolved self-acceleration and frequency-chirp in silicon chip-scale slow-light solitons, Heng Zhou^{1,2}, Xiujian Li^{1,3}, Shu Wei Huang¹, James F McMillan¹, M. Yu⁴, Dim Lee Kwong⁴, Chee Wei Wong¹; ¹Columbia Univer-sity, USA; ²University of Electronic Science and Technology of China, China; ³National University of Defense Technology, China; 4The Institute of Microelectronics, Singapore. We demonstrate the first soliton self-accelerations and frequency-shifts induced by Drude free-carrier dispersion in 1.5-mm silicon photonic crystals. Picojoule soliton center-of-mass advancement of 2-ps (about one FWHM) and wavelength blue-shift of 0.8-nm are observed via XFROG

CM3L.4 • 14:15 D

High energy pulse compression through twopulse interaction mediated by stimulated Brillouin scattering in liquid fluorocarbon, Xiaozhen Xu¹, Chengyong Feng¹, Jean-Claude M. Diels¹; ¹University of New Mexico, USA. High energy SBS pulse compression in liquid fluorocarbon from 10 to 1 ns is demonstrated with 75% efficiency in an energy-scalable generation-amplification setup. The two-pulse interaction dynamics is studied in both experiments and simulations.

74

۲

JM3K.2 • 14:00

<u>Monday, 10 June</u>

()

Marriott San Jose Salon III

CLEO: Applications & Technology

13:30-15:30 AM3M • Symposium on Labon-a-Chip Applications: Lab on Chip I • Presider: Chris Myatt; Mbio

Diagnostics, USA

AM3M:1 • 13:30 Invited

Computational On-Chip Imaging Toward Telemedicine Applications, 'Aydogan Ozcan'; 'Electrical and Bioengineering Departments, University of California Los Angeles, USA. We review our recent work on computational on-chip imaging and its applications to telemedicine and high-throughput microscopy, including wide-field imaging of individual viruses on a chip

AM3M:2 • 14:00 Invited O Smartphone Based Optical Detection of Kaposi's Sarcoma Associated Herpesvirus DNA, Matthew Mancuso', David Erickson'; 'Department of Biomedical Engineering, Cornell University, USA; 'Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA. We create a smartphone accessory that is capable of optically reading out a detection reaction in a microfluidic chip and test'i using a colorimetric reaction targeted at DNA from Kaposi's sarcoma associated herpesvirus.

Marriott San Jose Salon IV

 $(\blacklozenge$

CLEO: Science & Innovations

13:30–15:30 CM3N • Attosecond & XUV Metrology

Presider: Nathan Newbury; National Inst of Standards & Technology, United States

CM3N.1 • 13:30 Tutorial

Attosecond Physics: The First Decade and Beyond, Ferenc Krausz¹; ¹Max-Planck-Institut for Quantenoptik, Germany. We shall review the technologies that opened the door to accessing the hitherto immeasurably fast atomic-scale motion of electrons as well as light field oscillations and address future prospects of this young discipline.

Ferenc Krausz was born in Mor, Hungary, on 17 May 1962. He was awarded his M. S. in Electrical Engineering at Budapest University of Technology in 1985, his Ph. D. in Quantum Electronics at Vienna University of Technology in 1991, and his habilitation degree in the same field at the same university in 1993. He joined the Department of Electrical Engineering as an Associate Professor in 1998 and became Full Professor in the same department in 1999. In 2003, he was appointed Director of the Max-Planck-Institut für Quantenoptik in Garching, Germany, and in October 2004, he became Professor of Physics and took over the Chair of Experimental Physics - Laser Physics at Ludwig-Maximilians-Universität München, His research includes nonlinear light-matter interactions, ultrashort light-pulse generation from the infrared to the X-ray spectral range, and studies of ultrafast microscopic processes. By using chirped multilayer mirrors, his group made intense light pulses comprising merely a few wave cycles available for a wide range of applications and utilized them for pushing the frontiers of ultrafast science into the attosecond regime. His most recent research direction in attosecond physics is the control and real-time observation of the atomicscale motion of electrons and the development of brilliant X-ray and charged-particle sources for applications in physics and biomedicine. He co-founded Femtolasers GmbH, a Vienna-based company specializing in Ti:sapphire femtosecond laser sources, and initiated Ultrafast Innovations GmbH, a joint venture of the Max Planck Society and the Ludwig-Maximilian-Universität München making cutting-edge ultrafast technologies available to research groups all over the world. Ferenc Krausz is a citizen of both Hungary and Austria and lives with his wife Angela and his children Anita and Martina in Garching, Germany. He feels greatly privileged to live at a time when borders between these and other countries in Europe are being peacefully dismantled.

Marriott San Jose Salon V & VI

JOINT

13:30-15:30

JM30 • Symposium on Novel Light Sources for Biomedical Applications: New Advances in Solid State and Semiconductor Lasers

Presider: Peter Moulton; Q-Peak, Inc., United States

JM30.1 • 13:30 Invited

Nitride VECSELs as Light Sources for Biomedical Applications, Thomas Wunderer¹; 'Palo Alto Research Center, USA. Vertical-External-Cavity Surface-Emitting Lasers (VECSELs) allow both high optical output power and a nearly diffraction limited beam quality. We demonstrate the first time in-well pumped blue InGaN/GaN multiple quantum well VECSELs under pulsed operation.

JM30.2 • 14:00

A Versatile Tool Box for the Deep-Ultraviolet Resonant Raman Spectroscopy, Vladislav Yakovlev¹, Georgi Petrov¹, Maria Troyanova-Wood¹; '*Texas A&M University*, USA. We demonstrate an array of novel laser systems based on nonlinear optical conversion to achieve resonant Raman spectroscopy over a broad spectral and temporal range with unprecedented stability and reproducibility.

JM30.3 • 14:15 🛛 🖸

High-speed Laser Scanner with Tunable Scan Rate, Wavelength Resolution and Spectral Coverage, Cheng Lei', Hongwei Chen', Minghua Chen', Sigang Yang', Shizhong Xie'; 'Department of Electronic Engineering, Tsinghua University, China. Based on the recirculating frequency shifting structure, a high-speed laser scanner is proposed and experimentally demonstrated, where the scan rate, wavelength resolution and spectral coverage can be conveniently adjusted for various kinds of applications.

.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 75

Monday, 10 June

۲

(

 $(\mathbf{\Phi})$

JM3A.5 • 15:00

Polariton lasing in a zero dimensional hybrid photonic crystal cavity, Bo Zhang¹, Zhaoron Wang¹, Christian Schneider², Sebastian Brodbeck2, Sven Hoefling2, Martin Kamp2, Hui Deng1; Department of Physics, University of Michigan, USA; 2Technische Physik, Universität Würzburg, Germany. We present the observation of the strong coupling phenomenon and discrete levels of zero dimensional lower polariton in the hybrid photonic crystal cavity (HPCC). We also report lasing of the HPCC lower polariton ground state.

JM3A.6 • 15:15

Transient Gain Spectroscopy in the Potent Single-Exciton Regime of Dense II-VI Colloidal Quantum Dot Films, Cuong H. Dang¹, Kwangdong Roh¹, Joonhee Lee¹, Craig Breen³, Jonathan S. Steckel², Seth Coe-Sullivan², Arto Nurmikko¹; ¹School of Engineering, Brown University, USA;²QD Vision Inc., USA. We have reached the long-sought single exciton gain regime in dense colloidal II-VI semiconductor quantum dot films. Transient spectroscopy details their exciton dynamics, informing further development of single material based lasers across the visible.

15:30–16:00 Coffee Break, Concourse Level

Executive Ballroom 210A

JOINT

JM3A • Symposium on **Fundamentals of Absorption** and Emission in Nanostructures and Composites: Optics of Low-dimensional and Ouantum Structures—Continued

JM3A.4 • 14:30 Invited Non-Markovian Radiation Dynamics in Photonic Band Gap Materials, Christian Wolff¹, Kurt Busch^{2,1}; ¹Max Born Institut, Germany; ²Humboldt Universitat zu Berlin, Germany. The theoretical analysis of a recent experiment on the modified radiation dynamics of a magnetic dipole emitter embedded in a three-dimensional Photonic Band Gap material is presented. This analysis allows the first-time demonstration of non-Markovian dynamics.

Executive Ballroom 210B

Executive Ballroom 210C

Executive Ballroom 210D

QM3D • Ultrafast Dynamics in

1D Systems—Continued

CLEO: QELS-Fundamental Science

OM3C • Solid State Quantum

Information—Continued

QM3B • Quantum Optics with Quantum Dots—Continued

QM3B.5 • 14:30

On-Chip Quantum Optics using Electrically Driven Quantum Dot - Micropillar Cavities, Caspar Hopfamn¹, Ferdinand Albert², Erik Stock¹, Matthias Lermer², Christian Schneider², Sven Höfling², Alfred Forchel², Martin Kamp², Stephan Reitzenstein¹; ¹Technische Universität Berlin, Germany; ²Universität Würzburg, Germany. A novel concept for on-chip quantum optics using an internal electrically pumped microlaser is presented. The microlaser resonantly excites a quantum dot - microcavity system operating in the weak coupling regime of cavity quantum electrodynamics

QM3B.6 • 14:45

Dynamic Stark effect in a quantum dot strongly coupled to a cavity, Kaushik Roy Choudhury¹, Ranojoy Bose¹, Edo Waks^{1,2}; ¹Electrical and Computer Engineering, University of Maryland, College Park, USA; ²Joint Quantum Institute, University of Maryland, College Park, USA. Effects beyond cw-Stark shift is investigated in a strongly coupled quantum dot-cavity system using the full quantum master equations, when the dot is dynamically detuned by an off-resonant laser pulse.

QM3B.7 • 15:00

Ultrafast downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel, Leo Yu¹, Jason Pelc^{1,5}, Kristiaan De Greve^{1,6}, Peter L. McMahon¹, Chandra M. Natarajan^{1,2}, Na Young Kim¹, Eisuke Abe^{1,4}, Vahid Esfandyarpour¹, Sebastian Maier³, Christian Schneider³, Martin Kamp³, Sven Hoefling³, Robert H. Hadfield², Alfred Forchel³, Martin Fejer¹, Yoshihisa Yamamoto^{1,4}; ¹E. L. Ginzton Laboratory, Stanford University, USA; ²Scottish University Physics Alliance and School of Engineering and Physical Sciences, Heriot-Watt University, United Kingdom; ³Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Germany; ⁴National Institute of Informatics, Japan; ⁵Hewlett-Packard Laboratories, USA; ⁶Dept. of Physics, Harvard University, USA. We report an ultrafast downconversion quantum interface, where 910-nm single photons from a quantum dot are downconverted to the 1.5-µm telecom band with sub-10 picosecond pulses at 2.2-µm, enabling the demonstration of quantum-dot spinphoton entanglement.

OM3B.8 • 15:15

Polarization-Entangled Photons from Site Controlled Pyramidal Quantum Dots, Gediminas Juska¹, Valeria Dimastrodonato¹, Tung-Hsun Chung¹, Agnieszka Gocalinska¹, Emanuele Pelucchi¹; ¹Tyndall National Institute, Ireland. For the first time, polarization-entangled photon emission is demonstrated from epitaxially grown site-controlled quantum dots. The predicted crystallographic high symmetry reproducibly allowed growing samples with regions with at least 15% of entangled photon emitters.

QM3C.4 • 14:30

Entanglement between a Quantum Dot Spin and a Photon, John Schaibley¹, Alex Burgers¹, Gregory McCracken¹, Luming Duan¹, Paul Berman¹, Duncan Steel¹, Allan Bracker², Daniel Gammon², Lu Sham3; 1Department of Physics, University of Michigan, USA; ²Naval Research Laboratory, USA; ³Department of Physics, University of California, San Diego, USA. We demonstrate entanglement between an InAs quantum dot (QD) electron spin qubit and a photon. This valuable quantum information resource can be used to mediate spin-spin entanglement between distant nodes of a QD spin network.

QM3C.5 • 14:45

Exciton-Polariton Mediated Universal Ouantum Computing, shruti puri1, Na Young Kim1, Yoshihisa Yamamoto^{1,2}; ¹Stanford University, USA; ²National Institute of Informatics, Japan. We propose a scheme for universal quantum computation with electron spin qubits. The scheme requires electrical control and manipulation of single spin qubit, along with exciton-polariton mediated two-qubit operation and single shot quantum non-demolition (QND) readout.

QM3C.6 • 15:00

OM3C.7 • 15:15

chanical cat state.

Entangled Mechanical Cat States From Condi-

tional Optomechanics, Uzma Akram¹, Warwick

P. Bowen¹, Gerard J. Milburn¹; ¹University of

Queensland, Australia. We condition the interaction of a single photon in an interferometer with two optomechanical systems. Conditioning on

long detection times of the photon from the

composite system results in an entangled me-

Generating Robust Optical Entanglement via **Optomechanical Coupling**, Mark Kuzyk¹, Hailin Wang¹; ¹Physics, University of Oregon, USA. A pulsed scheme for generating two-mode squeezed light via the coupling of two optical modes to a mechanical oscillator in an optomechanical system is proposed. The scheme can be robust against thermal mechanical motion.

QM3D.5 • 14:30

Long-Range Exciton Diffusion in Single-Walled Carbon Nanotubes, Mitchell Anderson¹, Yee-fang Xiao¹, James M. Fraser¹, ¹Physics, Engineering Phys-ics & Astronomy, Queen's University at Kingston, Canada. We develop an analytic model of exciton dynamics that agrees well with contrasting studies of suspended single-walled carbon nanotubes. Exciton intrinsic diffusion length (1.3-4.7 µm) is much longer than observed with encapsulated samples.

QM3D.6 • 14:45 Withdrawn

QM3D.7 • 15:00

Formation of hybrid polaritons in an organicinorganic microcavity at room temperature, Michael Slootsky¹, Xiaoze Liu^{2,3}, Stephen R. Forrest^{1,4}, Vinod M. Menon^{2,3}; ¹Dept. of Physics, University of Michigan, Ann Arbor, USA; 2Dept. of Physics, Graduate School and University Center of the City University of New York (CUNY), USA; ³Laboratory for Nano and Micro Photonics, Dept. of Physics, Queens College of the City University of New York (CUNY), USA; ⁴Dept. of Electrical Engineering and Computer Science and Dept. of Materials Science and Engineering, University of Michigan, Ann Arbor, USA. We demonstrate hybridization of organic and inorganic excitons via strong coupling to a common microcavity mode. The system consists of 3,4,7,8-napthalenetetracarboxylic dianhydride (NTCDA) and ZnO nanocrystals embedded in a dielectric microcavity held at room temperature.

OM3D.8 • 15:15

Ultrafast Exciton Dynamics in Donor-Acceptor Conjugated Polymers, San-Hui Chi¹, Chad M. Amb2, Dinesh Patel2, Timothy T. Steckler2, Xuan Zhang¹, Matthew Sartin¹, Matteo Cozzuol¹, Joel M. Hales¹, Seth Marder¹, John Reynolds^{1,2}, Joseph W. Perry¹; 'School of Chemistry and Biochemistry, Georgia Institute of Technology, USA; ²Department of Chemistry, University of Florida, USA. Aggregate-enabled ultrafast exciton dynamics in dithienopyrrole-benzothiadiazole based donoracceptor conjugated polymers were investigated to address factors affecting the material performance in optoelectronic and photonic devices such as OPV, OLED, power limiters and polariton lasers.

CLEO: 2013 • 9–14 June 2013

Executive Ballroom

210F

CLEO: Science

& Innovations

Investigation of Intra/Inter-Band Cross-Modu-

lation in Multi-Band Radio-over-Fiber Systems,

Jing Wang¹, Cheng Liu¹, Ming Zhu¹, Anlin Yi¹, Gee-Kung Chang¹; ¹Georgia Institute of Technol-

ogy, USA. Intra/inter-band cross-modulations

due to Mach-Zehnder modulator nonlinearity

in multi-band radio-over-fiber systems is inves-

tigated. Signal quality degradation induced by

cross-modulation for single-/multi-band scalar

and vector signals is analyzed theoretically and

CM3G • RF over Fiber-

Continued

CM3G.5 • 14:30

validated by experiments.

CM3G.6 • 14:45

Withdrawn

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QM3E • Non-conventional Beams and Optical Vortices— Continued

QM3E.5 • 14:30

3D Accelerating Electromagnetic Waves, Miguel A. Bandres¹, Ido Kaminer², Miguel A. Alonso³, Mordechai Segev³; Instituto Nacional de Astrofísica, Óptica y Electrónica, Mexico: ²Physics Department and Solid State Institute, Technion, Israel; ³The Institute of Optics, University of Rochester, USA. We present electromagnetic 3D spatially accelerating waves whose transverse while approximately preserving their shape. Our results allow the generation of accelerating waves with novel transverse distributions, broadening their application further.

QM3E.6 • 14:45

Soliton-radiation trapping in gas-filled hollowcore photonic crystal fibers, Mohammed F. Saleh', Fabio Biancalana²¹; 'Max-Planck-Inst Physik des Lichts, Germany; 'School of Engineering and Physical Sciences, Heriot-Watt University, United Kingdom. We propose an unconventional optical trapping mechanism between a strong fundamental soliton and an ultrashort weak dispersive radiation in a hollow-core photonic crystal fiber filled with a noble gas.

QM3E.7 • 15:00

Soliton dynamics in a diffracting trapping potential, Ammon Hanan Sheinfux¹, Mikael Rechtsman¹, Braxton Osting², Jeremy Marzuola³, Mordechai Segev¹; '*Technion Israel Institute of Technology, Israel; 'tuniversity of california, USA*, '*3University of North Carolina, USA*. We study, experimentally and theoretically, interactions between a soliton and a transient trapping potential. The soliton can be guided by such a potential, while its motion is arrested at the potential minimum by radiation dampening.

Executive Ballroom

210G

CM3F • Nanolasers & Photodetectors—Continued

CM3F.5 • 14:30

Defect-state-absorption photocurrent in PN-diode-integrated silicon microring resonators, Yu Li¹, Andrew W. Poon¹; 'The Hong Kong University of Sci.&Tch, Hong Kong. We report defect-stateabsorption photocurrent in PN-diode-integrated silicon microrings at 1550 nm. We demonstrate a cavity-enhanced responsivity of 3.1 mA/W upon 0 V, and 173 mA/W upon -10 V with a 3dB bandwidth of 10 GHz.

CM3F.6 • 14:45

Scalable Ultra-Flat Horn Plasmonic Antenna for Enhanced Detection, Shay Yosub¹, Meir Orenstein¹; 'Electrical Engineering, Technion, Israel. Novel Micro-to-Nano scalable plasmonic flat horn antenna was proposed. A 2.2µm high antenna collected 15²µm² to 5²µm² with 72% efficiency for λ=1550nm. For 1µm to 10nm collection, a resonant 50,000-fold enhancement in absorption was achieved.

CM3F.7 • 15:00

Performance enhancement in Quantum Well Infrared Photodetector utilizing the Grating Structure, Ming-Lun Lee¹, Cheng-Ju Hsieh¹, Yao-Hong You¹, Vin-Cent Su¹, Po-Hsun Chen¹, Hung-Chou Lin¹, Han-Bo Yang¹, Hung-Ming Chen¹, Chieh-Hsiung Kuan¹; *Graduate Institute* of Electronics Engineering, National Taiwan University, Taiwan. We fabricate four different size grating structure on the top of the quantum well infrared photodetectors, then etch them into four different etching depth. With suitable design, the peak responsivity of the QWIPs is about thirteen times larger than that of the conventional QWIP.

CM3G.7 • 15:00

SFDR enhancement in analog links by simultaneous compensation for dispersion and nonlinearity, Zhiyu Chen¹, Lianshan Yan¹, ying H. guo¹, Wei Pan¹, Bin Luo¹, Xihua Zou¹, Tao Zhou²; ¹Center for Information Photonics & Communications, Southwest Jiaotong University, China; ²State Key Lab of Electronic Information Control, Southwest China Research Institute of Electronic Equipment, China. We proposed a linearized analog link based on single sideband phase modulator. Results show that the nonlinearity of modulator and dispersion are simultaneously compensated, and the improvement of ~21-dB in spurious-free dynamic range are obtained.

Executive Ballroom 210E

CM3H • Laser Materials Processing with Shaped Beams—Continued

CM3H.5 • 14:30

Kerr effect induced transient group-velocity dispersion of fused silica measured via real-time MIIPS and spectral interferometry, Gennady Rasskazov¹, Anton Ryabtsev¹, Dmitry Pestov², Vadim V. Lozovoy¹, Marcos Dantus¹², ¹Michigan State University, USA; ²Biophotonic Solutions Inc., USA. We demonstrate the measurement of transient dispersion in fused silica by RT-MIIPS. The results are validated via Fourier Transform Spectral Interferometry. The observed dispersion modulation is explained within a theoretical model.

CM3H.6 • 14:45

Chiral structure control of metal nano-needles fabrictaed by optical vortex laser ablation, Fuyuto Takahashi', Kohei Toyoda', Shun Takizawa', Katsuhiko Miyamoto', Ryuji Morita', Takashige Omatsu'¹³, ¹Chiba University, Japan; ²Hokkaido University, Japan; ²CREST, Japan. We discovered that chiral-structure of nano-needles fabricated by optical vortex laser ablation can be controlled by changing the magnitude of orbital angular momentum. We also demonstrated the formation of a chiral Si-bump.

10 June

۲

CM3H.7 • 15:00

Coherent Stitching of Light in Femtosecond Laser Formed Multi-Layered Volume Gratings, Mi Li Ng', Prof. Debashis Chanda', Peter R. Herman'; 'University of Toronto, Canada. We propose and demonstrate a novel method for improving diffraction efficiency through strategic arrangement of multilayered weak phase gratings to coincide with Talbot planes. Multilayered volume gratings were written inside fused silica with femtosecond lasers.

QM3E.8 • 15:15

Tunable polarizability and self-trapping of light in colloidal suspensions of gold nanoparticles, Shima Fardad¹², Anna Bezryadina², Peng Zhang², Zhigang Chen²³, Demetrios N. Christodoulides¹, '*GREOL/College of Optics, University of Central Florida, USA; ²Department of Physics and Astronomy, San Francisco State University, USA; ³TEDA Applied Physics School, Nankai University, China. Aqueous suspensions containing pure gold nanoparticles and silica-gold core-shells are shown to exhibit different polarizibilities, thus allowing self-trapping of long needles of light. The different nonlinear mechanisms behind these processes are investigated.*

CM3F.8 • 15:15

On-chip identifying topology charges of OAM beams with multi-beam interference, Dengke Zhang', Xue Feng', Kaiyu Cui', Fang Liu', Yidong Huang'; 'Tsinghua University, China. Through weighted multi-beam interference in silicon waveguides, identifying the topology charge of optical angular momentum (OAM) beams is experimentally demonstrated. Based on this approach, an OAM receiver can be obtained for detecting and decoding

CM3G.8 • 15:15

Wideband Photonic Radiofrequency Beamforming Network Employing a Broadband Optical Source Sliced by a Wavelength Selective Switch, Xiaoxiao Xue¹, Xiaoping Zheng¹, Hanyi Zhang¹, Bingkun Zhou¹, 'State Key Laboratory on Integrated Optoelectronics, Tsinghua University, China. We propose a novel low-cost photonic radiofrequency (RF) beamforming network which eliminates the dispersion induced RF power degradation. A RF bandwidth of 40 GHz and a tunable delay range of 750 ps were demonstrated.

CM3H.8 • 15:15

Materials processing using abruptly autofocusing beams, Dimitris Papazoglou¹³, Paris Panagiotopoulos¹, Arnaud Couairon³, Stelios Txortzakis¹², ¹Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Greece; ²Materials Science and Technology Department, University of Crete, Greece; ³Centre de Physique Théorique, CNRS, Ecole Polytechnique, France. Radially symmetric Airy optical beams exhibit a focus area that is strongly non-symmetric and abrupt. We use this unique feature to precisely deliver energy in the bulk of fused silica without affecting the preceding material.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 77

15:30–16:00 Coffee Break, Concourse Level

CLEO: Science & Innovations

CM31 • Special Fiber Design & Fabrication—Continued

CM3I.5 • 14:30

Low Mode Asymmetry Highly Birefringent Microstructured Fibers, Alexander N. Denisov¹, Andrei E. Levchenko¹, Sergei L. Semjonov¹, E. M. Dianov¹; ¹FORC RAS, Russian Federation. We present numerical and experimental investigations of microstructured fibers with high birefringence and low mode asymmetry. Fibers with approximately equal mode sizes along the two orthogonal axes and birefringence up to 2.7*10-3 were fabricated.

CM3I.6 • 14:45

June

Strong and Robust Bragg Gratings in Photo-Thermo-Refractive Glass Fiber, Peter Hofmann¹, Clemence Jollivet¹, Rodrigo Amezcua-Correa¹, Enrique Antonio-Lopez¹, Daniel Ott¹, Marc Se-Gall¹, Ivan Divliansky¹, Larissa Glebova¹, Leonid Glebov¹, Axel Schulzgen¹; ¹CREOL, The College of Optics and Photonics, University of Central Florida, USA. We demonstrate strong and robust fiber Bragg gratings in the first low-loss optical fiber made from photo-thermo-refractive (PTR) glass. A high grating strength of 20 dB is maintained even at 12 hour exposure to temperatures above 400 °C.

CM3I.7 • 15:00

All-fiber Mode-locked Dissipative Thuliumdoped Fiber Laser by Optically Deposited SW-CNTs, Qing Qing Wang', Tong Chen', Mingshan Li', Botao Zhang', Yongfeng Lu², Kevin Chen', 'University of Pittsburgh, USA; 'University of Nebraska-Lincoln, USA. Dissipative solitons from an all-fiber Thulium-doped fiber ring oscillator are generated by using optically deposited SWCNTs as the saturable absorber and high numerical aperture fiber of measured normal dispersion is introduced to produce large net normal dispersion at 1.9µm.

CM3I.8 • 15:15

Atomic polarization relaxation time measurement of Rb filled hypocycloidal core shape Kagome HC-PCF, Thomas Bradley^{1,2}, John J. McFerran¹, Jenny Jouin³, Fetah Benabid^{1,2}, Philippe Thomas³, Ekaterina Ilinova'; '*GPPMM*, *Xlim Research Institute, France; ²CPPM, University of Bath, United Kingdom; ³SPCTS UMR CNRS* 7315, *Centre Européen de la Céramique, 12 rue Atlantis, France.* We measured atomic polarization relaxation-time in PDMS coated and uncoated rubidium-loaded hypocycloidal-core Kagome HC-PCF. The measured relaxation-times of 32µs and 24µs in PDMS coated and uncoated fibers are longer two-orders-of-magnitude than the wall-collision-limited relaxation time. cio², Christian Debus¹, Heiko Schaefer-Eberwein¹, Peter Haring Bolivar¹; ¹Institute of High Frequency & Quantum Electronics, University of Siegen, Germany; ²Centre for Nanophotonics, FOM Institute-AMOLF, Netherlands; ²COBRA Research Institute, Eindhoven University of Technology, Netherlands. We demonstrate the coupling of THz radiation in thin layers of water by means of attenuated total reflection measurements. Moreover, we excite this mode by end-fire coupling and experimentally show propagation lengths of 2 cm.

CM3J.7 • 15:00

Frequency-Swept Asynchronous-Optical-Sampling Terahertz Time-Domain Spectroscopy, Takeshi Yasui^{1,2}, Yuki Iyonaga¹, Yi-Da Hsieh¹, Hajime Inaba³, Kaoru Minoshima³, Shuko Yokoyama¹, Tsutomu Araki¹, Mamoru Hashimoto¹, ¹Graduate School of Engineering Science, Osaka University, Japan; ²Institute of Technology and Science, University of Tokushima, Japan; ³National Institute of Advanced Industrial Science and Technology, Japan. We proposed frequency-swept asynchronous-optical-sampling terahertz time-domain spectroscopy to further improve the spectral resolution. The spectral resolution achieved here was 2.2 MHz, which is two orders of magnitude smaller than the mode-locked frequency.

CM3J.8 • 15:15

Near-Infrared Time-Domain Spectroscopy using Broadband Phase-locked Electromagnetic Pulses, Ikufumi Katayama¹, Michitaka Bito², Eiichi Matsubara², Masaaki Ashida², ¹Graduate School of Engineering, Yokohama National University, Japan; ²Graduate School of Engineering Science, Osaka University, Japan. We demonstrated the near-infrared time-domain spectroscopy using phase-locked electromagnetic pulses generated and detected with a sub-5fs laser and a DAST crystal. Transmission spectra of polystyrene and glass were measured up to 180 THz.

Meeting Room 212D-B

JOINT

JM3K • Symposium on Midinfrared Lasers: Mid-infrared Laser Sources I—Continued

JM3K.4 • 14:30

Asynchronous Mid-infrared optical parametric oscillator frequency combs, Zhaowei Zhang^{1,3}, Xiaohui Fang^{1,2}, Tom Gardiner³, Derryck Reid¹; ¹EPS, Heriot-Watt University, United Kingdom; ²Tianjin University, China; ³National Physical Laboratory, United Kingdom. We report highpower, carrier-envelope-offset (CEO) frequency stabilized, asynchronous dual frequency combs at 3.3-µm. The two channels, each with 100 mW average power, share all the components for Midinfrared generation and CEO-frequency detection.

JM3K.5 • 14:45

Octave-spanning Coherent Mid-IR Generation via a Single Adiabatically Chirped Grating, Haim Suchowski¹, Peter R. Krogen², Shu-Wei Huang², Franz X. Kärtner²³, Jeffrey Moses²; ¹University of California, Berkeley, USA; ²MIT, USA; ³DESY and University of Hamburg, Germany, A prototype single-crystal device efficiently converts a µJ-energy near-IR OPA pulse to the mid-IR by adiabatic frequency conversion, generating an octave-spanning pulse covering the 2-5-µm range and suggesting wide applicability to existing laser systems.

JM3K.6 • 15:00 Invited

Spatial-temporal Imaging in the Strong-field Limit, Louis F. DiMauro¹; 'The Ohio State Univ., USA. An approach is discussed for producing molecular images with sub-Angstrom atomic precision with few fentosecond exposures. The laser-induced electron diffraction procedure extracts a diffraction pattern from the photoelectron momentum distribution produced by strong-field Mid-infrared ionization.

Marriott San Jose Salon I & II

CLEO: Science & Innovations

CM3L • Solitons and Nonlinear Propagation—Continued

CM3L.5 • 14:30 Tutorial

Dissipative Solitons, A Novel Paradigm for Mode-locked Lasers, Philippe Grelu¹; ¹Lab ICB UMR 6303 CNRS, Universite de Bourgogne, France. The "dissipative soliton" concept brings a framework for understanding complex mode-locked laser dynamics from a unified picture. This tutorial provides conceptual pictures illustrated with universal dynamics, highlights recent achievements and prospects for mode-locked laser development.

Philippe Grelu is Professor of Physics at University of Bourgogne, in Dijon, France, since 2005. After graduating from Ecole Centrale de Paris and a master degree in theoretical physics at University Paris VI, he obtained his PhD at University of Orsay in quantum optics. His research interests then moved to ultrafast nonlinear optics and mode-locked fiber lasers. He is now among the key experts in nonlinear optical cavity dynamics, with major contributions in the field of dissipative solitons, and has authored over 150 scientific publications in journals and conference proceedings. His current research also includes spatio-temporal soliton dynamics and nonlinear microfiber optics.

15:30–16:00 Coffee Break, Concourse Level

۲

Meeting Room 212A-C

Sensing—Continued

CM3J.5 • 14:30

CM3J.6 • 14:45

CM3J • THz Spectroscopy and

Terahertz gas sensing utilizing multilayer-

stacked micro-porous polymer structure, Ho

Cheng-Han¹, Borwen You¹, Ming-Che Chan², Ja-

Yu Lu¹; ¹Department of Photonics, National Cheng

Kung University, Taiwan; ²College of Photonics,

National Chiao-Tung University, Taiwan. A simple

multilaver micro-porous structure has been suc-

cessfully demonstrated for identifying different

types and concentrations of vapor molecules. The

measured minimum concentration is achieved 9

ppm, corresponding to molecular density variation of 0.16 nano-mole/mm3.

Coupling and cm propagation of long-range

guided THz radiation in thin layers of water,

Robert Sczech¹, Jaime Gomez Rivas^{2,3}, Audrey Berrier², Vincenzo Giannini², Giuseppe Pirruc-

Marriott San Jose Salon III

CLEO: Applications & Technology

AM3M • Symposium on Lab-ona-Chip Applications: Lab on Chip I—Continued

AM3M.3 • 14:30 Invited SMART (Shrink Manufacturing Advanced Research Tools), Michelle Khine', 'University of California, Iryine, USA. Leveraging the inherent heat-induced relaxation of pre-stressed, thermoplastic sheets, we pattern in a variety of ways at the large scale and achieve micro and nanostructures by controlled shrinking down to 5% of the original patterns.

AM3M.4 • 15:00 Invited

Microfluidics Facilitated Genome Sequencing

for Limited Number of Cells, Liang Zhao1, Xi-

annian Zhang1, Aaron-M. Streets1, Yuhong Pang1,

Fuchou Tang¹, Yanyi Huang¹, ¹Biodynamic Optical Imaging Center (BIOPIC), Peking University, China.

We develop 'a microfluidics-based' single cell

RNA-Seq 'transcriptome analysis' technology' to

perform the library-prep reaction steps at nanoliter range within sealed chambers on-chip, eliminat-

ing potential contaminations and sophisticated

manual handlings.

Marriott San Jose Salon IV

 (\blacklozenge)

CLEO: Science & Innovations

CM3N • Attosecond & XUV Metrology—Continued

CM3N.2 • 14:30 D

Cavity-enhanced high harmonic generation with high power Yb-fiber laser at 10MHz repetition rate, Akira Ozawa^{1,2}, Makoto Kuwata-Gonokami^{1,4}, Yohei Kobayashi^{1,2}, 'The Institute for Solid State Physics, The University of Tokyo, Japan; 'Core Research for Evolutional Science and Technology (CREST), JST, Japan; 'Department of Physics, The University of Tokyo, Japan; 'Photon Science Center, The University of Tokyo, Japan: Cavity-enhanced high harmonic generation is demonstrated at 10 MHz repetition rate with Yb-fiber laser. 0.1 mJ of pulse energy is obtained for intracavity fundamental pulses and up to 31st order high harmonic radiation is observed.

CM3N.3 • 14:45 D

Keyhole Coherent Diffraction Imaging of an Extended Transparent Sample Using Curved Multilayer Mirrors, Matthew Seaberg', Bosheng Zhang', Justin Shaw², Dennis F. Gardner', daniel adams', Margaret M. Murnane¹, Henry Kapteyn¹; ¹Department of Physics and JILA, University of Colorado at Boulder, USA; ²NIST, USA. We use keyhole coherent diffraction imaging to gain ~20x increase in flux and fully characterize the illumination, allowing us to image a semi-transparent sample in amplitude and phase. This capability is important for x-ray microscopes.

CM3N.4 • 15:00 D

Imaging by Integrating Stitched Spectrograms, daniel adams^{1,3}, Carson Teale¹, Daniel Kane², Margaret M. Murnane¹, Henry Kapteyn¹, ¹NIST/JILA/ CU, USA; ²Mesa Photonics, LLC, USA; ¹Kapteyn-Murnane Laboratorics, USA. A new diffractive imaging technique named Imaging By Integrating Stitched Spectrograms (IBISS) is presented. The technique is successfully demonstrated using a Helium Neon laser to image a 350-µm wide sample with 12µm resolution.

CM3N.5 • 15:15 D

Optical Delay with a Line-by-Line Resolution Pulse Shaper, Andrew E. Hunter¹, John Willits¹, Steven T. Cundiff; ¹JILA, University of Colorado and National Institute of Standards and Technology, USA. We demonstrate an optical delay line using a virtually imaged phased-array (VIPA) pulse shaper, producing time delays in discrete steps of 40 ps over the full repetition period of the laser.

Marriott San Jose Salon V & VI

JOINT

JM30 • Symposium on Novel Light Sources for Biomedical Applications: New Advances in Solid State and Semiconductor Lasers—Continued

JM30.4 • 14:30 D

New concept of broadly tunable (440-670 nm) solid-state organic laser, Oussama Mhibik^{1,3}, Tatiana Leang^{1,2}, Alain Siove^{1,2}, Sébastien Forget^{1,2}, Sébastien Chénais^{1,2}, 'Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, France; ²CNRS, UMR 7538, LPL, France. An innovative concept of organic thin-film solid-state laser is proposed, with diffraction-limited output and a broad tuning range covering the visible spectrum (from 440 to 670 nm) under UV optical pumping.

JM30.5 • 14:45 🛛 🖸

Pseudomorphic Mid-Ultraviolet Light-Emitting Diodes for Water Purification, Craig Moe¹, Jianfeng Chen¹, James R. Grandusky¹, Mark C. Mendrick¹, Rajul Randive¹, Lee E. Rodak², Anand V. Sampath², Michael Wraback², Leo Schowalter¹; '*Crystal IS, Inc., USA*; '*RDRL-SEE-M, U.S. Army Research Laboratory, USA.* UVC light output of 66 mW at 300 mA CW has been achieved from LEDs on AIN substrates with extensive photon extraction. Proper vessel design allows for efficient irradiation of a water sample for purification.

JM30.6 • 15:00 Invited

Advances in Solid State and Semiconductor

Sources for Biomedicine, Peter F. Moulton¹; ¹Q-

Peak, Inc., USA. We review some recent develop-

ments in semiconductor and solid state lasers that

facilitate major improvements in biomedical imag-

ing systems. Examples include fiber-laser based

ultrafast systems, and swept-frequency sources.

Monday, 10 Jui

۲

(

Executive Ballroom 210A

16:00-18:00

QM4A • Optics of Metasurfaces Presider: Evgenii Narimanov; Purdue University, United States

OM4A.1 • 16:00

Metamaterial Polarization Multiplexed Gratings, Yu-Ju Tsai¹, Talmage Tyler¹, Stéphane La rouche¹, Antonio Llopis¹, Matthew Royal¹, Nan M. Jokerst', David R. Smith'; 'Department of Electrical and Computer Engineering, Duke University, USA. We demonstrate a metamaterial grating that has two diffraction periods for two orthogonal linear polarization states of illuminations. The proposed method will be useful in free space optical communications and novel optical imaging systems.

OM4A.2 • 16:15

ndav. 10 June

Dynamic Inductive Tuning of Fano-Resonant Meta-Surfaces Using Plasmonic Response of Graphene in Mid-infrared, nima dabidian¹, S. Hossein Mousavi¹, Gennady Shvets¹; ¹physics, University of Texas at Austin, USA. We demonstrate theoretically and experimentally that electrically gated single-layer graphene can be used to inductively tune the infrared optical response of Fano-resonant meta-surfaces. The induced spectral shifts are used to extract graphene's electronic properties.

OM4A.3 • 16:30

Meta-Gratings for Highly-Compact Holographic Imaging Systems, Sandeep Inampudi¹, Viktor A. Podolskiy¹; ¹Physics and Applied Phys-ics, University of Massachusetts Lowell, USA. We present a diffraction-based computational imaging paradigm and illustrate its applications for a highly-compact imaging systems capable of 3D imaging with 2D sensors.

16:00-18:00 QM4B • Quantum Dots, Nanocrystals, & Impurities Presider: Kimberley Hall;

Dalhousie University, Canada

Executive Ballroom

210B

CLEO: QELS-Fundamental Science

OM4B.1 • 16:00

Observation of Optically Stimulated Depletion of Carbon Acceptor Bound Excitons in GaAs, Todd Karin¹, Russell Barbour¹, Kai-Mei Fu¹; ¹Department of Physics, University of Washington, USA. We observe stimulated emission of acceptor bound excitons into an excited acceptor state. This technique is used to estimate spin coherence parameters for acceptors and may pave a path toward single acceptor isolation.

16:00-18:00 QM4C • Hybrid Plasmonics & **Novel Effects** Presider: Jennifer Dionne; Stanford Univ., United States

Executive Ballroom

210C

OM4C.1 • 16:00

Plasmonically Enhanced Transverse Magneto-Optical Kerr Effect, Jessie Y. Chin1, Lars Kreilkamp², Vladimir Belotelov³, Stefanie Neutzner¹, Daniel Dregely¹, Thomas Wehlus⁴, Ilya A. Akimov², Bernd Stritzker⁴, Manfred Bayer², Harald W. Giessen1; 14th Physics Institute and Research Center SCOPE, University of Stuttgart, Germany; ²Experimentelle Physik 2, Technische Universität Dortmund, Germany; ³Faculty of Physics, Lomonosov Moscow State University, Russian Federation; 4Institute of Physics, University of Augsburg, Germany. We demonstrate experimentally a plasmonic enhancement of the transverse magneto-optical Kerr effect. The enhanced Kerr effect modulates the transmitted light intensity by a large value of 1.5%, while high transparency of the system is maintained.

QM4C.2 • 16:15

Extraordinary magnetoplasmonic effect in SPP-MOKE configuration, Rémi Vincent¹, Hugues Marinchio², Juan Jose Saenz³, Rémi Carminati²; ¹Université de Technologie de Troyes, France; ²Institut Langevin, ESPCI ParisTech, CNRS, France; ³Universidad Autónoma de Madrid, Spain. An as yet unexploited Magneto Optical Kerr Effect (MOKE) at evanescent distance from a surface is introduced. In the case of a magnetic particlemetallic surface system, an extraordinary intensity is discovered and fully explained by the excitation of Surface Plasmon Polariton.

OM4C.3 • 16:30

Polarization-Dependent Phase-Changing Nanoswitch, Kannatassen Appavoo¹, Richard F. Haglund¹; ¹*Physics and Astronomy, Vanderbilt University, USA*. We fabricate a hybrid nanoswitch with polarization-dependent properties by tailoring the near-field nanoenvironment of a plasmonic nanoantenna. Positioning a phase-transforming na-noparticle at the nanoantenna's optical focus allows modulation of nanoscale light fields with specific polarizations.

Executive Ballroom 210D

CLEO: Science & Innovations

16:00-18:00 CM4D • All Optical and Quantum **Signal Processing**

Presider: Paulina Kuo; National Inst of Standards & Technology, United States

CM4D.1 • 16:00 Invited

Quantum Frequency Conversion of Single-Photon States by Three and Four-Wave Mixing, Michael G. Raymer¹, Dileep V. Reddy¹, Lasse Mejling², Karsten Rottwitt²; ¹Department of Physics, University of Oregon, USA; 2Department of Photonics, Technical University of Denmark, Denmark. Three- or four-wave mixing can convert a single-photon wave packet to a new frequency. By tailoring the shapes of the pump(s), one can achieve add/drop functionality for different temporally orthogonal wave packets.

۲

Long-wavelength-pumped single-photon detec-

CM4D.2 • 16:30

tor based on frequency up-conversion in MgO-doped periodically-poled LiNbO3 waveguide reaching ultralow dark count rates, Da Li¹, Guan Sun¹, Yujie J. Ding¹, Narasimha S. Prasad²; ¹Lehigh University, USA; ²NASA Langley Research Center, USA. We implemented single-photon detector in 1500-nm band based on frequency up-conversion in nonlinear waveguide at pump wavelength of 1920 nm. Ultralow dark count rate and signal photon detection rate are 20 /s and 56.8 /s.

QM4B.2 • 16:15 Confinement Effects on Biexciton Binding in Semiconductor Quantum Dots Measured with 2D Coherent Spectroscopy, Galan Moody^{1,2}, Ro-

han Singh1,2, Hebin Li1, Ilya A. Akimov3,4, Manfred Bayer³, Dirk Reuter⁵, Andreas D. Wieck⁵, Allan Bracker⁶, Daniel Gammon⁶, Steven T. Cundiff^{1,2}; ¹JILA, University of Colorado & NIST, USA; ²Physics, University of Colorado, USA; ³Experimentelle Physik 2, Technische Universität Dortmund, Germany; ⁴A. F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, Russian Federation; ⁵Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, Germany; ⁶Naval Research Laboratory, USA. Two-dimensional coherent spectroscopy on a series of quantum dot samples with different morphology reveals that biexciton binding is independent of the details of confinement in InAs dots, in contrast to the behavior in GaAs dots.

QM4B.3 • 16:30

Ultrafast red-shift of biexciton binding energy by multiple exciton generation in PbS quantum dots, Younghwan Choi¹, Seongchu Lim², Young Hee Lee², Hyunyong Choi¹; ¹School of Electrical and Electronic Engineering, Yonsei University, Republic of Korea; ²Institute of Basic Science, Center for Integrated Nanostructure Physics, Department of Physics, Department of Energy Science, Sung-kyunkwan University, Republic of Korea. Using ultrafast pump-probé spectroscopy, we investigate the exciton-exciton interaction in PbS quantum dot, and show that the biexciton binding energy is strongly altered by the extra single-exciton generated by the carrier multiplication process.

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

16:00-18:00

QM4E • Nonlinear Imaging and **Spatial and Temporal Effects** Presider: Marco Peccianti;

Institute for Complex Systems, Italy

OM4E.1 • 16:00

Dispersion of the Electronic Third-Order Nonlinearity of Symmetric Molecules, Honghua Hu1, Trenton R. Ensley1, Marcus Seidel1, Manuel Ferdinandus¹, Matthew Reichert¹, Olga Przhonska^{1,2}, Eric W. Van Stryland^{1,3}, David J. Hagan^{1,3}; ¹CREOL & FPCE, The College of Optics and Photonics, University of Central Florida, USA; ²Institute of Physics, National Academy of Sciences, Ukraine; ³Department of Physics, University of Central Florida, USA. Using a dual-arm Z-scan to increase the signal-to-noise, we measure the dispersion of the electronic third-order nonlinearity of symmetric polymethines and squaraines and find good agreement with the essential-state model including CS2.

QM4E.2 • 16:15

Experimental Observation of Discrete Solitons in a Temporal Photonic Lattice, Martin Wimmer1, Alois Regensburger1, Christoph Bersch1, Mohammad-Ali Miri2, Georgy Onishchukov3 Demetrios N. Christodoulides2, Ulf Peschel1; ¹Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Germany; ²CREOL, College of Optics and Photonics, University of Central Florida, USA; 3Max Planck Institute for the Science of Light, Germany. We report the first experimental observation of solitons propagating in discrete steps through a temporal photonic lattice, which is implemented in a fiber-loop setup. Stable propagation over fifty coupling lengths is achieved.

OM4E.3 • 16:30

Amplitude-invariant Fast Light in a Semiconductor Optical Amplifier for Microwave Photonics, Matthew Chang¹, Paul R. Prucnal¹; ¹Electrical Engineering, Princeton University, USA. We experimentally demonstrate tunable fast light in a semiconductor optical amplifier based on cross-gain modulation. Up to 60 ps amplitudeinvariant time delay is achieved on a 500 MHz microwave signal.

Executive Ballroom 210G

16:00-18:00

CM4F.1 • 16:00

femtojoule regime.

CM4F.2 • 16:15

Japan

CM4F • Photonic Crystals

Yokohama National University,

25-channel all-optical switches by integrated

silicon photonic crystal nanocavities, Kengo

Nozaki^{1,2}, Eiichi Kuramochi^{1,2}, Akihiko Shinya^{1,2},

Masaya Notomi^{1,2}; ¹NTT Nanophotonics Center,

Japan; ²NTT Basic resarch laboratories, Japan.

Silicon photonic crystal nanocavities were mono-

lithically integrated to construct multi-channel

all-optical switches. Successful operation of 25

resonant channels was demonstrated with a length

of only 200 μm and an energy consumption in the

Wavelength-Addressable Multi-Bit Optical

Memory Based on a Large-Scale Array of

Photonic Crystal Nanocavities, Eiichi Kura-

mochi^{1,2}, Akihiko Shinya^{1,2}, Kengo Nozaki^{1,2},

Hideaki Taniyama^{1,2}, Koji Takeda^{1,3}, Hisashi Sumikura^{1,2}, Tomonari Sato^{1,3}, Shinji Matsuo^{1,3}, Masaya Notomi^{1,2}; ¹NTT Nanophotonics Center,

NTT Corporation, Japan; ²NTT Basic Research

Laboratories, NTT Ĉorporation, Japan; ³NTT

Photonics Laboratories, NTT Corporation, Japan.

Multi-bit optical memories based on a monolithic

128-channel array of photonic crystal nanocavities

on a Si chip and a 32-channel array of nanocavities

with a built-in buried heterostructure on an InP

Presider: Hong Nguyen;

Executive Ballroom 210F

CLEO: Science & Innovations

16:00-17:45 CM4G • OTDM Technologies

Presider: Michael Dennis; Johns Hopkins University, United States

CM4G.1 • 16:00 Invited

Rapid Eye Diagram Generation of a 640 Gb/s OTDM Signal Using a Time Lens, Reza Salem¹, Noam Ophir², Xiaoliang Zhu², Keren Bergman²; ¹Picoluz, USA; ²Department of Electrical Engineering, Columbia University, USA. We demonstrate for the first time, the application of a time-lens based temporal magnifier for the generation of 640-Gbaud time-division multiplexed eye diagrams. The experiments use a standard digital communication analyzer with a 10.7-GHz receiver.

210E

Executive Ballroom

16:00-18:00 CM4H • Applications of Laser Processing

Presider: Craig Arnold; Princeton University, United States

CM4H.1 • 16:00

The Role of Surface Plasmon Polariton Excitation in Laser Induced Periodic Structure Formation After Single-Shot Ultrafast Irradiation of Au Microstructures, Ryan Murphy¹, Ben Torralva², David Adams³, Steven M. Yalisove⁴; ¹Applied Physics Program, University of Michigan, USA; ²Atmospheric, Oceanic & Space Sciences, University of Michigan, USA; ³Sandia National Labo-ratories, USA; ⁴Materials Science and Engineering, University of Michigan, USA. Single-shot ultrafast irradiation of Au microstructures on Si substrates forms Laser Induced Periodic Structures (LIPS) on Si surfaces near features. Surface plasmon polariton excitation influences LIPS formation for certain polarization vector orientations with edges.

CM4H.2 • 16:15

In-Situ Local Temperature Measurement During Three-Dimensional Direct Laser Writing, Jonathan Mueller¹, Joachim Fischer², Yatin J. Mange³, Thomas Nann³, Martin Wegener^{1,2}; ¹Institute of Applied Physics and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Tech-nology, Germany; ²Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Germany; ³Ian Wark Research Institute, University of South Australia, Australia. We present an approach to measure in situ the local temperature increase in the exposed volume during three-dimensional direct laser writing. The method is based on the detection of the luminescence of NaYF4:Yb3+/Er3+ codoped nanocrystals.

CM4H.3 • 16:30 Invited

Image-guided ultrafast laser scalpel for precise and minimally invasive surgery, Adela Ben-Yakar¹; ¹University of Texas at Austin, USA. Ultrafast laser microsurgery will be the preferred laser scalpel of surgeons in the future as they enable the most precise cutting tool. Towards enabling its clinical use, we are developing flexible fiber-coupled, MEMS-based microscopes with nonlinear imaging.

CM4F.3 • 16:30

chip are demonstrated.

Phase-resolved soliton dynamics in silicon photonic crystals, Chad A. Husko¹, Daniel Eades¹, Andrea B. Redondo^{13,4}, Yanbing Zhang¹, Juntao Li², Thomas Krauss², Benjamin J. Eggleton¹; ¹Physics, University of Sydney, Australia; ²Physics, University of St. Andrews, United Kingdom; ³ICT-European Software Institute Division, Tecnalia, Parque Tecnologico de Bizkaia, Spain; ⁴Dpto. Electronica y Telecom, E.T.S. Ingenieria de Bilbao, Spain. We report the first phase-resolved measurements of nonlinear pulse propagation in silicon photonic devices. These demonstrations indicate soliton like behavior, despite the presence of two-photon absorption (TPA) and free-carriers impacting the dynamics at 1.55 microns.

CM4G.2 • 16:30

40-Gbit/s RZ-BPSK and reused RZ-OOK bidirectional transmission with a self-pulsated modulator, Huai-Yung Wang¹, Yu-Chieh Chi¹, Gong-Ru Lin¹; ¹National Taiwan University, Taiwan. 40-Gbit/s down-stream RZ-BPSK and upstream reused RZ-OOK bi-directional transmis sion is demonstrated by a self-started RZ pulsed carrier with 10-ps pulsewidth and 7-dB extinction ratio from a nonlinearly biased intensity modulator based self-feedback loop

10 June

Meeting Room 211D-B

CLEO: Science & Innovations

16:00-18:00

Technology

Presider: TBA

CM4J.1 • 16:00

ing in filamentation.

CM4J.2 • 16:15

and terahertz pulse.

CM4J • Nonlinear THz

Meeting Room

212A-C

Terahertz Energy Scaling and Saturation in

Two-Color Laser Filamentation, Taek Il Oh¹,

Yongsing You¹, Nihal Jhajj¹, Eric Rosenthal¹, Howard Milchberg¹, Ki-Yong Kim¹; ¹Institute

for Research in Electronics and Applied Physics,

University of Maryland, USA. We study broadband

terahertz generation via two-color femtosecond

laser filamentation with laser input energy up to 60 mJ. We find that the output THz energy strongly

saturates due to ionization-induced laser defocus

Elliptically Polarized Terahertz Generation

in Two-color Laser Filamentation, Yongsing

You¹, Taek Il Oh¹, Ki-Yong Kim¹; ¹University of Maryland, USA. We observe terahertz polarization

evolves from linear to elliptical with increasing

plasma length. This ellipticity arises from suc-

cessive polarization rotation of local THz plasma

sources and the velocity mismatch between laser

16:00-18:00 CM4I • Short Wavelength Fiber Lasers and Effects Presider: John Minelly; Coherent

Inc, United States

CM4I.1 • 16:00

20 W cladding-pumped Nd3+-doped fiber laser at 910nm, Mathieu Laroche¹, Benoit Cadier², Hervé Gilles¹, Sylvain Girard¹, Laurent Lablonde², Thierry Robin²; ¹CIMAP, France; ²IXFIBER, France. We report a Nd3+-doped double-clad fiber laser with a record output power of 20 W at 910nm. A laser conversion efficiency as high as 44% was achieved in CW operating mode.

CM4I.2 • 16:15

Generation of 55 W infrared and 35 W green power from a picosecond rod fiber amplifier, Zhi Zhao¹, Bruce Dunham¹, Frank W. Wise¹; ¹Cornell University, USA. A Yb rod amplifier that generates 2.7 ps pulses with 55 W power at 50 MHz repetition rate is reported. Amplified pulses exhibit minimal spectral distortion and high beam quality. Frequency-doubling yields 35 W green power.

CM4I.3 • 16:30

Ultraviolet frequency comb generation by frequency quadrupling a high-power fiber amplifier, Kangwen Yang¹, Wenxue Li¹, Shen Xuling¹, Dongbi Bai¹, Jian Zhao¹, Min Yan¹, Zeng Heping¹; ¹East China Normal University, China. We obtained an ultraviolet frequency comb of 1.58 W in average power by frequency quadrupling a high-power large-mode-area fiber chirped-pulse amplifier at 1032 nm, whose carrier envelope phase was stabilized down to a linewidth of 2.42 mHz via feedback control on the Ti:S seed oscillator

CM4J.3 • 16:30

Broadband THz detection in the counterpropagating configuration using THz-enhanced plasma fluorescence, Khan Lim¹, Magali Durand¹, Xuan Sun², Fabrizio Buccheri², Matthew Weidman¹, Bruno Bousquet^{3,4}, Matthieu Baudelet¹, Xi-Cheng Zhang², Martin Richardson¹; ¹Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, USA; ²Institute of Optics, University of Rochester, USA; ³LOMA, University of Bordeaux 1, UMR5798, France; ⁴LOMA, CNRS, UMR5798, France. Terahertz-Radiation Enhanced Emission of Fluorescence (THz-REEF) was studied in the counter-propagating configuration as a more accurate representation of stand-off THz sensing scenarios. Determination of the THz amplitude and phase using this technique was successfully demonstrated.

Meeting Room 212D-B

JOINT

16:00-18:00 JM4K • Symposium on Mid-

infrared Lasers: Mid-infrared Laser Sources II Presider: Jens Biegert; ICFO - The Institute of Photonic Sciences,

Spain

JM4K.1 • 16:00

Multi-Wavelength QCL Based MIR Spectroscopy for Fluids and Gases, Pierre Jouy Yargo Bonetti², Kerstin Hans¹, Michele Gianella¹, Markus Sigrist¹, Markus Mangold³, Bela Tuzson³ Lukas Emmenegger³, Philip Waegli⁴, Alexandra Homsy4, Yu-Chi Chang5, Joab Difrancesco5, Lubos Hvozdara⁵, Hans-Peter Herzig⁵, Herbert Looser⁶, Daniel Hofstetter⁷, Jérôme Faist¹; ¹ETH Zurich, IQE, Switzerland; ²ETH Zurich, FIRST-lab, Switzerland; ³EMPA, Switzerland; ⁴EPFL, Samlab, Switzerland; ⁵EPFL, OPT laboratory, Switzerland; ⁶FHNW, Switzerland; ⁷UniNE, Laboratoire temps-fréquence, Switzerland. We demonstrate multi-color DFB QCLs with separated electrical pumping for independent single-mode emis several wavelengths from the same ridge. This will be implemented in our Mid-infrared spectroscopy sensors for gases (CO2) and liquids (cocaine).

JM4K.2 • 16:15 Invited Fe-doped II-VI Mid-infrared Laser Materials for the 3 to 8 µm Region, Vladimir Fedorov^{1,2} Dmitri Martyshkin^{1,2}, Mikhail Mirov², Igor S. Moskalev², Sergey Vasilyev², Jeremy Peppers¹, Sergey B. Mirov^{1,2}, Valentin P. Gapontsev^{1,2}; ¹Physics, Univ. of Alabama at Birmingham, USA; ²Mid-IR Lasers, IPG Photonics Corp, USA. We report on recent progress in development of new gain media for tunable (3-8 µm) mid-IR lasers as well as Fe:ZnS/Se lasers operating in CW (>1.5W), gain-switched (>1 mJ@7ns@1kHz) and long-pulse (>0.5 J@200µs) regimes

Marriott San Jose Salon I & II

CLEO: QELS-**Fundamental Science**

16:00-18:00

QM4L • Quantum Detectors **D** Presider: Hiroki Takesue; NTT Basic Research Laboratories, Japan

QM4L.1 • 16:00 D

High quantum efficiency photon-numberresolving detector for photonic on-chip information processing, Brice Calkins¹, Paolo L. Mennea³, Adriana E. Lita¹, Benjamin J. Metcalf², W. Steven Kolthammer², Antia Lamas-Linares¹, Justin B. Spring², Peter C. Humphreys², Richard P. Mirin¹, James C. Gates³, Peter Smith³, Ian A. Walmsley², Gerrits Thomas¹, Sae Woo Nam¹; ¹National Inst of Standards & Technology, USA; ²Clarendon Laboratory, University of Oxford, United Kingdom; ³Optoelectronics Research Centre, University of Southampton, United Kingdom. We demonstrate a high-efficiency, photon-number resolving transition edge sensor, integrated on an optical waveguide structure. The detector provides a system detection efficiency of up to 93% for single photons at a wavelength of 1551.9 nm.

QM4L.2 • 16:15 D

Near-Infrared Characterization of ENABLE Grown Superconducting Nanowire Single Photon Detectors, Richard L. Sandberg¹, Nina R. Weisse-Bernstein¹, Mark P. Croce¹, Todd L. Williamson¹, Mark A. Hoffbauer¹, Terry G. Holesinger¹, Michael W. Rabin¹; ¹Los Alamos Na*tional Laboratory, USA.* We characterize the near-infrared response of superconducting nanowire single photon detectors grown with the Energetic Neutral Atom Beam Lithography&Epitaxy technique. These SNSPDs show single photon sensitivity, MHz count rate, low timing-jitter, and detection efficiency ~10-3.

۲

QM4L.3 • 16:30 D

High-speed photon-number-resolved detection with sinusoidally gated multipixel photon Counters, Yan Liang¹, Min Ren¹, E. Wu¹, Guang Wu¹, Zeng Heping^{1,2}, ¹State Key Laboratory of Precision Spectroscopy, East China Normal Uni-versity, China; ⁵School of Optical-Electrical and Control of Con Computer Engineering, University of Shanghai for Science and Technology, China. We demonstrated photon-number resolved detection with sinusoidally gated multipixel photon counter operated at room temperature. Sinusoidal gating minimized the capacitive response noise and improved the photon-number-resolving performance at high repetition rate up to 200 MHz.

$(\mathbf{\Phi})$

Monday, <u>1</u>0 June

Marriott San Jose Salon III

CLEO: Applications & Technology

16:00-18:00 AM4M • Symposium on Lab-ona-Chip Applications: Lab on Chip II • Presider: Chris Myatt; Mbio

Diagnostics, USA

AM4M.1 • 16:00 Invited O From Lab-on-a-Chip to Lab-in-the Body, Miniaturization of Diagnostic Tools, Axel Scherer', 'California Institute of Technology, USA. Optical molecular-diagnostic tools are rapidly shrinking, enabling miniature systems that can be used to continuously monitor health in the body. We describe our work on integrated photonic systems for this purpose. Marriott San Jose Salon IV

 (\blacklozenge)

Marriott San Jose Salon V & VI

CLEO: Science & Innovations

16:00–18:00 CM4N • Long Distance Ranging and Frequency Transfer **O** *Presider: Ian Coddington, NIST,*

16:00–18:00 CM40 • Micro-sensors **C**

Presider: Christian Pflügl; EOS Photonics, United States

CM4N.1 • 16:00 Invited

USA

Optical Frequency Transfer over a single-span 1840 km Fiber Link, Stefan Droste¹, Katharina Predehl¹, Theodor W. Hänsch¹, Thomas Udem¹, Ronald Holzwarth¹, Sebastian Raupach², Filip Ozimek², Harald Schnatz², Gesine Grosche²; ¹Max-Planck-Institut fur Quantenoptik, Germany; ²Physikalisch-Technische Bundesanstalt, Germany; Optical frequency transfer via a 1840 km fiber link has been investigated. Twenty fiber amplifiers and two fiber Brillouin amplifiers are needed to compensate for 420 dB of loss. Active noise compensation reduces the instability to 2.7 x 10^-15 at 1 s with 4 x 10^-19 after 100 s.

CM40.1 • 16:00

Photonic temperature sensor based on microring resonators, Haitan Xu¹², Mohammad Hafezi¹², Jingyun Fan¹², Alan Migdall²¹, Gregory Strouse², Zeeshan Ahmed², Jacob Taylor^{2,1}; ¹JQI, University of Maryland-College Park, USA; ²National Institute of Standards and Technology, USA. We present an experimental analysis on photonic temperature sensor based on microring resonators, and we show that the sensitivity can be better than 40µK, which is limited by the noise of instrument in use.

CM40.2 • 16:15

Torsion-Free Photonic Crystal Pressure Sensor Array Using Novel Piston-type Resonator Array, Daquan Yang^{1,2}, Huiping Tian^{1,3}, Nannan Wu¹, Yi Yang¹, Yuefeng Ji¹, 'School of information and communication Engineering, Beijing University of Posts and Telecommunications, China; 'School of Engineering and Applied Sciences, Harvard University, USA; 'Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, China. We demonstrate a novel nanoscale torsion-free photonic crystal pressure sensor array. The proposed sensor array consists of piston-type resonator array side-coupled to photonic crystal waveguide. The pressure sensitivity as high as 0.50nm/nN is observed.

AM4M.2 • 16:30 Invited Where the Road - Clinical Diagnostic Testing and New Technology, Valerie Ng; 'Alameda County Medical Center/HGH, USA. Diagnostic test devices using new and emerging technologies must meet regulatory standards for clinical use. I will discuss these regulatory requirements emphasizing how test device manufacturers can meet the needs of the clinical laboratory.

CM4N.2 • 16:30 D

1.2-km Timing-Stabilized, Polarization-Maintaining Fiber Link with Sub-Femtosecond Residual Timing Jitter, Michael Y. Peng¹, Patrick T. Callahan¹, Amir H. Nejadmalayeri¹, Ming Xin², E. Monberg³, Man Yan³, Lars Grüner-Nielsen¹, John M. Fini³, Franz X. Kärtner^{1–2}, ¹Massachusetts Institute of Technology, USA; ²Deutsches Elektronen-Synchrotron and University of Hamburg, Germany; ³OFS Laboratories, USA; ⁴OFS, Denmark. A 1.2-km timing-stabilized, polarization-maintaining fiber link based on balanced optical cross-correlation was demonstrated with ~0.9 fs RMS timing jitter over 16 days and ~0.2 fs RMS timing jitter

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 83

۲

см40.3 • 16:30 🜔

Enhanced fluorescence emission using a photonic crystal coupled to an optical cavity, Anusha Pokhriyal¹, Meng Lu², Vikram Chaudhery², Sherine George³, Brian T. Cunningham^{23, 1}Physics, University of Illinois at Urbana Champaign, USA; Electrical and Computer Engineering, University of Illinois at Urbana Champaign, USA; Bioengineering, University of Illinois at Urbana Champaign, USA. Fluorophores are excited on PC surface that is coupled to underlying Fabry-Perot cavity through a reflector beneath the PC leading to 6× increase in SNR of a dye labeled polypeptide compared to ordinary PCEF. ۲

(

Executive Ballroom 210A

Executive Ballroom 210B

CLEO: QELS-Fundamental Science

QM4A • Optics of Metasurfaces—Continued

QM4A.4 • 16:45

Plasmonic Metasurface Based Ultra-thin Phase Holograms and Planar Micro-lenses, Xingjie Ni1, Alexander Kildishev1, Satoshi Ishii1, Vladimir M. Shalaev¹; ¹School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, USA. We experimentally demonstrate a phase hologram generated at a visible wavelength by a plasmonic metasurface consisting of Babinet-inverted nano-antennas perforated on a 30-nm-thick gold film. Micrometer-sized planar lenses are made with the same technique.

OM4A.5 • 17:00

lav. 10 June

 $(\mathbf{\Phi})$

Broadband Optical Chirality Using Ultrathin Metasurface, Amr Shaltout¹, Jingjing Liu¹, Alex-ander Kildishev¹, Vladimir M. Shalaev¹, ¹Electrical and Computer Engineering, Purdue University, USA. A metasurface layer of $\lambda/50$ thickness is developed to produce the optical rotation effect of chiral media through the use of a plasmonic nano-antenna array that generates a phase-shift between helical components of incident light.

OM4A.6 • 17:15

Spinoptical Metamaterials: Symmetry Violation Route to Spin-Based Photonics, Nir Shitrit¹, Igor Yulevich¹, Elhanan Maguid¹, Dror Ozeri¹, Dekel Veksler¹, Vladimir Kleiner¹, Erez Hasman¹; ¹Technion Israel Institute of Technology, Israel. We report on spinoptical metamaterials manifested by spin-controlled optical modes, where the inversion symmetry is violated. The metasurface symmetry properties design via nanoantennas is a starting point for spin-based nanophotonic applications.

OM4A.7 • 17:30

Selective Broadband Generation of Orbital Angular Momentum Carrying Vector Beams Using Metamaterials, Zhe Zhao¹, Jian Wang¹, Shuhui Li1, Alan E. Willner2; 1Wuhan Nationa Laboratory for Optoelectronics, Huazhong Uni of Sci & Tech, China; ²Department of Electrical Engineering, University of Southern California, Los Angeles, USA. We design metamaterials to generate orbital angular momentum (OAM) carrying vector beams. Using a 11.2×11.2 μm device, we selectively generate broadband OAM-carrying vector beams from 1000 to 1550 nm. The device shows good fabrication tolerance.

QM4B • Quantum Dots, Nanocrystals, & Impurities-Continued

QM4B.4 • 16:45

Type-tuning of quasi-type-II CdSe/CdS seeded core/shell nanorods: type-I vs. type-II, Ahmet Fatih Cihan^{1,2}, Yusuf Kelestemur², Burak Guzelturk^{1,2}, Hilmi Volkan Demir^{1,3}; ¹Electrical and Electronics Engineering, Bilkent University, Turkey; ²UNAM Institute of Materials Science and Nanotechnology, Bilkent University, Turkey; ³School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, Nanyang Tech-nological University, Singapore. We present tuning of quasi-type-II CdSe/CdS core/shell nanorods between type-I-like and type-II-like behavior in their amplified spontaneous emission pumped by 2-photon excitation, with the type attributions verified by time-resolved emission kinetics.

QM4B.5 • 17:00

OM4B.6 • 17:15

Enhanced exciton transfer from the cascaded bilayer of green- and red-emitting CdTe quantum dots into bulk silicon, Aydan Yeltik¹, Burak Guzelturk¹, Hilmi Volkan Demir^{1,2}; ¹Bilkent University, Turkey; ²Nanyang Technological University, Singapore. We show enhanced transfer of excitons from the energy-gradient of bilayered green-/redemitting quantum dots into silicon using cascaded nonradiative energy with an overall enhancement factor of 1.3 at room temperature for solar cell sensitization.

Lifetime measurements and blinking statistics of nonradiative energy transfer from single halide-terminated nanocrystals onto graphene, Obafunso Ajayi¹, Chee Wei Wong¹, Nicholas C. Anderson², Mircea Cotlet³, Jonathan S. Owen², Nicholas Petrone¹, James Hone¹; ¹Mechanical Engineering, Columbia University, USA; ²Chemistry, Columbia University, USA; ³Center for Functional Nanomaterials, Brookhaven National Laboratory, USA. Time-resolved Förster energy transfer from single halide-terminated nanocrystals with n-butylamine ligands (0.6 nm) onto two-dimensional graphene is measured with time-correlated single-photon counting. Remarkable 4× reduction in spontaneous emission is observed (237 MHz) and modified LDOS.

QM4B.7 • 17:30

Pulse Shaping and Break-Up by Quantum-Coherent Effects in Quantum-Dot Amplifiers at Room Temperature, Benjamin Lingnau¹, Julian Korn¹, Éckehard Schöll¹, Kathy Lüdge¹, Mirco Kolarczik², Nina Owschimikow², Yücel I. Kaptan², Ulrike Woggon²; ¹Institut f. Theor. Physik, Technische Universität Berlin, Germany; ²Institut f. Optik u. Atomare Physik, Technische Universität Berlin, Germany. We show the occurrence of Rabi oscillation induced pulse shaping and break-up in a 1.3µm wavelength semiconductor quantum-dot optical amplifiers at room temperature in numerical simulations and experimental results.

OM4C.5 • 17:00 Weak measurement of the Goos-Hänchen shift,

geometry

Gaurav Jayaswal¹, Giampaolo Mistura¹, Michele Merano¹; ¹Department of Physics and Astronomy "G. Galilei", University of Padova, Italy. It is well known from quantum physics that weak measurements offers a platform of amplifying and detecting very small signals. In this letter, we present the first experimental observation of the

Executive Ballroom

210C

QM4C • Hybrid Plasmonics &

Plasmon Drag Effect in Metal Nanostructures,

Natalia Noginova¹, Vincent Rono¹, Brittany Bates¹,

Joshua D. Caldwell²; ¹Norfolk State University, USA;

2Naval Research Lab, USA. A dramatic enhance-

ment of the photon drag effect was observed

in nanostructured gold and silver at localized

plasmon resonance conditions. We demonstrated

a possibility to control the effect with nanoscale

Novel Effects—Continued

QM4C.4 • 16:45

OM4C.6 • 17:15

OM4C.7 • 17:30

Integrated SPP-Dielectric Hybrid Coupler Based Sensor For Ultra-thin Layer Detection, Boyu Fan¹, Fang Liu¹, Xiaoyan Wang¹, yunxiang Li¹, Yidong Huang¹; ¹electronic engineering, Tsinghua University, China. An integrated sensor utilizing short range surface plasmon polariton mode is proposed and realized, which demonstrates the sensitivity as high as 0.67dB/nm for ultra-thin layer detection

Executive Ballroom 210D

CLEO: Science & Innovations

CM4D • All Optical and Quantum Signal Processing—Continued

CM4D.3 • 16:45

Efficient Mid-infrared Imaging at Few-photon Level by Frequency Up-conversion, Qian Zhou¹, Kun Huang¹, Haifeng Pan¹, E. Wu¹, Zeng Heping¹; State Key Laboratory of Precision Spectroscopy, East China Normal University, China. We demon-strated few-photon-level Mid-infrared imaging at 3.39 µm by frequency up-conversion with conversion efficiency of 78.5%. The Mid-infrared image was spectrally up-converted into the near-infrared regime captured by a silicon electron multiplying charged coupled device.

CM4D.4 • 17:00

Compact 2D Nonlinear Photonic Crystal source of Beamlike Path Entangled Photons, Eli Megidish1, Assaf Halevy1, Hagai Eisenberg1 Ayelet Ganany-Padowicz2, Nili Habshoosh2, Ady Arie2; 1Racah Inst. of Physics, Hebrew University, Israel; ²School of Electrical Engineering, Tel Aviv University, Israel. We experimentally demonstrate a compact two-photon path entanglement source based on 2D nonlinear quasi phase matching technique. Photon pairs are directly generated into well defined and easy to collect non-collinear beamlike modes.

CM4D.5 • 17:15

Two-color switching and wavelength conversion at 10 GHz using a Photonic Crystal molecule, Sylvain Combrié¹, Gaëlle Lehoucq¹, Stefania Malaguti², Gaetano Bellanca², Johann-Peter Reithmaier3, Stefano Trillo2, Alfredo De Rossi1; 1Thales Research and Technology, France; ²Università di Ferrara, Italy; ³Universitat Kassel, Germany. We propose a two-colors all-optical gate based on two coupled single-mode Photonic Crystals. Real-time switching and wavelength conversion at a rate up to 10 GHz have been demonstrated.

CM4D.6 • 17:30

Phase-sensitive amplifier using a PPLN waveguide integrated with a high-power-tolerant phase locking modulator, Koji Enbutsu¹, Takeshi Umeki¹, Masaki Asobe¹, Hirokazu Takenouchi¹; Photonics Labs., NTT, Japan. We demonstrated a phase-sensitive amplifier by using a PPLN waveguide for pump generation and a monolithicallyintegrated phase modulator for a phase-locked loop. The high-power-resistance of the modulator enabled us to achieve an improved noise figure.

۲

Goos-Hänchen shift.

Plasmonic Silver Nanorod Sensitivity: Experiment and Simple Theoretical Treatment, Arpad Jakab¹, Carsten Soennichsen¹; ¹Institute of Physical Chemistry, University of Mainz, Germany. Comparing single-particle plasmonic sensitivity of silver and gold nanorods by monitoring the plasmon resonance shift upon changing the environment we report that silver nanoparticles have 1.2 to 2 times higher sensitivity than gold.

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QM4E • Nonlinear Imaging and Spatial and Temporal Effects— Continued

QM4E.4 • 16:45

A Telecom-Based Temporal Cloak, Joseph M. Lukens¹, Daniel E. Leaird¹, Andrew M. Weiner¹; ¹Electrical and Computer Engineering, Purdue University, USA. We demonstrate a new temporal cloak capable of hiding 46% of the entire time axis at a repetition rate of 12.7 GHz. Our results introduce temporal cloaking into the practical domain of secure optical communication.

QM4E.5 • 17:00

Restoration of Blurred Images Due to Phase Distortion Based on Polarization-Insensitive Phase Conjugation in Second-Order Nonlinear Medium: Novel Scheme, Xingguan Zou', Xiaomu Lin¹, Pu Zhao', Pengda Hong¹, Yujie J. Ding¹, Xia odong Mu², Huai-Chuan Lee², Stephanie K. Meissner³, Helmuth Meissmer²; 'Lehigh University, USA; ²Onyx Optics Inc., USA. Polarization-insensitive phase conjugation, achieved based on differencefrequency generation in a second-order nonlinear composite consisting of stacked KTP plates, was exploited to restore blurred images due to phase distortion as a novel scheme.

QM4E.6 • 17:15

Imaging cross-correlation FROG: retrieval of ultrashort, complex, spatiotemporal fields, Falk Eilenberger¹, Alexander Brown², Stefano Minardi¹, Thomas Kaiser¹, Thomas Pertsch¹; Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Germany; ²Institute of Photonics Technologies, Germany. We present an analysis method for the phase retrieval of ultrashort, spatiotemporal pulses. We combine the FROG concept with an imaging cross correlator and reach sub 10 fs temporal and sub 5 micron spatial resolution.

QM4E.7 • 17:30

Second harmonic generation for PW class lasers, Sergey Mironov¹, Efim A. Khazanov¹, Andrey Shaykin¹, Vladimir Lozhkarev¹, Vadim Tcheremiskine², Olivier Uteza², Marc Sentis², Vladislav Ginzburg¹, ¹Nonlinear dynamics and optics, Institute of Applied Physics RAS, Russian Federation; ²LP3, Aix Marseille Université, France. Energy conversion efficiency of the second harmonic generation in KDP under fs pulses with peak intensities of 1-5TW/cm2 is studied. Efficiency as high as 73% at 910nm and 50% at 800nm fundamental wavelength is demonstrated.

Executive Ballroom 210G

CM4F • Photonic Crystals—

Wide range O-factor control in a photonic

crystal nanobeam cavity incorporating quan-

tum dots, Ryuichi Ohta¹, Yasutomo Ota¹, Naoto

Kumagai¹, Satomi Ishida¹, Satoshi Iwamoto¹,

Yasuhiko Arakawa¹; ¹Institute of Industrial Science,

Institute of Nano Quantum Information Electronics,

University of Tokyo, Japan. We develop a Q-factor

controllable photonic crystal nanobeam cavity in-

corporating quantum dots. Wide Q-factor control from 3,500 to 14,000 is demonstrated by means of

Nonlinear Optics in (111)-GaAs Photonic Crys

tal Cavities, Marina Radulaski¹, Sonia Buckley¹,

Klaus Biermann², Jelena Vuckovic¹; ¹Ginzton

Laboratory, Stanford University, USA; ²Paul-

Drude-Institut für Festkörperelektronik, Germany.

We successfully perform second harmonic and

sum frequency generation in L3 and crossbeam

photonic crystal cavities fabricated in (111)-GaAs.

Reducing disorder-induced losses for slow-light

photonic crystal waveguides through Bloch mode engineering, Nishan S. Mann¹, Sylvain

Combrié², Alfredo De Rossi², Pierre Colman²,

Mark Patterson¹, Stephen Hughes¹; ¹Physics,

Queens University, Canada; ²Thales Research

and Technology, France. We present theory and

measurements of disorder-induced losses for

slow-light photonic crystal waveguides. Our

calculations and measurements explain how Bloch

mode engineering can substantially reduce losses

for the same slow-light group velocity regime.

MEMS, supplying bias from 0 to 18 V.

Continued

CM4F.4 • 16:45

CM4F.5 • 17:00

CM4F.6 • 17:15

Executive Ballroom 210F

CLEO: Science & Innovations

CM4G • OTDM Technologies— Continued

CM4G.3 • 16:45

Generation of Nyquist sinc pulses using intensity modulators, Marcelo A. Soto¹, Mehdi Alem¹, Mohammad Amin Shoaie², Armand Vedadi², Camille S. Brès², Luc Thévenaz¹, Thomas Schneider³, ¹Group for Fibre Optics (GFO), SCI-STI-LT, EPFL Swiss Federal Institute of Technology, Switzerland; ²Photonic Systems Laboratory (PHOSL), SCI-IEL, EPFL Swiss Federal Institute of Technology, Switzerland; ²Institut für Hochfrequenztechnik, Hochschule für Telekommunikation, Germany. Optical sincshaped Nyquist pulses are produced based on the generation of an ideal frequency comb using cascaded intensity modulators. Nyquist pulses with 9.8-ps temporal width, 82-fs jitter and more than 40 dB SNR are achieved.

CM4G.4 • 17:00

Optical Gaussian Pulse Generator Using Phase Modulator Based Spectral Slicing and Compression, Qiang Wang', Li Huo', Yanfei Xing', Caiyun Lou', Bingkun Zhou', '*Tsinghua University, China.* A 25-GHz 3-ps optical Gaussian pulse generator using phase modulators is experimentally demonstrated with wavelength tunability over C-band. Error-free 100-km transmission of 100-Gb/s OTDM signal is achieved with it.

CM4G.5 • 17:15

Enhanced All-LiNbO3 OTDM Demultiplexing Using a Diverging Time Lens, Yanfei Xing¹, Li Huo¹, Qiang Wang¹, Dong Wang¹, Caiyun Lou¹; ¹Tsinghua National Laboratory for Information Science and Technology and State Key Laboratory of Integrated Optoelectronics,, Tsinghua University, China. We propose to utilize a diverging time lens for LiNbO3 modulator based OTDM demultiplexing. Error-free detection is successfully demonstrated with 2.4-dB power penalty for all channels, 1.1 dB for the best channel.

CM4H.5 • 17:15 Direct Laser Writing With Variable Repetition Rate, Joachim Fischer¹, Jonathan Mueller², Johannes Kaschke²³, Martin Wegenerl²; ¹Institute of Nanotechnology, Karlsruhe Institute of Technology, Germany; ²Institute of Applied Physics, Karlsruhe Institute of Technology, Germany; ³DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Germany. We perform femtosecond direct laser writing at repetition rates between 1 kHz and 80 MHz. From the observed weak dependence of the threshold power on the repetition rate, we conclude that no fundamentally different structuring regimes exist.

Surface Plasmon Enhanced Luminescence Up-

Conversion, Dawei Lu¹, Yonghao Cui¹, Suehyun

30x enhancement in up-converted luminescence

Executive Ballroom

210E

CM4H • Applications of Laser

Processing—Continued

CM4H.4 • 17:00

intensity.

CM4F.7 • 17:30 Photonic Crystal Coupled Cavity Arrays for Quantum Simulation, Armand Rundquist¹, Arka Majumdar², Michal Bajcsy¹, Vaishno D. Dasika³, Seth Bank³, Jelena Vuckovic¹; ¹E. L. Ginzton Laboratory, Stanford University, USA; ²Department of Physics, University of California, Berkeley, USA; ³Microelectronics Research Center, University of Texas, Austin, USA. Through experimental study of an array of coupled photonic crystal cavities, we find that the intercavity coupling is significantly larger than the fabrication-induced disorder, a necessary condition for the generation of strongly correlated photons.

CM4G.6 • 17:30

Full 160-Gb/s OTDM to 16x10-Gb/s WDM conversion using a single nonlinear device, Keith G. Petrillo¹, Mark A. Foster¹; ¹Johns Hopkins University, USA. Using a temporal Fourier processor, we demonstrate full error-free demultiplexing of a 160-Gb/s OTDM signal with a single nonlinear interaction. Choice of the time-lens aperture is crucial to maximizing the overall system BER performance.

CM4H.6 • 17:30

Indirect lift-off of thin dielectric layers from silicon by femtosecond laser 'cold' ablation at the interface, Tino Rublack', Markus Muchow', Stefan Hartnauer', Gerhard Seifert'; 'Martin-Luther-Universität Halle-Wittenberg, Zentr, f. Innovationskompetenz SiLi-nano, Germany. Thin dielectric layers have been removed from silicon substrates using femtosecond laser pulses via evaporation of few nanometers Si at the interface. Slightly above threshold, this non-thermal ablation process leaves the opened area structurally undamaged.

Monday,

10 June

۲

2013CLEO Monday.indd 38

Cho¹, Loic Brun², Chris Summers², Won Park¹; ¹University of Colorado at Boulder, USA; ²Materials Science & Engineering, Georgia Institute of Technology, USA. We report enhanced up-conversion in NaYF4:Yb3+,Er3+ nanoparticles by surface plasmon. Simple grating and MIM grating structures were investigated to target the excitation processes. Photoluminescence spectroscopy showed up to

Meeting Room 211D-B

CLEO: Science & Innovations

CM41 • Short Wavelength Fiber Lasers and Effects—Continued

CM4I.4 • 16:45

High-power yellow and near-infrared lasers from cascaded four-wave mixing in nonlinear Yb-doped fiber amplifiers, Qiang Hao', Zeng Heping', 'Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, China. We demonstrated high-power yellow and near-infrared laser emissions by cascaded four-wave mixing in a nonlinear Yb-doped fiber amplifier, generating 0.3 W at 594 nm and 1.6 W at 825 nm of average power.

CM4I.5 • 17:00

dav. 10 June

 $(\mathbf{\Phi})$

Self-bleaching Phenomenon Observed in the Ce/ Yb Co-doped Silica Fiber, gui chen¹, Jinyan Li¹; ¹Wuhan National Laboratory for Optoelectronics, hust, China. We report on a self-bleaching phenomenon observed in the Ce Yb co-doped silica fiber. The excess loss of the Ce/Yb fiber reduces about 1.5 dB/m at 633 nm after the pump laser was turned off for an hour.

CM4I.6 • 17:15

Suppression mechanism by Ca additive of photodarkening effect in Yb-doped silica glass fiber, Yasushi Fujimoto', Sei-ichi Sugiyama', Motoichiro Murakami', Hitoshi Nakano', Tatsuhiro Sato', Hiroyuki Shiraga', 'Institute of Laser Engineering, Osaka University, Japan; 'Ecaulty of science and Engineering, Kinki University, Japan; 'Research and Application Laboratory, Shin-Etsu Quartz Products Co., Ltd., Japan. We found that Ca additive effectively suppresses the photo-darkening effect in Yb-doped silica fiber even at 6.0 wt% of high Yb2O3 concentration. Ca ion works as a stabilizer to maintain the Yb3+ valence state.

CM4I.7 • 17:30

High-Temperature-Resistant Distributed Bragg Reflector Fiber Laser Based on Thermally Regenerated Gratings, Rongzhang Chen¹, Aidong Yan¹, Mingshan Li¹, John Canning², Kevin Chen¹; ¹Electrical and Computer Engineering, University of Pittsburgh, USA; ¹Interdisciplinary Photonics Laboratories (*iPL*), University of Sydney, Australia. We report a high-temperature-resistant distributed Bragg reflector fiber laser using thermally regenerated gratings. The laser was characterized and tested to be capable of long-term lasing in high temperature environment up to 750°C.

CM4J • Nonlinear THz Technology—Continued

CM4J.4 • 16:45

Coherent Detection of Terahertz via Laser Induced Plasma with Controlled Optical Bias, Chia Yeh Li¹, Denis V. Seletskiy^{1,2}, Mansoor Sheik-Bahae¹; ¹Physics and Astronomy, University of New Mexico, USA; ²Physics and Center for Applied Photonics, University of Konstarz, Germany. Common air-breakdown coherent detection techniques rely on either large DC bias across plasma or second harmonic contribution from the supercontinuum to provide a local oscillator field. Here we report coherent detection by purposely injecting second harmonic.

Meeting Room

212A-C

CM4J.5 • 17:00

Counter-Propagating Difference Frequency Mixing in Diamond with Terahertz Waves, Matteo Clerici^{1,2}, Lucia Caspani¹, Eleonora Rubino^{1,3}, Marco Peccianti⁴, Marco Cassataro^{1,5}, Alessandro Busacca³, Tsuneyuki Ozaki¹, Daniele Faccio³, Roberto Morandotti¹, 'INRS-EMT, Canada; ²School of Engineering and Physical Sciences, Heriot-Watt University, United Kingdom; ³Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Italy; ⁴Institute for Complex Systems, CNR, Italy; ⁵DIEET, Università del Palermo, Italy; We investigate four-wave mixing between terahertz and optical pulses in diamond. We observe the occurrence of sum and difference frequency generation, with the latter being phase-matched for terahertz pulses counter-propagating to the optical field.

CM4J.6 • 17:15

Metamaterial-Enhanced Nonlinear Responses in Semiconductors as a THz Detection Platform, Harold Y. Hwang^{1,2}, Kebin Fan², Aaron Sternbach², Xin Zhang², Richard D. Averitt³, Keith A. Nelson¹; ¹Massachusetts Institute of Technology, USA; ²Boston University, USA. We present recent work utilizing terahertz field enhancement in metamaterial structures to drive carrier generation in semiconductors. We implement this as a novel platform to detect terahertz radiation.

CM4J.7 • 17:30

Towards Nonlinear Terahertz Metamaterials, Ibraheem Al-Naib¹, Gargi Sharma¹, Marc M. Dignam², Hassan Hafez¹, Akram Ibrahim¹, David G. Cooke³, Tsuneyuki Ozaki¹, Roberto Morandotti¹; ¹INRS-EMT, Canada; ²Department of Physics, Queen's University, Canada, ³Department of Physics, McGill University, Canada. We demonstrate nonlinear effects induced by an intense terahertz field on the transmission response of metamaterial structures fabricated on a silicon wafer, as well as ultrafast modulation in the terahertz response of our samples.

Meeting Room 212D-B

JOINT

JM4K • Symposium on Midinfrared Lasers: Mid-infrared Laser Sources II—Continued

JM4K.3 • 16:45

High-power, 100-Hz HgGa2S4 OPO pumped at 1064 nm, Aleksey Tyazhev¹, Georgi Marchev¹, Valeriy Badikov², Adolfo Esteban-Martin^{1,3}, Dmitrii Badikov², Vladimir Panyutin¹, Galina Sheyrdyaeva², Svetlana Sheina², Anna Fintisova², Valentin Petrov¹; *Max Born Institute, Germany*; 'High *Technologies Laboratory, Kuban State University, Russian Federation*; ³ICFO, Spain. HgGa2S4 is employed in a 1064-nm pumped optical parametric oscillator, to generate ~5-ns long idler pulses near 4 µm with energies as high as 6.1 mJ and average power of 610 mW at 100 Hz.

JM4K.4 • 17:00

Mid-infrared chirped-pulse upconversion with four-wave difference frequency generation in gases, Takao Fuji', Yutaka Nomura', Yu-Ting Wang', Atsushi Yabushita', Chih-Wei Luo'; '*National Institutes of Natural Sciences, Japan; 'National Chiao Tung University, Taiwan.* Chirped-pulse upconversion of sub-single-cycle Mid-infrared pulses with gaseous media has been realized. Single-shot detection of Mid-infrared spectra from 250 to 5500 cm-1 with 5 cm-1 resolution was demonstrated.

JM4K.5 • 17:15

Recent Progress in Development Orientation-Patterned GaP for Next-Generation Frequency Conversion Devices, Vladimir Tassev¹, Michael Snure¹, Rita Petterson¹, Kenneth L. Schepler¹, Robert G. Bedford¹, James Matt Mann¹, Shiva Vangala^{1,2}, William Goodhue³, Angie Lin⁴, James S. Harris⁴, Martin Fejer⁴, Peter G. Schunemann⁵; ¹Sensors Directorate, Air Force Research Laboratory, USA; ²Solid State Scientific Corporation, USA; ³Photonics Center, University of Massachusetts, USA; ⁴Stanford University, USA; ⁵BAE Systems, Inc., USA. Progress in developing a cost effective technique for fabrication of orientation patterned GaP templates and a reliable technology for thick epitaxial growth on them is described. First 350 µm thick device quality OPGaP is produced.

JM4K.6 • 17:30 Invited

New Beam Engineered and Spectrally Engineered Mid-ir Quantum Cascade Lasers by Transverse and Longitudinal Mode Control, Federico Capasso¹; 'Harvard University, USA. The talk will focus on advances in high power single longitudinal/transverse mode master oscillator power amplifier (MOPA) QCIs and MOPA QCL arrays capable of broadband tuning, as well as on low-divergence high brightness plasmomic QCLs.

Marriott San Jose Salon I & II

CLEO: QELS-Fundamental Science

QM4L • Quantum Detectors— Continued

QM4L.4 • 16:45 🖸

Ultrabroadband, Direct Detection of Nonclassical Photon Statistics in Parametric Fluorescence at Telecom Wavelength, Kentaro Wakui', Yujiro Eto', Tetsufuni Yanagida¹², Hugo Benichi', Shuro Izumi¹², Kazuhiro Ema², Takayuki Numata³, Daiji Fukuda³, Masahide Sasaki', 'National Institute of Information and Communications Technology, Japan; 'Sophia University, Japan; 'National Institute of Advanced Industrial Science and Technology, Japan. Ultrabroadband photon-number-resolving detection is demonstrated for parametric fluorescence ranging over 150 nm in the telecom window, using a Ti transition edge sensor. Our results violate Klyshko's classical limit for even photon numbers.

QM4L.5 • 17:00 🖸

Ultra-low Noise Upconversion Single-Photon Detector in the Telecom Band, Guoliang Shentu¹, Jason S. Pelc², Xiao-Dong Wang³, Martin Fejer², Qiang Zhang¹, Jian-Wei Pan¹; 'Shanghai Branch, Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, China; 'E. L. Ginzton Laboratory, Stanford University, USA; 'College of Physics and Electronic Engineering, Northwest Normal University, China. We demonstrate upconversion single-photon detection for the 1550-nm band using a PPLN waveguide, long-wavelength pump, and narrowband filtering. We achievetotal-system detection efficiency of 30% with noise at the dark-count level of a silicon APD.

QM4L.6 • 17:15 D

Operating Temperature Dependence of QDOG-FET Single-Photon Detectors, Eric J. Gansen¹, Sean D. Harrington¹, John M. Nehls¹, Mary A. Rowe², Shelley M. Etzel², Sae Woo Nam², Richard P. Mirin², ¹Physics Department, University of Wisconsin-La Crosse, USA; ²National Institute of Standards and Technology, USA. To date, QDOG-FETs (quantum dot, optically gated, field-effect transistors) have only been shown to be singlephoton sensitive when cooled to 4 K. Here, we show that QDOGFETs can sense single photons at temperatures approaching 40 K.

QM4L.7 • 17:30 D

Tungsten Silicide Superconducting Nanowire Arrays for the Lunar Laser OCTL Terminal, Matthew Shaw', Jeffrey A. Stern', Kevin Birnbaum', Meera Srinivasan', Michael Cheng', Kevin Quirk', Abhijit Biswas', Francesco Marsili², Varun Verma², Richard P. Mirin², Sae Woo Nam², William Farr', '*Jet Propulsion Laboratory, USA*, '*Vational Institute of Standards and Technology, USA*. We have developed 12-pixel arrays of fiber-coupled tungsten silicide superconducting nanowire single photon detectors and performed end-to-end tests of a 39 Mbps pulse position modulation optical communication link with a software receiver.

Marriott San Jose Salon III

CLEO: Applications & Technology

AM4M • Symposium on Lab-ona-Chip Applications: Lab on Chip II—Continued Marriott San Jose Salon IV

 (\blacklozenge)

Marriott San Jose Salon V & VI

CLEO: Science & Innovations

CM4N • Long Distance Ranging and Frequency Transfer— Continued

CM4N.3 • 16:45 D

Stable Radio Frequency Delivery by Phase-Conjugation-Based Error Auto-Correction, Anxu Zhang', Feifei Yin', Yitang Dai', Kun Xu', Jianqiang Li', Jintong Lin'; 'State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, China. Without phase-locking loop or any tunable parts, stable radio frequency transfer is proposed by phase-conjugation-based, rapid and endless pre-correction at center station. Time jitter suppression ratio > 250 is demonstrated experimentally after 30-km link.

CM40 • Micro-sensors— Continued

CM40.4 • 16:45 Evanescent Field Absorption Spectroscopy of Trace Gases Using Functionalized Microring Resonators, Todd H. Stievater', Marcel W. Pruessner', Doewon Park', William S. Rabinovich', R. Andrew McGill', Scott A. Holmstrom', Jacob Khurgin³, 'US Naval Research Laboratory, USA; ²University of Tulsa, USA; ³Johns Hopkins University, USA. We detect trace gases at ppb levels using evanescent-field absorption spectroscopy in microring resonators coated with sorbent polymers. The overtone spectra derive from Mid-infrared resonances that provide a signature of analyte toxicity.

CM4N.4 • 17:00

Free-Space Optical Time-Frequency Transfer Over 2 km, William C. Swann¹, Fabrizio R. Giorgetta¹, Laura C. Sinclair¹, Esther Baumann¹, Ian Coddington¹, Nathan R. Newbury¹; ¹National Inst of Standards & Technology, USA. Precision free-space time-frequency transfer could advance fields where present microwave-based transfer is inadequate. We demonstrate an optical free-space link with femtosecond timing deviation and residual instability below 10-18 at 1000 seconds.

СМ40.5 • 17:00 🜔

Observation of Brillouin Dynamic Grating Reflection with Pump-Probe-Read Time-Division Generation Scheme, Tsuyoshi Matsumoto¹, Masato Kishi¹, Kazuo Hotate¹, ¹The University of Tokyo, Japan. Brillouin dynamic grating is observed by single laser diode. Laser frequency is modulated by injection current, whose waveform is synthesized so that the pump, probe, and read frequencies are appropriately generated in a time-division way.

AM4M.4 • 17:15 Invited

AM4M.3 • 17:00 D

and electronics, on-chip.

(

Optofluidic Electrical Manipulation of Indi-

vidual Biomolecules with nm-scale Precision,

Mohammad Soltani^{1,2}, Jun Lin¹, Summer Saraf¹,

Robert Forties1, Michal Lipson2, Michelle Wang1

¹Physics, Cornell University, USA; ²Electrical and

Computer Engineering, Cornell University, USA.

We design and demonstrate electrically controlled

optical trapping of individual microparticles and

manipulation of biomolecules with nm-scale pre-

cision for high throughput applications. This has been realized by integration of photonics, fluidics,

Second Generation Multiplexed Diagnostics with Silicon Photonics, Cary Gunn¹; 'Genalyte, USA. Silicon photonics ring resonators are developed and applied to medical diagnostics and pharmaceutical development. This talk addresses how these devices function and why their unique optical characteristics are bringing important change to your diagnostic future.

CM4N.5 • 17:15 An Optical Fiber Interferometer as a Frequency te, Reference for Space-based Laser Rangefinding, te: Terry McRae!. Silvie Noo?, Daniel Shaddock?

Terry McRae¹, Silvie Ngo², Daniel Shaddock², Magnus Hsu¹, Malcolm Gray¹; 'Physical Metrology, NMIA, Australia; ²Centre for Grravitational Physics, The Australian National University, Australia. We demonstrate a fiber interferometer that is a viable candidate for a laser frequency reference for future space based missions requiring a stability of 30 Hz/√Hz over a 10 mHz to 1 Hz bandwidth. CM40.6 • 17:15 Purcell Enhancement of Raman Scattering from Atmospheric Gases in a High-Finesse Microcavity, Benjamin Petrak¹, Nicholas Djeu², Andreas Muller¹; ¹Physics, University of South Florida, USA; ²MicroMaterials, Inc., USA. We report spontaneous emission enhancement of Raman scattering from CO2 and O2 gases in a ≈30 µm-long Fabry-Perot microcavity with a mode volume of 200 µm3 and a peak finesse of 50 000.

CM4N.6 • 17:30 Invited COMPASS - Towards Centimeter Positioning & Applications, Lijun Wang¹; ¹Tsinghua Univ.,

China. We describe the design of COMPASS and several key features that potentially enable it to reach very high precision in positioning, navigation, and time dissemination.

см40.7 • 17:30

Demonstration of Surface Enhanced Raman Scattering in Purely Dielectric Structures via Bloch Surface Waves, Marco Liscidini1, Stefano Pirotta¹, Xiaoji Xu², Aida Delfan³, Srinivasan Mysore2, Sudipta Maiti4, Giacomo Dacarro1, Mad dalena Patrini¹, Matteo Galli¹, Giorgio Guizzetti¹, Daniele Bajoni⁵, John E. Sipe³, Gilbert Walker²; ¹Physics, Università degli Studi di Pavia, Italy; ²Chemistry, University of Toronto, Canada; ³Physics, University of Toronto, Canada; 4Chemical Science, Tata Institute of Fundamental Research, India; ⁵Ingegneria Industriale, Università degli Studi di Pavia, Italy. We experimentally demonstrate surface-enhanced Raman scattering in fully dielectric structures supporting Bloch surface waves. These results suggest an alternative to plasmonic materials for enhancing the light-matter interaction at a surface with application in optical sensing.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 87

۲

2013CLEO Monday.indd 40

Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D **CLEO: QELS-Fundamental Science** QM4A • Optics of QM4B • Quantum Dots, QM4C • Hybrid Plasmonics & Metasurfaces—Continued Nanocrystals, & Impurities-**Novel Effects—Continued** Continued QM4B.8 • 17:45 QM4A.8 • 17:45 QM4C.8 • 17:45 CM4D.7 • 17:45 Asymmetric Ring/Disk Nanocavities on Con-ducting Substrates for Strong Fano-Interference, Dynamic Coherent Backscattering Mirror, Optimal Two-Oubit Ouantum Control in InAs Iosif Zeylikovich¹, Min Xu²; ¹Physics & Technol-Quantum Dots, Angela Gamouras¹, Reuble ogy, Bronx Community College, City University of Mathew¹, Sabine Freisem², Dennis G. Deppe², Arif E. Cetin¹, Hatice Altug¹; ¹Electrical and New York, USA; ²Physics Department, Fairfield Kimberley Hall¹; ¹Dalhousie University, Canada; Computer Engineering, Boston University, USA. ²University of Central Florida, USA. Simultaneous University, USA. The coherent backscatering We introduce a Fano resonant asymmetric ring/ disk cavity system employing a conducting layer underneath. Our system shows stronger local mirror (CBM) has some remarkable properties. control of exciton qubits in two distinguishable The dynamic CBM compensates and corrects InAs semiconductor quantum dots with emission automatically static and dynamic distortions ocwavelengths near 1.3 microns is demonstrated fields which are highly accessible to surrounding medium and sharper spectral features resulting in more reliable biodetection platforms. curring on the optical path of the incident beam through the development and application of with response time of few picoseconds. general femtosecond pulse shaping free-carrier absorption. 18:30–20:00 Dine and Discover Event, Off site

NOTES

۲

Monday, 10 June

۲

Executive Ballroom

CLEO: Science & Innovations

CM4D • All Optical and Quantum Signal Processing—Continued

Experimental Demonstration of Phase Sensitive Parametric Processes in a Nano-Engineered Silicon Waveguide, Ning Kang1, Ahmed Fadil1, Minhao Pu¹, Hua Ji¹, Hao Hu¹, Evarist Palushani¹, Dragana Vukovic¹, Jorge Seoane¹, Haiyan Ou¹, Karsten Rottwitt¹, Christophe Peucheret¹; ¹Danmarks Tekniske Universitet, Denmark. We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and

Executive Ballroom 210H	Executive Ballroom 210G	Executive Ballroom 210F	Executive Ballroom 210E
CLEO: QELS- Fundamental Science		CLEO: Science & Innovations	
QM4E • Nonlinear Imaging and Spatial and Temporal Effects— Continued	CM4F • Photonic Crystals— Continued	CM4G • OTDM Technologies— Continued	CM4H • Applications of Laser Processing—Continued
QM4E.8 • 17:45 Doservation of Collapse Arrest in Pure Kerr Media Sustained by a Parametric Interac- ion, Alessia Pasquazi ¹ , Marco Peccianti ² , Mat- eo Clerici ¹ , Calogero Buscemi ^{1,3} , Alessandro Busacca ³ , Roberto Morandotti ¹ , ¹ INRS-EMT, Canada; ² Istituto dei Sistemi Complessi, Consiglio Vazionale delle Ricerche, Italy; ² Dipartimento di ingegneria Elettrica, Elettronica e delle Telecomu- ticazioni (DIEET), Università di Palermo, Italy. Ne demonstrate a parametric interaction based on four wave mixing that can arrest the collapse und stabilize solitary propagation in a pure Kerr material by controlling the wavelength of the nteracting beams.	CM4F.8 • 17:45 The Analysis of Nano-Patterned Sapphire Substrates-Induced Compressive Strain to Enhance Quantum-Confined Stark Effect of InGaN-Based Light-Emitting Diodes, Po-Hsun Chen ¹ , Vincent Su ¹ , Yao-Hong You ¹ , Ming-Lun Lee ¹ , Cheng-Ju Hsieh ¹ , Chieh-Hsiung Kuan ¹ , Hung-Ming Chen ¹ , Han-Bo Yang ¹ , Hung-Chou Lin ¹ , Ray-Ming Lin ² , Fu-Chuan Chu ² , Gu-Yi Su ³ , 'National Taiwan University, Taiwan, ² Chang Gung University, Taiwan, 'National Chiao Tung University, Taiwan. This paper demonstrates that the quantum-confined stark effect of InGaN-based light-emitting diodes can be enhanced by the means of using the hexagonal nano-post patterned sapphire substrates based on the increase of the post-duty cycle.		CM4H.7 • 17:45 Anomalous Interaction of Longitudinal Electric Field with Hydrogenated Amorphous Silicon Films, Jingyu Zhang', Mindaugas Gecevičius ¹ , Martynas Beresna ¹ , Andrey G. Kazanskii ² , Peter G. Kazansky ¹ ; 'Optoelectronics Research Centre, University of Southampton, United Kingdom; 'Physics Department, M.V. Lomonosov Moscow State University, Russian Federation. Cylindrically polarized beams produced by femtosecond laser written S-waveplate are used to modify amorphous silicon films. Paradoxically, no crystallization is observed in the maximum of longitudinal electric field despite the strongest light intensity.
	18:30–20:00 Dine ar	nd Discover Event, Off site	
	N	DTES	

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 89

۲

Meeting Room 211D-B	Meeting Room 212A-C	Meeting Room 212D-B	Marriott San Jose Salon I & II
CLEO: S & Innov		JOINT	CLEO: QELS- Fundamental Science
CM41 • Short Wavelength Fiber Lasers and Effects—Continued	CM4J • Nonlinear THz Technology—Continued	JM4K • Symposium on Mid- infrared Lasers: Mid-infrared Laser Sources II—Continued	QM4L • Quantum Detectors— Continued
CM41.8 • 17:45 Wavelength and Pulse Width Tunable 1 μm Yb-doped Programmable Fiber Laser, Youngjae Kim ¹ , Andre Archambault', Alexandre Dupuis ¹ , Bryan Burgoyne ¹ , Guido Pena ¹ , Alain Villeneuve ¹ ; <i>¹Genia Photonics Inc., Canada.</i> We present a wavelength and pulse width agile programmable laser in the 1 μm region using Ytterbium-doped fiber amplifiers. Wavelengths and pulse widths are tuned independently from 1020 to 1080 nm and from 26 down to 4 ps after compression.	CM4J.8 • 17:45 Withdrawn		QM4L.8 • 17:45 A three-dimensional, polarization-insensitive superconducting nanowire avalanche photode- tector, Varun Verma ¹ , Francesco Marsili ¹ , Sean D. Harrington ¹ , Adriana E. Lita ¹ , Richard P. Mirin ¹ , Sae Woo Nam ¹ ; <i>National Inst of Standards & Tech- nology, USA.</i> We measure a peak system detection efficiency (SDE) of 87.7 ± 0.5 % and a polarization dependence of less than 2 % using vertically- stacked superconducting nanowire single-photon detectors connected electrically in parallel.

۲

18:30–20:00 Dine and Discover Event, Off site NOTES

Marriott San Jose	Marriott San Jose	Marriott San Jose
Salon III	Salon IV	Salon V & VI
CLEO: Applications	CLEO: Science	
& Technology	& Innovations	
AM4M • Symposium on Lab-on- a-Chip Applications: Lab on Chip II—Continued	CM4N • Long Distance Ranging and Frequency Transfer— Continued	CM40 • Micro-sensors— Continued
AM4M.5 • 17:45 High-Q Mid-infrared Chalcogenide Glass-On- Silicon Resonators for Spectroscopic Chemical Sensing, Hongtao Lin ⁴ , Lar Li ¹ , Yi Zou ⁴ , Sylvain Danto ³ , J. David Musgraves ² , Kathleen Richard- son ³ , Juejun Hu ¹ , 'Department of Materials Science & Engineering, University of Delaware, USA; 'Col- lege of Optics & Photonics, University of Central Florida, USA. We fabricated and characterized high-index-contrast As ₂ Se ₃ micro-disk resonators on silicon with a record loaded Q-factor of 10 ⁵ at 5:2 μm wavelength. On-chip chemical sensing using cavity-enhanced infrared spectroscopy was demonstrated using the micro-disk device.		CM40.8 • 17:45 O On the Performance and Sensitivity Limit of Mass Sensing with Optomechanical Oscilla- tion, Fenfei Liu ¹ , Seyedhamidreza Alaie ² , Yang Deng ¹ , Zayd Leseman ² , Mani Hossein-Zadeh ¹ ; ¹ Center for High Technology Materials, University of New Mexico, USA; ¹ Mechanical Engineering, University of New Mexico, USA. We characterize the mass sensing properties of microtoroidal optomechanical oscillator (OMO). We show a record sensitivity slope of 1300 Hz/pg and study the impact of mass distribution, mode selection and noise on mass sensitivity.

NOTES

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 91

()

Monday, 10 June