

QW1A • New Trends in Highharmonic Generation Presider: Giuseppe Sansone; *Politecnico di Milano, Italy*

OW1A.1 • 10:30

Control of Harmonic Generation from Relativistic Mirrors, SUBHENDU KAHALY¹, Sylvain Monchocé¹, Henri Vincenti¹, Brendan Dromey², Matthew Zepf2, Philippe Martin1, Fabien Quéré1; ¹Service des Photons, Atomes et Molécules,, Com-missariat a l'Energie Atomique, CEA, SACLAY, France; ²Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, United Kingdom. We demonstrate for the first time that fine varying of the density gradient of a plasma mirror along with laser spatial phase on target allows total control over the harmonic generation mechanisms and harmonic spatial properties

OW1A.2 • 10:45

High-harmonic generation from replenishing solid tapes, Brian Shaw^{1,2}, Jeroen van Tilborg¹, Thomas Sokollik¹, Carl B. Schroeder¹, Wim P. Leemans^{1,2}; ¹LOASIS Program, Lawrence Berkeley National Lab, USA; ²Applied Science and Technology, University of California, Berkeley, USA. High-harmonic generation from a replenishing tape surface allows for multi-Hz applications. Operating in the sub-relativistic Coherent Wake Emission (CWE) regime, we have experimentally investigated the spectrum, conversion efficiency, and divergence for several different tape materials.

Born Institute, Germany

CW1B • SHG and Parametric

Presider: Valentin Petrov; Max

CW1B.1 • 10:30

Devices

Dynamical Behavior of an Ultrafast OPO near Degeneracy, Stephen Wolf¹, Chris R. Phillips¹, Alireza Marandi¹, Konstantin Vodopyanov¹, Martin Fejer¹, Robert Byer¹; ¹Stanford University, USA. In an OPO near degeneracy, intensity and spectral oscillations at sub rep-rate frequencies are investigated numerically and verified experimentally. These oscillations are explained by the existence of two coherent frequency combs with different offset frequencies.

QW1C • Symposium on **Quantum Simulators: Quantum Simulators I** Presider: Stefan Kuhr; University of Strathclyde, Scotland, UK

QW1C.1 • 10:30 Invited

Exploring non-equilibrium many-body physics with alkaline earth atoms and molecules, Ana M. Rey¹; ¹University of Colorado at Boulder JILA, USA. I will describe our proposal of exploring quantum magnetism and rich non-equilibrium many-body phenomena in state of the art alkaline-earth atoms optical lattice clocks and in polar molecules in optical lattices experiments. Both are currently operated at temperatures above quantum degeneracy.

JW1D • Symposium on Advances in Extreme UV Science and Applications: Advances in Extreme UV Science and Applications II Presider: Patrick Naulleau; Lawrence Berkeley National Laboratory

JW1D.1 • 10:30 Invited

High power EUV LPP, Daniel J. Brown¹, Robert J. Rafac¹, Alexander Schafgans¹, Igor V. Fomen kov¹, David Myers¹, Alex I. Ershov¹, Richard L. Sandstrom¹, Georgiy O. Vaschenko¹, Palash Das¹, Wayne J. Dunstan¹, Daniel Riggs¹, Robert Bergstedt¹, Tao Yezheng¹; ¹Cymer, Inc., USA. Laser produced plasma (LPP) systems are the leading approach for extreme-ultra-violet (EUV) lithography of circuit features at sub-20nm nodes. This paper reviews technology and development progress for high-power sources optimized for EUV lithography.

CW1B.2	•	10:45
Dulco Cor		

on in a Synchronously Pumped Optical Parametric Oscillator with a Graphene Saturable Absorber, Cédric Laporte1, Jean-Baptiste Dherbecourt¹, Jean-Michel Melkonian¹, Myriam Raybaut¹, Cyril Drag², Antoine Godard¹; ONERA-The French Aerospace Lab, France; ²Laboratoire Aimé Cotton, CNRS-Université Paris Sud 11, France. We report on the first experimental demonstration of pulse length compression in a synchronously pumped optical parametric oscillator by use of an intracavity ultrafast graphene saturable absorber.

Thank you for attending CLEO: 2013. Look for your post-conference survey via email and let us know your thoughts on the program.

(

QW1E • Laser Filamentation Presider: Matteio Clerici, Heriott Watt, UK

OW1E.1 • 10:30

Nitrogen lasing in air, Arthur Dogariu¹, Richard B. Miles¹; ¹Princeton University, USA. We demonstrate lasing in atmospheric air from multi-photon dissociation of molecular nitrogen followed by resonant two-photon pumping of the atomic nitrogen fragments. The backwards stimulated emission provides a remote laser source for standoff detection

OW1E.2 • 10:45

Propagation Dynamics of Dressed Optical Filaments, Matthew Mills¹; ¹University of Central Florida, CREOL, USA. We demonstrate that the longevity of an optical filament can be drastically increased by prudently surrounding it with a low intensity annular wavefront. Here, we systematically study the dynamics and robustness of such dressed filaments.

CW1F.1 • 10:30

CW1F.2 • 10:45

Systems I

Presider: Vasily Astratov;

Charlotte, United States

University of North Carolina at

A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity, Xiankai Sun¹, Xufeng Zhang¹, Menno Poot¹, Chi Xiong¹, Hong X. Tang¹; ¹Yale University, USA. We develop an all-integrated optoelectromechanical system that operates up to 4.20 GHz. The inplane bulk acoustic modes of a photonic crystal membrane are electrocapacitively actuated and optically detected by a high-Q slotted photonic crystal cavity.

Electromagnetically induced transparency and

wavelength conversion in Si3N4 microdisk op-

tomechanical resonators, Yuxiang Liu12, Marcelo

Davanço^{1,3}, Vladimir Aksyuk¹, Kartik Srinivasan¹;

¹Center for Nanoscale Science and Technology,

National Inst of Standards & Technology, USA;

²Institute for Research in Electronics and Applied Physics, University of Maryland, USA; ³Department

of Applied Physics, California Institute of Technol-

ogy, USA. We demonstrate electromagnetically

induced transparency and wavelength conversion

between 980 nm and 1300 nm bands in Si3N4

microdisk optomechanical resonators, through

radiation pressure coupling of multiple high-Q

optical modes with a mechanical mode.

CW1G.1 • 10:30

CW1G.2 • 10:45

bombarded absorber.

of Illnois

Semiconductor Lasers

Presider: A. Coleman; University

Passive and Hybrid Mode-Locking From a Monolithic InGaN/GaN Laser Diode, Vojtech F. Olle¹, Adrian Wonfor¹, Luca Sulmoni², Peter P. Vasil'ev^{1,3}, Jean-Michel Lamy², Jean-Francois Carlin², Nicolas Grandjean², Richard Penty¹, Ian H. White1; 1University of Cambridge, United Kingdom; ²Ecole Polytechnique Fédérale de Lausanne, Switzerland; ³PN Lebedev Physical Institute, Russian Federation. We report 4ps and 8ps pulse generation from a two-section monolithic InGaN/GaN laser by hybrid and passive mode-locking, respectively. Pulse trains at a repetition rate of 28.6GHz and an emission wavelength of 422nm are generated

Femtosecond pulse generation in proton bom-

barded passively mode locked InAs quantum

dot lasers, Patrick Finch^{1,2}, Ian O'Driscoll^{1,2}

Peter Blood³, Peter M. Smowton³, Angela So-

biesierski3, Russell Gwilliam4; 17yndall National

Institute, Ireland; ²Centre for Advanced Photonics

and Process Analysis, Cork Institute of Technol-ogy, Ireland; ³School of Physics and Astronomy,

Cardiff University, United Kingdom; ⁴Advanced

Technology Institute, University of Surrey, United

Kingdom. Sub-picosecond optical pulses are

demonstrated in a two-section passively mode

locked InAs quantum dot laser structure using

a randomly populated distribution and a proton

CW1H.1 • 10:30

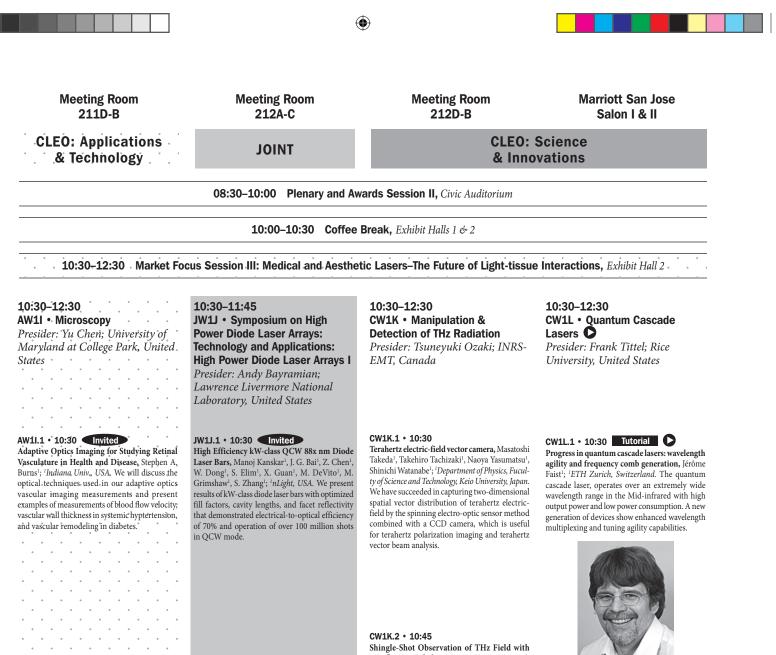
Measurement

Tech, USA

by Omega Oscillating Filtering (PROOF), Chi-Cheng Chen¹, Yi-Shiun Chen¹, Chen-Bin Huang¹, Shang-Da Yang¹; ¹Institute of Photonics Technologies, National Tsing Hua University, Taiwan. We proposed a non-iterative data inversion process for the PROOF method that could measure attosecond extreme ultraviolet pulses. Our experiments successfully retrieved the spectral phases of near infrared comb.

Non-iterative Data Inversion of Phase Retrieval

Presider: Rick Trebino, Georgia


CW1H.2 • 10:45

Sparsity-based super-resolution in instruments for diagnostics of short pulses, zohar Avnat¹, Pavel Sidorenko¹, Yoav Shechtman¹, Yonina C. Eldar¹, Mordechai Segev¹, Oren Cohen¹; ¹technion, Israel. We demonstrate experimentally algorithmic super-resolution for diagnostic of short pulses (amplitude and phase). Our approach is based on using the measured data for finding a mathematical basis in which the pulse is represented compactly.

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 135

iesday, 12 June

(

Papers are available online for download. Visit www.cleoconference.org and click on the Download **Digest Papers** button.

a Reflective Echelon Mirror, Yasuo Minami¹, Yusuke Hayashi¹, Jun Takeda¹, Ikufumi Katayama¹; ¹Yokohama National University, Japan. We demonstrated a simple scheme not only for terahertz (THz) generation with a grating-coupled LiNbO3 crystal, but also for single-shot detection of the generated THz field with a CMOS camera and a reflective echelon

Jérôme Faist was born in Switzerland and obtained his Ph.D. in Physics in 1989 from the Swiss Institute of Technology in Lausanne. He then worked successively at IBM Rueschlikon (89-91) and Bell Laboratories (91-97). He was nominated full professor in the physics institute of the University of Neuchâtel (1997) and then full professor in the ETH Zurich (2007). His key contribution to the development of the quantum cascade laser was recognized by a number of awards that include the IEEE/LEOS William Streifer Award for Scientific Achievement and National Swiss Latsis Prize 2002. His present interests include the development of Mid-infrared and terahertz quantum cascade lasers and frequency combs, the physics of strong light-matter coupling in metallic resonators and quantum dots intraband devices.

136

10:30–12:30 CW1M • Infrared Fiber Lasers D Presider: Peter Moulton, QPEAK Inc., USA

10:30–12:30 QW1N • Novel Nanooptical & **Plasmonic Fabrication** ● *Presider: Henri Lezec; National Inst of Standards & Technology, United States*

10:30–12:30 CW10 • Optical Materials and Devices I • Presider: Uriel Levy; Hebrew University of Jerusalem, Israel

10:30–12:30 QW1P • Symposium on Nanophotonics at the DOE/SC Nanoscale Science Research Centers: Active and Passive Optical Metamaterials *Brasider: Abul Acade Los Alama*

Presider: Abul Azad; Los Alamos National Laboratory, United States

QW1P.1 • 10:30 Invited

Ultrafast dynamics of nanorod-based plasmonic metamaterial and their excitonic hybrids, Gregory A. Wurtz¹, Gary Wiederrecht², Anatoly V. Zayats¹; ¹Physics, King² College London, United Kingdom; ²Center for Nanoscale Materials, Argonne National Laboratory, USA. We discuss the ultrafast dynamics and spectral response of plasmonic metamaterials and their excitonic hybrids.

CW1M.1 • 10:30 D

A monolithic cladding pumped holmium-doped fibre laser, Alexander Hemming¹, Nikita Simakov¹, Alan Davidson¹, Shayne Bennetts^{1,2}, Mark Hughes¹, Neil Carmody¹, Phil Davies¹, Leonardo Corena¹, Dmitrii Stepanov¹, John Haub¹, Robert Swain³, Adrian Carter⁴, ¹Defence Science and Technology Organisation, Australia; ²Department of Quantum Science, Australian National University, Australia; ³Sub-Micron Engineering, USA; ⁴Nufern Inc., USA. We present a single-mode, monolithic holmium-doped silica fibre laser through a fused fibre pump combiner. We report the highest achieved output power for a holmium laser of 407 W.

CW1M.2 • 10:45 D

Amplification of ns-pulses beyond 1 MW-peak power in Tm3+-doped photonic crystal fiber rod, Christian Gaida¹³, Martin Gebhardt¹³, Pankaj Kadwani¹, Lasse Leick², Jes Broeng², Lawrence Shah¹, Martin Richardson¹; *ICREOL, USA; ¹²NKT Photonics, Denmark; ³IAP, Germany.* We utilize thulium doped PCF rods for amplification of ns-pulses in MOPA configuration and achieve MW-level peak powers with sub 10 ns pulses at 2 µm. The utilization of end caps will enable multi MW peak powers. QW1N.1 • 10:30 Tutorial The Chemical Design of Plasmonic Building Blocks, Christopher B. Murray'i, 'Univ. of Pennsylvania, USA. Colloidal nanocrysals (NCs) of controlled crystal size, shape and structure provide ideal plasmonic/photonic building blocks. This talk will present the "current best practices" in preparation, isolation and characterization and organization of optically active NCs.

Professor Christopher B. Murray holds the Richard Perry University Professorship in Chemistry and Materials Science at the University of Pennsylvania in Philadelphia PA where is research focuses on the preparation, characterization and integration of nanomaterials. He received his B. Sc. degree with Honors in Chemistry from St. Mary's University in Halifax N. S., Canada (1988) and his PhD. in Chemistry from the Massachusetts Institute of Technology in 1995. Chris joined IBM Research from 1995 to 2006 staff scientist and Manager at IBM's T. J. Watson Research Center leading the "Nanoscale Materials & Devices" department. Chris is a pioneer in the synthesis, characteriza-tion and integration of nanostructured materials into photonic and electronic devices contributing more than 125 scholarly articles and 25 patents in this area

CW10.1 • 10:30 Tutorial

Plasmonic and Semiconductor Building Blocks for Nanophotonic Devices, Mark Brongersma¹; 'Stanford University, USA. I will discuss nanoscale optoelectronic devices composed of optically resonant semiconductor and metallic building blocks, including sources, modulators, and photodetectors

Mark Brongersma is an Associate Professor and Keck Faculty Scholar in the Department of Materials Science and Engineering at Stanford University. He leads a research team of ten students and three postdocs. Their research is directed towards the development and physical analysis of new materials and structures that find use in nanoscale electronic and photonic devices. He received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society. Dr. Brongersma received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology.

Vednesday, 12 Jur

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 137

_01

Executive Ballroom 210A

CLEO: QELS-Fundamental Science

QW1A • New Trends in High-harmonic Generation— Continued

QW1A.3 • 11:00 Invited

High-Order Harmonic Comb from Relativistic Electron Spikes, Alexander S. Pirozhkov¹, Masaki Kando¹, Timur Z. Esirkepov¹, Tatiana A. Pikuz^{1,2}, Anatoly Y. Faenov^{1,2}, Koichi Ogura¹, Yukio Hayas-hi¹, Hideyuki Kotaki¹, Eugene N. Ragozin^{3,4}, David Neely^{5,6}, Hiromitsu Kiriyama¹, Takuya Shimomura¹, Manabu Tanoue¹, Yoshiki Nakai¹, Masahiro Okamoto¹, Shuji Kondo¹, Shuhei Kanazawa¹, James K. Koga¹, Yuji Fukuda¹, Masaharu Nishikino¹, Takashi Imazono¹, Noboru Hasegawa¹, Tetsuya Kawachi¹, Hiroyuki Daido^{1,7}, Yoshiaki Kato⁸, Paul R. Bolton¹, Sergei V. Bulanov¹, Kiminori Kondo1; 1Advanced Beam Technology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Japan; ²Joint Institute for High Temperatures, Russian Academy of Sciences, Russian Federation; ³P. N. Lebedev Physical Institute, Russian Academy of Sciences, Russian Federation; ⁴Moscow Institute of Physics and Technology (State University), Russian Federation; ⁵Central Laser Facility, Rutherford Appleton Laboratory, STFC, United Kingdom; 6Department of Physics, SUPA, University of Strathclyde, United Kingdom;⁷Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, Japan; 8The Graduate School for the Creation of New Photonics Industries, Japan. We present the new regime of high-order harmonics generation by multi-TW femtosecond lasers irradiating gas jet targets. We describe new results concerning the off-axis XUV harmonics emission, angular distribution and source size.

QW1A.4 • 11:30

Wavelength scaling of high-harmonic generation efficiency close to the multiphoton ionization regime, Chien-Jen Lai¹, Giovanni Cirmi¹², Shu-Wei Huang¹, Eduardo Granados¹, Kyung-Han Hong¹, Jeffrey Moses¹, Phillip Keathley¹, Siddharth Bhardwaj¹, Franz X. Kaertner¹²; ¹Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA; ²Center for Free-Electron Laser Science, DESY and Department of Physics, Hamburg University, Germany. Our experiment shows a less dramatic wavelength scaling of high harmonic generation efficiency between the tunneling and the multiphoton ionization regimes, which can be explained by a modified three-step model with complex ionization time.

Executive Ballroom 210B

CLEO: Science & Innovations

CW1B • SHG and Parametric Devices—Continued

CW1B.3 • 11:00 Invited

Ultra-stable CW OPOs in the Visible, Fabien Bretenaker¹, Oussama Mhibik¹, David Paboeuf⁴, Cyril Drag¹; ¹Laboratoire Aime Cotton, France. We describe an intracavity doubled continuous wave singly resonant OPO (CW-SHG-SRO), exhibiting tunable operation between 585 and 678 nm. Its frequency is locked to better than 1 kHz over 1 s relatively to a cavity. Executive Ballroom 210C

CLEO: QELS-Fundamental Science

QW1C • Symposium on Quantum Simulators: Quantum Simulators I—Continued

QW1C.2 • 11:00 Invited

Photonic Quantum Simulators, Philip Walther¹; ¹Universitat Wien, Austria. In my talk I will review recent photonic quantum simulation experiments of frustrated Heisenberg- and XY-interacting spins as well as the sampling of bosons using integrated random walk structures.

Executive Ballroom 210D

JOINT

JW1D • Symposium on Advances in Extreme UV Science and Applications: Advances in Extreme UV Science and Applications II— Continued

JW1D.2 • 11:00

Laser-based plasma sources at 6.6 and 60 nm, Majid masnavi¹; ¹, USA. Potential high power laser-based xenon and terbium plasma sources are identified based on the reflectivity profiles of the available LaN/B4C, LaN/B, and Al/Yb/Sio multilayer mirrors for applications such as surface processing and semiconductor industry.

JW1D.3 • 11:15 Invited

Metrology Sources for EUV Lithography, Steve Home¹, Paul Blackborow¹, Matthew M. Bensen¹, Matthew J. Partlow¹, Deborah Gustafson¹, Michael Goldstein²; ¹Energetiq Technologies, Inc, USA; ²SEMANTECH, USA. Mask inspection and validation are key elements of the EUV lithography infrastructure. Requirements for the light sources to enable these tools will be introduced, and one source described in detail. As the field develops, enhanced sources will be required; two will be described.

CW1B.4 • 11:30

Conversion efficiency and green power of compact reverse-proton-exchanged MgO:LiNbO3 waveguides, Rostislav V. Roussev¹, Venkata Bhagavatula¹, Uta B. Goers³; ¹Optical Physics, Corning Incorporated, USA; ³Manufacturing Technology and Engineering, Corning Incorporated, USA. sub-cm-long reverse-proton-exchanged waveguide with record normalized efficiency showed 44.2% peak internal continuous-wave single-pass conversion, 196-mW peak green, and overall conversion peaking at 30%, being above 25% for green outputs above 80 mW

OW1C.3 • 11:30

Experimental BosonSampling in a Tunable Optical Network, Matthew A. Broome^{1,2}, Alessandro Fedrizzi^{1,2}, Saleh Rahimi-Keshari², Justin Dove³, Scott Aaronson³, Timothy C. Ralp², Andrew White^{1,2}, 'Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Australia; ²Centre for Quantum Computer and Communication Technology, School of Mathematics and Physics, University of Queensland, Australia; ²Contre for Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA. We report an experimental demonstration of BosonSampling: an intermediate-model of quantum-computing. We verify that the scattering probabilities for threephoton interference are given by permanents of sub-matrices of a larger unitary matrix describing the optical network

2013CLEO Wednesday.indd 5

CLEO: 2013 • 9-14 June 2013

۲

 $(\mathbf{\Phi})$

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

OW1E • Laser Filamentation— Continued

QW1E.3 • 11:00

Direct, Absolute Measurements of the Highintensity Nonlinear Refractive Index in Gases, Jared K. Wahlstrand¹, Yu-Hsiang Cheng¹, Howard Milchberg¹, ¹University of Maryland at College Park, USA. The nonlinear refractive index in air components and noble gases is measured absolutely using spectral interferometry in a thin gas target. Contributions from bound electronic states, molecular alignment, and free electrons from ionization are observed.

OW1E.4 • 11:15

The effect of long timescale gas dynamics on femtosecond filamentation, Yu-Hsiang Cheng¹, Jared K. Wahlstrand¹, Nihal Jhajj¹, Howard Milchberg1; 1Univ. of Maryland, College Park, USA. We show that a localized and long-lived quasi-stationary gas density depression exists after filament-generated-plasma recombination. Its millisecond timescale dynamics is governed by thermal diffusion and has strong effects on high-repetition-rate filamentation and supercontinuum generation.

OW1E.5 • 11:30

Generation of Super-luminescent let Light through Disrupted Conical Emission, Zhijun Xu¹, Yang Yu¹, Zhang Nan¹, Jiefeng Zhao¹, Xiaonong Zhu¹; ¹Nankai University, China. Superluminescent jet light is produced via disrupted conical emission excited by focused millijoule 50 fs laser pulses in air. Phase-matching requirement of four-wave mixing at specific diffraction angles is responsible for the observed phenomenon.

Executive Ballroom 210G

CW1F • Opto-mechanical

Stabilization of a linear optonanomechani-

cal oscillator to its ultimate thermodynamic limit, Emanuel Gavartin¹, Pierre Verlot¹, Tobias J. Kippenberg^{1,2}; ¹Ecole Polytechnique Federale de

Lausanne, Switzerland; ²Max Planck Institute for

Quantum Optics, Germany. We realize a non-invasive optomechanical stabilization scheme and

apply it to the fundamental mechanical mode of

a nanobeam. We are able to significantly decrease

its frequency noise to its ultimate thermodynamic

Electro-mechanical Detection of Near Infrared

Optical Intensity Modulation in Silicon, Sid-

dharth Tallur¹, Sunil A. Bhave¹; ¹School of Electrical

and Computer Engineering, Cornell University,

USA. We report chip-scale electro-mechanical

detection of near-IR optical intensity modula-

tion at 174.2MHz and 1.198GHz in silicon. This

constitutes the first experimental demonstration

of a photon to phonon translator in a CMOS

Aluminum nitride piezo-optomechanical

nanobeam cavity, Linran Fan¹, Xiankai Sun¹, Chi

Xiong1, Carsten Schuck1, Hong X. Tang1; 1Electri-

cal Engineering, Yale University, USA. We develop

a piezoelectrically actuated, one-dimensional

photonic and phononic crystal nanocavity fab-

ricated from aluminum nitride. High-quality

piezo-optomechanical nanobeam cavities with

intrinsic optical Q of 120,000 and mechanical Q

Systems I—Continued

CW1F.3 • 11:00

limit at room temperature.

CW1E4 • 11:15

compatible platform.

CW1F.5 • 11:30

over 10,000 are obtained.

Executive Ballroom 210F

CLEO: Science & Innovations

CW1G • Mode-locked Semiconductor Lasers— Continued

CW1G.3 • 11:00

Optical pulse generation from single-section InAs/GaAs quantum dot edge-emitting lasers, Cosimo Calò¹, Kamel Merghem¹, Ricardo Rosales¹, Elisabeth Galopin¹, Oumkelthoum Moustapha¹ Aristide Lemaître¹, Igor Krestnikov², Geraud Bouwmans3, Anthony Martinez1, Abderrahim Ramdane1; 1CNRS Laboratory for Photonics and Nanostructures, France; ²Innolume GmbH, Germany; ³PhLAM/IRCICA, Université Lille, CNRS UMR8523/USR3380, France. Pulse generation from single-section Fabry-Pérot InAs/GaAs edgeemitting quantum dot lasers is reported at 1.3 µm. Mode-locking performances of the devices are studied as function of injection current and optical spectrum shape

CW1G.4 • 11:15

Wavelength Tunable Graphene Modelocked VECSEL, Christian A. Zaugg¹, Zhipei Sun², Daniel Popa², Silvia Milana², Tero Kulmala², Ravi S. Sundaram², Valentin J. Wittwer¹, Mario Mangold¹, Oliver D. Sieber¹, Matthias Golling¹, Y. Lee³ Jong-Hyun Ahn³, A. C. Ferrari², Ursula Keller¹ ¹Institute for Quantumelectronics - Department of Physics, ETH Zurich, Switzerland; ²Department of Engineering, University of Cambridge, United Kingdom; ³School of Advanced Materials Science and Engineering, Advanced Institute of Nanotechnology, Sungkyunkwan University, Republic of Korea. A VECSEL was passively modelocked with a single-layer graphene saturable absorber mirror generating pulses as short as 473 fs. A very broad wavelength tuning range over 46 nm was achieved with three different VECSELs.

CW1G.5 • 11:30

Self-Mode-Locked Vertical External-Cavity Surface-Emitting Laser (VECSEL), Alexander R. Albrecht¹, Denis V. Seletskiy², Jeffrey G. Cederberg3, Mansoor Sheik-Bahae1; 1Department of Physics and Astronomy, University of New Mexico, USA; ²Department of Physics and Center for Applied Photonics, University of Konstanz, Germany; Sandia National Laboratories, USA. Self-modelocking has been observed in an InGaAs VECSEL at 1030 nm with sub-500 fs pulses at 1 GHz. The mechanism is attributed to negative ultrafast Kerr lensing in the gain structure.

Executive Ballroom 210E

CW1H • Ultrashort Pulse Measurement—Continued

CW1H.3 • 11:00

Measuring Many-Picosecond-Long Ultrashort Pulses on a Single Shot Using XFROG and Pulse-Front Tilt, Tsz Chun Wong¹, Rick Trebino¹; ¹Physics, Georgia Institute of Technology, USA. We demonstrate the use of pulse-front tilt in crosscorrelation frequency-resolved optical gating (XFROG) to measure complex many-picosecondlong pulses on a single shot.

CW1H.4 • 11:15

The coherent artifact in modern pulse-shape measurements, Michelle Rhodes¹, Gunter Steinmeyer2, Justin Ratner1, Rick Trebino1; 1Georgia Institute of Technology, USA; ²Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Germany. We simulate multi-shot measurements of trains of pulses with unstable shapes using SPIDER, SRSI, SHG FROG, PG FROG, and XFROG. Interferometric methods measure only the coherent artifact, while FROG methods better approximate the trains.

CW1H.5 • 11:30

Near to mid-IR ultra-broadband third harmonic generation in multilayer graphene: few-cycle pulse measurement using THG dispersion-scan, Francisco Silva^{1,2}, Miguel Miranda^{1,3}, Stephan Teichmann², M. Baudish², Mathieu Massicotte², Frank Koppens², Jens Biegert^{2,4}, Helder Crespo¹; ¹IFIMUP-IN and Departamento de Física e Astronomia, Universidade do Porto, Portugal; ²Institut de Ciencies Fotoniques, Spain; 3Department of Physics, Lund University, Sweden; ⁴ICREA-Institució Catalana de Recerca i Estudis Avançats, Spain. We report enhanced third-harmonic generation (THG) in graphene films from the near -to the mid-IR. Moreover, we use this process for few-cycle pulse measurements with the new technique of THG dispersion-scan.

. 12 Ju

For Conference News & Insights Visit blog.cleoconference.org

Meeting Room 211D-B

CLEO: Applications & Technology

AW11 • Microscopy—Continued

Hyperspectral Multi-Point Confocal Micro-

scope, Andreas U. Velfen^{1,2}, John G. White¹; Thomas R. Mackie^{1,2}, Kevin W. Eliceiri^{1,2}; ¹Labora-tory for Optical and Computational Instrumenta-

tion, University of Wisconsin-Madison, USA; 2Medi-

cal Devices, Morgridge Institute for Research, USA.

We demonstrate a high speed spectral confocal

microscope that-utilizes an Amici prism-for spec-

tral separation with near optimal sensitivity and

a multi-point confocal design with computational

image reconstruction for high speed collection.

Quantification of Rat Cervical Microstructure using Fourier Transform-Second-Harmonic

Generation Imaging, Tung Yuen Lau¹, Harpreet K. Sangha¹, Edward K. Chien^{2,3}, Barbara L.

McFarlin4; Amy J. Wagoner Johnson1; Kimani

C. Toussaint¹; ¹Mechanical Science and Engineer-ing, Univ ôf Illinois at Urbana-Champaign, USA;

2Ålpert Medical School, Brown University, USA;

³Women and Infants Hospital of Rhode Island,

USA; "Women, Children and Family Health Science, Univ of Illinois at Chicago, USA, We apply Fourier

transform-second-harmonic generation imaging to evaluate unstained rat cervical tissue in both 2D and 3D. Our technique validates the existence of

3D microstructures consisting of collagen fibers

Phase Contrast Endomicroscopy, Jerome C.

Mertz1;e1Boston Univ., USA. A microscope add-on

is described that measures phase and amplitude

in a single shot. The technique is quantitative;

light efficient, and works with incoherent il-

lumination. We apply this technique to dynamic

AW1I.2 • 11:00

AW1I.3 • 11:15

in rat cervical tissue.

biological imaging.

AW1I.4 • 11:30 Invited

JW1J • Symposium on High **Power Diode Laser Arrays: Technology and Applications:** High Power Diode Laser Arrays I—Continued

JW1J.2 • 11:00 Invited

Cryolaser: Innovative Cryogenic Diode Laser Bars Optimized for Emerging Ultra-high Power Laser Applications, Paul Crump1; 1Ferdinand-Braun Institut, Germany. Cryolaser diode laser designs exploit the improvement in semiconductor material properties at sub-zero temperatures to increase efficiency and power. Optimized single 9xx-nm laser bars demonstrate record peak pulse energy of 2J (1.7kW, 1.2ms, -50°C).

Meeting Room

212A-C

JOINT

Meeting Room

212D-B

Marriott San Jose Salon I & II

CW1L • Quantum Cascade

CLEO: Science & Innovations

CW1K • Manipulation & **Detection of THz Radiation**— Continued

CW1K.3 • 11:00

Single-shot, spatio-temporal electro-optic map ping of THz waveforms with linear detection using Temporal Electric-field Cross-correlation (TEX), Nicholas H. Matlis¹, Guillaume Plateau¹, Jeroen van Tilborg¹, Wim P. Leemans¹; ¹Lawrence Berkeley National Laboratory, USA. We present an electro-optic method for single-shot spatiotemporal THz waveform-mapping which avoids distortions associated with spectral encoding and retains the benefits of nonlinear cross-correlation but using linear detection. THz waveforms from laser-plasma accelerator are reconstructed

CW1K.4 • 11:15

Self-referenced Spectral-Domain Interferome-try for THz Detection, Gargi Sharma¹, Kanwarpal Singh¹, Akram Ibrahim¹, Ibraheem Al-Naib¹ Roberto Morandotti¹, Francois Vidal¹, Tsuneyuki Ozaki¹; ¹Advanced Laser Light Source, INRS-EMT, Canada. We demonstrate self-referenced spectraldomain interferometry (SDI) for terahertz detection. It not only overcomes the limitation of over-rotation for intense terahertz fields, but also considerably increases the signal-to-noise ratio, when compared with conventional SDI techniques.

JW1J.3 • 11:30

Beam Quality Improvement of Broad-Area Laser Diodes by Fast-to-Slow Axis Mode Imaging, Andrew Jones¹, Juliet Gopinath¹; ¹Department of Electrical, Computer, and Energy Engineer-ing, University of Colorado - Boulder, USA. A novel technique for beam quality improvement of a broad-area diode array has been demonstrated. For each emitter, the fast-axis mode is imaged back onto the slow axis, improving beam quality while preserving slope efficiency.

CW1K.5 • 11:30

Highly sensitive Terahertz-wave Detection by using Nonlinear Parametric Conversion, Shin'ichiro HAYASHI1, Kouji Nawata1, Kodo Kawase^{2,1}, Hiroaki Minamide¹; ¹RIKEN, Japan; 2Nagoya University, Japan. We report on a highly sensitive detection of sub-nanosecond terahertzwaves with wide dynamic range using frequency up-conversion in a nonlinear MgO:LiNbO3 crystal at room temperature. We obtained the dynamic range of more than 100 dB.

CW1L.2 • 11:30

In Vitro Measurements of Physiological Glu-cose Concentrations in Biological Fluids Using Mid-infrared Spectroscopy, Sabbir Liakat¹ Kevin A. Bors¹, Tzu-Yung Huang¹, Anna Michel^{1,2}, Eric Zanghi^{1,3}, Claire F. Gmach¹; ¹Electrical Engineering, Princeton University, USA; ²Woods Hole Oceanographic Institute, USA; ³Mechanical Engineering, Massachusetts Institute of Technology, USA. Predictions of glucose concentrations throughout the physiological range are obtained in vitro using partial least squares regression analysis of Mid-infrared transmission spectra. Concentrations as low as 30 mg/dL are predicted to clinical accuracy.

Lasers—Continued

140

۲

nesdav, 12 June

(

Marriott San Jose Salon III

CLEO: Science & Innovations

CW1M • Infrared Fiber Lasers—Continued

CW1M.3 • 11:00 Invited 2 Micron Fiber Lasers Using Multi-component Glass Fibers, Shibin Jiang¹; ¹AdValue Photonics,

Inc., USA. This paper summarizes our progress in 2 micron fiber lasers using Tm and Tm-Ho-codoped multi-component glass fibers. Performance of single frequency lasers, Q-switched lasers, and mode-locked lasers will be presented.

Marriott San Jose Salon IV

CLEO: QELS-Fundamental Science

QW1N • Novel Nanooptical & Plasmonic Fabrication— Continued

Marriott San Jose Salon V & VI

CLEO: Science & Innovations

CW10 • Optical Materials and Devices I—Continued

Marriott Willow Glen I-III

CLEO: QELS-Fundamental Science

QW1P • Symposium on Nanophotonics at the DOE/SC Nanoscale Science Research Centers: Active and Passive Optical Metamaterials— Continued

QW1P.2 • 11:00 Invited All-Dielectric Metamaterials: Path to Low Losses and High Spectral Selectivity, Gennady Shvets¹, Chihhui Wu¹, Nlhal Arju¹, Glen Kelp¹, Burton Neuner¹, Gregory Ten Eyck², Michael B. Sinclair², Igal Brener²³, 'Physics, University of Texas at Austin, USA; ²Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; ³Sandia National Laboratories, USA. Ohmic losses severely limit the performance of metamaterials. High-index semiconductors offer an attractive alternative. We review several meta-surfaces based on silicon and silicon carbide enabling infrared applications such as polarization manipulation and thermal emission

CW1M.4 • 11:30 D

 $(\mathbf{\Phi})$

High-power Yb: and Tm:fiber amplifiers seeded by a femtosecond passively phase-stable Er:system, Marcel Wunram¹, Sören Kumkar¹, Patrick Storz¹, David Fehrenbacher¹, Daniele Brida¹, Alfred Leitenstorfer¹; ¹Department of Physics and Center for Applied Photonics, University of Konstanz, Germany. Synchronous high-power Yb: and Tm:amplifiers both coherently seeded by the same broadband passively phase stable Er:fiber system are demonstrated. Microjoule-level pulse energy and sub-200-fs operation at a repetition rate of 10 MHz are obtained.

Chiral Plasmonic Films and Nanoparticles, David Norris¹; ¹ETH Zurich, Switzerland. We use template stripping to obtain metallic films and colloidal nanoparticles with chiral shape. Chiral nanoparticles, a long-standing fabrication challenge, can exhibit strong circular dichroism and non-linear optical effects, useful for sensing and signal processing.

CW10.2 • 11:30

Printable EO Polymer Modulators, Harish Subbaraman¹, Xiaohui Lin², Tao Ling³, Xingyu Zhang³, L. Jay Guo³, Ray T. Chen²; 'Omega Optics, Inc, USA; 'Electrical and Computer Engineering, The University of Texas at Austin, USA; 'Electrical Engineering and Computer Science, University of Michigan - Ann Arbor, USA. An EO polymer modulator is fabricated utilizing a combination of UV imprinting and ink-jet printing, and operation up to 15MHz is demonstrated. The measured V-pi of the modulator is 8V. This process will increase throughput and reduce cost.

New Directions in Active and Tunable Metamaterials, Igal Brener¹, Hou-Tong Chen²; ¹Center for Integrated Nanotechnologies, Sandia National Labs, USA; ²Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA. We will present some of the recent projects at CINT that aim at optically and electrically tunable Metamaterials. This is achieved by combining far and mid infrared planar metamaterials with semiconductors, superconductors and other substrates.

Vednesday, 12 Jun

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 141

Executive Ballroom 210A

CLEO: QELS-Fundamental Science

QW1A • New Trends in High-harmonic Generation— Continued

QW1A.5 • 11:45

Ultrahigh-Efficiency High Harmonic Generation Driven by UV Lasers, Dimitar Popmintchev¹, Ming-Chang Chen¹, Carlos H. García², Jose Antonio Perez Hernández¹, Jonathas P. Siqueira¹, Susannah Brown¹, Franklin Dollar¹, Barry C. Walker¹, Patrik Grychtol¹, Luis Plaja², Margaret M. Murnane¹, Henry Kapteyn¹, Tenio Popmintchev¹; ¹JILA, University of Colorado at Boulder, USA: ²Grupo de Investigación en Óptica Extrema, Universidad de Salamanca, Spain; ³Centro de Láseres Pulsados CLPU, Spain; ¹University of Delaware, USA. We demonstrate bright high harmonic generation driven by UV lasers with ultra-high conversion efficiency approaching 10^-3 and ultra-narrow single-harmonic bandwidth of ~0.2%. The enhanced flux results from improved phase-matching combined with a stronger singleatom yield.

QW1A.6 • 12:00

High-Order Harmonics of Bichromatic Counter-Rotating Elliptically-Polarized Drivers: Fully Controlled Polarization State and Novel Selection Rules, avner fleischer¹, Pavel Sidorenko¹, Oren Cohen¹; ¹Technion Israel Institute of Technology, Israel. We show, theoretically and experimentally, that the polarization of high-order harmonics driven by counter-rotating elliptically-polarized bichromatic lasers are completely controllable: from linear through elliptic to circular polarization. New selection rules are observed.

QW1A.7 • 12:15

Measurement of Coherence Lengths of Below Threshold Harmonics in Solid Argon, Georges ndabashimiye^{1,2}, Shambhu Ghimire^{2,1}, David Reis^{1,2}, David Nicholson^{1,2}, ¹Applied Physics, Stanford University, USA; ²PULSE, SLAC, USA. We report the measurement of the coherence lengths of 7th and 9th harmonics of Ti:sapphire laser radiation in solid argon crystals under strongfield excitation.

Executive Ballroom 210B

CLEO: Science & Innovations

CW1B • SHG and Parametric Devices—Continued

CW1B.5 • 11:45

Tunable, Pulsed Multi-Wavelength Intracavity Optical Parametric Oscillator Using 2D MgO:PP-APPLN, Yen-Hung Chen¹, Wei-Kun Chang¹, Shang-Sheng Huang¹, Hung-Ping Chung¹, Bing-Zhong Liu¹, Ju¹-Wen Chang¹, ¹Department of Optics and Photonics, National Central University, Taiwan. We report a tunable, pulsed multi-signalline intracavity optical parametric oscillator based on a highly integrated 2D MgO:PP-APPLN in a Nd:YVO4 laser. >3.2-kW three signal lines with almost equal peak intensity were obtained from the system.

CW1B.6 • 12:00

PPSLT KHz OPO/OPA Tunable in 3-3.5 μm Pumped by 1ns 30mJ Nd-laser System, Danail V. Chuchumishev', Alexander G. Gaydardzhiev¹, Dimitar Shumov³, Stuart Samuelson³, Torsten Fiebig², Claus-Peter Richter³, Ivan Buchvarov^{1,2}; ¹Department of Physics, Sofia University St. Kliment Ohridski, Bulgaria; ²Feinberg School of Medicine, Northwestern University, USA; ³Deltronic Crystal Industries Inc., USA. We demonstrate 5.7-mJ mid-IR PPSLT based OPO/OPA pumped by 30-mJ 1.4 ns Nd-laser system operated at 0.5-kHz repetition rate. The output wavelength is temperature tuned within water absorption peak (3000-3500 nm).

CW1B.7 • 12:15

A high power mid-IR ZGP ring OPO, Alexander Hemming¹, Jim Richards², Alan Davidson¹, Neil Carmody¹, Nikita Simakov¹, Mark Hughes¹, Phil Davies¹, Shayne Bennetts^{1,3}, John Haub¹; ¹Defence Science and Technology Organisation, Australia; ²Bob Seymour and Associates, Australia; ³Department of Quantum Science, Australia; ³Department of Quantum Science, Australia; ¹Department of Quantum Science, Australia; ¹DepartExecutive Ballroom 210C

CLEO: QELS-Fundamental Science

QW1C • Symposium on Quantum Simulators: Quantum Simulators I—Continued

QW1C.4 • 11:45

Estimating Immanants from Interferometric Photon Coincidences, Barry C. Sanders¹, Si-Hui Tan², Hubert de Guise³, Yvonne Y. Gao', ¹Institute for Quantum Science & Technology, University of Calgary, Canada; ²Centre for Quantum Technologies, National University of Singapore, Singapore; ³Physics, Lakehead University, USA. We develop a theory for multi-channel passive optical interferometery with one or zero photon entering each input port, and we show that the output photon coincidences yield information about immanants of the interferometer transformation matrix.

QW1C.5 • 12:00

Playing a quantum game with polarization vortices, Antonio Pinheiro¹, Carlos Eduardo Souza¹, Dilson Caetano², Jose Augusto Huguenin², Alexandre Schmidt², Antonio Z. Khoury¹; ¹Universidade Federal Fluminense, Brazil; ¹Universidade Federal Fluminense, Brazil; The quantum mechanical approach to the well known prisoners dilemma, one of the basic examples in Game Theory, is implemented with polarization vortices. Spinorbit entanglement is used to implement a rich universe of strategies.

QW1C.6 • 12:15

Coherent cavity networks with complete connectivity, Almut Beige¹; ¹University of Leeds, United Kingdom. Cavity-fiber networks are proposed which mediate cavity-cavity interactions in a huge variety of configurations. Coherent cavity networks with complete connectivity can be created with potential applications in quantum computing and the simulation of biological systems.

Executive Ballroom 210D

JOINT

JW1D • Symposium on Advances in Extreme UV Science and Applications: Advances in Extreme UV Science and Applications II— Continued

JW1D.4 • 11:45 Invited Development of a Coherent EUV Scatterometry Microscope, Hiroo Kinoshita¹³, Tetsuo Harada¹³, Yutaka Nagata²³, Takeo Watanabe¹³, Katsumi Midorikawa², ¹Center for EUV Lithography, University of Kyogo, Japan; ²Riken ASI, Japan; ³JST, CREST, Japan. A coherent scatterometry microscope using a high-order harmonic light from a femtosecond laser has been developed. Using this system, measurement of CD values and defects inspection such as missing patterns and bridge defects were demonstrated.

JW1D.5 • 12:15

Soft X-Ray Image Plane Holographic Microscopy, Jaroslav Nejdl⁴, Isela Howlett^{1,2}, David Carlton^{1,3}, Weilun Chao^{1,3}, Erik H. Anderson^{1,3}, Mario Marconi^{1,2}, Jorge Rocca^{1,2}, Carmen S. Menoni^{1,2}, ¹NSF Center for EUV Science & Technology, Colorado State University, USA; ²Electrical and Computer Engineering, Colorado State University, USA; ³Center for X-Ray Optics, Lawrence Berkeley National Laboratory, USA; ⁴FNSPE, Czech Technical University in Prague, Czech Republic. Image plane holographic microscopy is demonstrated combining coherent illumination from a compact 46.9 nm wavelength laser with Fresnel zone plate optics. The method enables imaging of low absorption samples with high resolution.

Wednesday, 12 June

10:45–15:45 NIF Tour (*Pre-Registered attendees only*)

12:30–13:30 Lunch and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2 (concessions available)

13:30–15:00 JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics, Exhibit Hall 3

14:00–16:00 Market Focus Session IV: Optics & Innovation for Energy & the Environment, Exhibit Hall 2

15:00–16:30 Coffee Break (15:00-15:30) and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2

CLEO: 2013 • 9-14 June 2013

2013CLEO Wednesday.indd 9

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

OW1E • Laser Filamentation— Continued

QW1E.6 • 11:45

Dispersive Wave Emission by Mid-IR Filaments in Solids, Skirmantas Ališauskas¹, Daniil Kartashov¹, Audrius Pugzlys¹, Daniele Faccio², Aleksei Zheltikov^{3,4}, Alexander Voronin³, Andrius Baltuska¹; ¹Photonics Institute, Vienna University of Technology, Austria; ²Institute of Photonics and Quantum Sciences, Heriot-Watt University, United Kingdom: ³Physics Department, Russian Quantum Center, International Laser Center, M.V. Lomonosov Moscow State University, Russian Federation; ⁴Department of Physics and Astronomy, Texas A&M University, USA. We present experimental and numerical investigation of a new filamentation regime of Mid-infrared femtosecond pulses in solids. Efficient emission of dispersive waves without fundamental spectrum broadening and continuum generation is observed in this regime.

OW1E.7 • 12:00

Guiding of meter scale AC discharges by laser filamentation in air, Aurelien Houard¹, Guillaume Point¹, Yohann Brelet¹, Jérôme Carbonnel¹, Yves-Bernard André¹, Bernard Prade¹, Leonid Arantchouk², Andre Mysyrowicz¹; ¹Laboratoire d'Optique Appliquée, France; ²Laboratoire de Physique des Plasmas, France. We study the guiding effect of femtosecond laser filaments on highvoltage electric discharges generated by a compact Tesla coil. Meter scale repetitive discharges are demonstrated.

OW1E.8 • 12:15

Influence of the anomalous dispersion on the supercontinuum generation by femtosecond laser filamentation, Durand M. Maëva^{1,2}, Khan Lim¹, Vytautas Jukna³, Erik McKee¹, Matthieu Baudelet¹, Aurelien Houard², Martin Richardson¹, Andre Mysyrowicz², Arnaud Couairon³; ¹Townes Laser Institute, CREOL - University of Central Florida, USA; ²LOA, ENSTA - Ecole Polytechnique -CNRS, France; ³Centre de Physique theorique, École Polytechnique - CNRS, France. Measurements and numerical simulations of the continuum created by laser filamentation in anomalous dispersion regime of fused silica allow us to identify the extreme blueshifted peak as an axial component of the conical emission.

Executive Ballroom 210G

CW1F • Opto-mechanical

Resonators Using Elastic Wave Interference,

Mian Zhang¹, Gustavo O. Luiz², Shreyas Shah¹,

Paulo A. Nussenzveig³, Gustavo S. Wieder-

hecker², Michal Lipson^{1,4}; ¹Electric and Computer

Engineering, Cornell University, USA; ²Instituto de

Fisica Gleb Wataghin, Universidade Estadual de

Campinas, Brazil: ³Instituto de Física, Universidade

de São Paulo, Brazil; ⁴Kavli Institute at Cornell,

Cornell University, USA. We theoretically and

experimentally demonstrate that the support

loss of double-disk optomechanical resonators

can be minimized using destructive elastic wave

interference. We show 100MHz Si3N4 resonators

with mechanical quality factor of 10000 at room

Optomechanical Transduction in Coupled

Wheel Resonators, Chenguang Huang^{1,2}, Jiahua

Fan^{1,2}, Ruoyu Zhang^{1,2}, Lin Zhu^{1,2}; ¹Department

of Electrical and Computer Engineering, Clemson University, USA; ²Center for Optical Materials

Science and Engineering Technologies, Clemson

University, USA. We investigate the optome-

chanical transduction in two side-coupled wheel

resonators and show that it is related to the optical

energy distribution. We also demonstrate sensitive optomechanical transduction when degrading Q

Dynamic cooling of a mechanical resonator in

the strong coupling regime, Yong-Chun Liu^{1,2},

Yun-Feng Xiao¹, Xingsheng Luan², Chee Wei Wong²; ¹State Key Laboratory for Mesoscopic Phys-

ics and School of Physics, Peking University, China;

²Optical Nanostructures Laboratory, Columbia Uni-

versity, USA. We propose uniquely dynamically-

modulated dissipative cooling scheme in strong

optomechanical coupling, which significantly

enhances the cooling process. This overcomes

quantum backaction and instantaneous phonon

occupations below the steady-state cooling limit

Systems I—Continued

CW1F.6 • 11:45

temperature.

CW1F.7 • 12:00

factors of one resonator.

CW1F.8 • 12:15

can be achieved.

Executive Ballroom 210F

CLEO: Science & Innovations

CW1G • Mode-locked Semiconductor Lasers—

Sub-100 MHz Passively Modelocked VECSEL, Christian A. Zaugg¹, Alexander Klenner¹, Oliver D. Sieber¹, Matthias Golling¹, Bauke W. Tilma¹, Ursula Keller¹; ¹Institute for Quantumelectronics Department of Physics, ETH Zurich, Switzerland. We demonstrate a record-low pulse repetition rate of 99.6 MHz from a passively modelocked VEC-SEL employing a conventional cavity. Fundamental modelocking was verified with an average output power of 30 mW in 20 ps pulses.

CW1G.7 • 12:00

Four-Wave Mixing Mediated Stabilization of an Orthogonally Coupled Monolithic CPM Laser, Abhijeet Ardey¹, Edris Sarailou¹, Peter J. Delfyett¹; 'CREOL, The College of Optics and Photonics, University of Central Florida, USA. We experimentally confirm four-wave mixing process as the dominant mechanism responsible for injection locking in case of a novel monolithically integrated orthogonally coupled colliding pulse mode-locked (CPM) laser.

CW1G.8 • 12:15

Generating Terahertz Pulses Using Mode-Locked Side-Wall Sampled-Grating Distributed Bragg Reflector Lasers, Lianping Hou¹, Mohsin Haji¹, John H. Marsh¹; ¹University of Glasgow, United Kingdom. We report for the first time generation of 640 GHz and 1.28 THz pulse repetition frequencies with high reproducibility, controllability and a wide operation range using passively mode-locked side-wall sampled-grating distribute Bragg reflector lasers.

Executive Ballroom 210E

CW1H • Ultrashort Pulse Measurement—Continued

CW1H.6 • 11:45

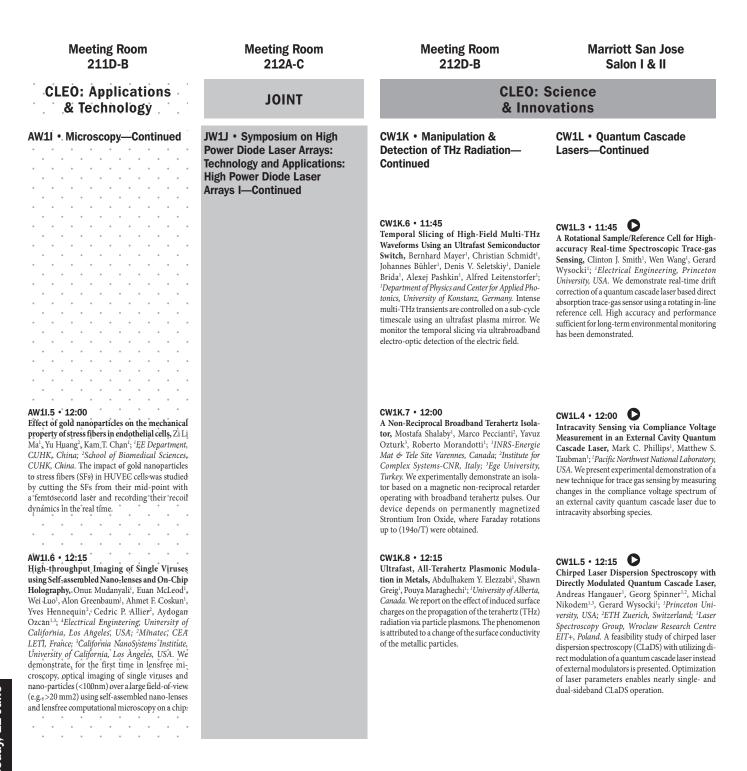
Highly-Sensitive Ultrafast Pulse Characterization Utilizing Four-wave Mixing in an Amorphous Silicon Nanowaveguide, Ke-Yao Wang¹, Keith G. Petrillo¹, Mark A. Foster¹, Amy C. Foster¹; ¹Electrical and Computer Engineering, Johns Hopkins University, USA. We demonstrate frequency-resolved optical gating using four-wave mixing in a hydrogenated amorphous silicon nanowaveguide. The ultrahigh nonlinearity and the wide conversion bandwidth of this device allow characterization of sub-ps pulses with high sensitivity.

CW1H.7 • 12:00

Characterization of infrared femtosecond pulses by using transient-grating self-referenced spectral interferometry, Jun Liu1; 1Shanghai Inst of Optics and Fine Mech, China. We propose a new technique for femtosecond pulse characterization---transient-grating self-referenced spectral interferometry. Using this technique, we built an extremely simple, alignment-free device and successfully sub-two-cycle 10-fs pulses at 1.75 µm.

CW1H.8 • 12:15

Complete waveform characterization of ultrashort pulses, Takao Fuji¹, Yutaka Nomura¹; ¹National Institutes of Natural Sciences, Japan. A new pulse characterization concept capable to measure the absolute value of carrier-envelope phase has been demonstrated. Complete waveforms of sub-single-cycle pulses were characterized by using the method.


()

10:45–15:45 NIF Tour (*Pre-Registered attendees only*) 12:30–13:30 Lunch and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2 (concessions available) 13:30–15:00 JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics, Exhibit Hall 3 14:00–16:00 Market Focus Session IV: Optics & Innovation for Energy & the Environment, Exhibit Hall.2

15:00–16:30 Coffee Break (15:00-15:30) and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 143

Continued CW1G.6 • 11:45 Eliminating Structural Loss in Optomechanical

Wednesday, 12 June

(

10:45–15:45 NIF Tour (*Pre-Registered attendees only*)

12:30–13:30 Lunch and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2 (concessions available)

13:30–15:00 JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics, Exhibit Hall 3

14:00–16:00 Market Focus Session IV: Optics & Innovation for Energy & the Environment, Exhibit Hall.2

15:00–16:30 Coffee Break (15:00-15:30) and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2

CLEO: 2013 • 9–14 June 2013

Marriott San Jose Salon III

CLEO: Science & Innovations

CW1M • Infrared Fiber Lasers—Continued

CW1M.5 • 11:45 🖸

2 to 3 µm Raman-soliton continuum enabled by a nanotube mode-locked Tm-doped MOPFA, MENG ZHANG¹, Edmund J R. Kelleher¹, Timothy H. Runcorn¹, V. M. Mashinsky², Oleg I. Medvedkov2, E. M. Dianov2, Zhipei Sun3, Daniel Popa3, T. Hasan3, A. C. Ferrari3, Ben H. Chapman1, Sergei V. Popov¹, James R. Taylor¹; ¹Department of Physics, Imperial College London, United Kingdom; ²Fiber Optics Research Center, General Physics Institute, Russian Federation; 3Department of Engineering, University of Cambridge, United Kingdom. We demonstrate a Raman-soliton continuum extending from 2 to 3 µm, in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode locked thulium-doped fiber system delivering 12 kW sub-picosecond pulses at 1.95 µm.

CW1M.6 • 12:00

Highly Stable PM Raman Fiber Laser at 1680 nm, Ask S. Svane¹, Xiaomin Liu¹, Karsten Rottwitt¹, ¹Department of Photonics Engineering, DTU Fotonik, Denmark. We demonstrate thermal stabilization of a Raman fiber laser. At 1680 nm the laser emission exceeds 500 mW with a power variation below 0.5 %, both linewidth and wavelength variations are under 1 pm.

CW1M.7 • 12:15 D

High-Pulse-Energy All-Normal, All-Fiber Passively Mode-Locked Laser at 1.06µm, Yu Wang¹, Amos Martinez¹, Shinji Yamashita¹; ¹Department of Electronic Engineering, The University of Tokyo, Japan. We achieved passively mode-locked allfiber lasing at the wavelength of 1.06µm with pulse energy over 20nJ using an all-normal cavity configuration. Simulation result showed that WDM had primary filtering effect in the experiment.

Marriott San Jose Salon IV

CLEO: QELS-**Fundamental Science**

QW1N • Novel Nanooptical & Plasmonic Fabrication-Continued

QW1N.3 • 12:00 🛛 🖸

demonstrated.

nanofabrication.

Patterning Plasmonic Nanostructures through

Resistless Nanoimprinting in Metal, Li Fan¹,

Leo T. Varghese¹, Yi Xuan¹, Minghao Qi¹; ¹School of Electrical and Computer Engineering and Birck

Nanotechnology Center, Purdue University, USA.

We report a low-cost method that allows silicon

molds to directly imprint metals and achieve high-

fidelity pattern transfer with vertical sidewalls and ultra-high resolution. Large-scale extraordinary

light transmission through silver apertures is

the femtosecond laser, which is potential for future

Marriott San Jose Salon V & VI

CLEO: Science & Innovations

CW10 • Optical Materials and **Devices I—Continued**

CW10.3 • 11:45 🖸 Cryogenic photonic module based on silicon photonic wire waveguides, Tatsurou Hiraki^{1,2}, Tai Tsuchizawa^{1,2}, Hiroyuki Shibata^{1,3}, Hidetaka Nishi^{1,2}, Hiroshi Fukuda^{1,2}, Rai Kou^{1,2}, Kotaro Takeda², Koji Yamada^{1,2}, ¹NTT Nano Photonics Center, Japan; ²NTT Microsystem Integration Laboratories, Japan; ³NTT Basic Research Labora-tories, Japan. We report a low-loss silicon photonic waveguide module for cryogenic applications. The fiber-to-waveguide coupling loss is 1.9 dB/facet at 4K. As a feasibility demonstration, carrier lifetime in a Si waveguide at 4K is successfully measured.

CW10.4 • 12:00 🖸

Silicon-platformed nonlinear waveguide in lithium niobate membrane, Takuya Utsugida^{1,2} Sunao Kurimura^{1,2}, Yusuke Muranaka^{1,2}, Eiki Mochizuki^{1,2}, Hirochika Nakajima²; ¹National Institute for Materials Science, Japan; ²Waseda University, Japan. A novel waveguide structure in Mg:LN membrane was developed on Si platform by wet and dry etching processes. Periodically poled structure in the membrane achieved QPM SHG at telecommunication band.

CW10.5 • 12:15 D Strain-Engineered SiGe Quantum-Well Nano membranes for Far-Infrared Intersubband Device Applications, Faisal Sudradjat¹, Pornsatit Sookchoo², Habibe Durmaz¹, Arnold M. Kiefer², Max G. Lagally², Roberto Paiella¹; ¹Boston University, USA; ²University of Wisconsin - Madison, USA. SiGe/Si quantum-well nanomembranes, where stress due to lattice mismatch is relaxed via elastic strain sharing rather than defect formation, are developed and their potential for far-infrared

intersubband device applications is demonstrated.

Marriott Willow Glen I-III

CLEO: QELS-**Fundamental Science**

QW1P • Symposium on Nanophotonics at the DOE/SC Nanoscale Science Research **Centers: Active and Passive Optical Metamaterials**-Continued

QW1P.4 • 12:00 Invited Realization of All-dielectric Optical Metamaterials, Yuanmu Yang¹, Parikshit Moitra¹, Zachary Anderson¹, Jason G. Valentine¹; ¹Vanderbilt University, USA. We present experimental realization of zero-index all-dielectric optical metamaterials. The metamaterials exhibit a nearly isotropic response, leading to angular selectivity of transmission and enhanced directive emission from quantum dots placed within the metamaterial.

۲

10:45–15:45 NIF Tour (*Pre-Registered attendees only*)

12:30–13:30 Lunch and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2 (concessions available)

13:30–15:00 JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics, Exhibit Hall 3

14:00–16:00 Market Focus Session IV: Optics & Innovation for Energy & the Environment, Exhibit Hall 2

15:00–16:30 Coffee Break (15:00-15:30) and Unopposed Exhibit Only Time, Exhibit Halls 1 and 2

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 145

QW1N.4 • 12:15 D Nanolithography based on Two-Surface-Plasmon-Polariton-Absorption, yunxiang Li¹, Fang Liu¹, Long Xiao¹, Yidong Huang¹; ¹Electronic Engineering, Tsinghua University, China. Nanolithography utilizing the nonlinear absorption of two surface plasmon polaritons in resists has been demonstrated. The linewidth of $\sim\lambda0/11$ are achieved by illuminating the plasmonic mask with

 $(\mathbf{\Phi})$

 $(\mathbf{\Phi})$

۲

JOINT

13:30-15:00

JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics

JW2A.01

Direct Measurement of Third-Order Nonlinearity of Green Fluorescent Protein, Abu Thomas'; 'Northwestern, USA. We present the measurement of $\chi(3)$ nonlinearity of Green Fluorescent Protein. The nonlinear index is n2 = 10 19m2=W, opening the possibility of using genetically engineerable and naturally occuring proteins in cells as a source of four wave mixing experiments.

JW2A.02

Weak-value Amplification of Low-light-level Cross Phase Modulation, Amir Feizpour¹, Greg Dmochowski¹, Matin Hallaji¹, Chao Zhuang¹, Alex Hayat¹, Aephraim Steinberg¹; ¹Physics, University of Toronto, Canada. We report on our experimental progress towards observing weakvalue amplification of low-light-level cross-phase modulation which will be the first observation of a weak measurement relying on true entanglement between distinct systems.

JW2A.03

Electron Density Measurements of Plasma Columns for N2 Atmospheric Lasing, Jennifer Elle¹, Sina Anaraki¹, Joe Penano², Daniel F. Gordon², Tony Ting², Phillip Spangle^{1,2}, Howard Milchberg¹; ¹*IREAP, University of Maryland, USA;* ²*NRL, USA.* Emission of N2 and time-resolved electron density are measured in a several centimeter long plasma column. Peak density is 6*1015 cm^-3 and emission from the second positive system of N2 is observed.

JW2A.04

Amplification of ultrashort optical-vortex pulses with programmable topological-charge control, Keisaku Yamane^{1,2}, Yasunori Toda^{1,2}, Ryuji Morita^{1,2}, ¹Hokkaido University, Japan; ²JST, *CREST, Japan.* We demonstrate the amplification of ultrashort optical-vortex pulses through the optical parametric process, where optical-vortex seed pulses with computer-controlled topological charges are employed. In this scheme, the lowthroughput drawback of the vortex converter is overcome.

JW2A.05

Imaging the crystal structure of few-layer twodimensional crystals by optical nonlinearity, Leandro M. Malard¹, Thonimar V. Alencar¹, Ana Paula M. Barbosa¹, Kin Fai Mak², Ana Maria de Paula¹; ¹Physics, Universidade Federal de Minas Gerais, Brazil, ²Physics, Columbia University, USA. We observed strong second harmonic generation (SHG) from odd-layer MoS2 atomic crystal, while no SHG is present for the even layer numbers regions. The SHG intensity measurements provides an optical tool for imaging the crystal structure.

JW2A.06

Enhancement of Au Nanoparticle Formation by Shaping fs-pulses, Paulo H. Ferreira', Jonathas P. Siqueira', Daniel Silva', Lino Misoguti', Cleber Mendonca'; 'São Carlos Institute of Physics, University of São Paulo, Brazil; 'Physics Institute, University of São Paulo, Brazil: The influence of fs-pulse train period on the Au nanoparticles production was studied. Using a pulse shaping technique, the period was tunned in order to match Raman resonances that enhance the Au nanoparticle formation process.

JW2A.07

Frequency-time identical and reversal in ultrafast optical parametric processes, Chenji Gu¹; ¹University of California Merced, USA. We demonstrate identical and reversal relations between temporal pulse shapes and their spectrum envelopes through ultrashort optical parametric processes in the picosecond and femtosecond regimes.

JW2A.08

Can low power laser induce dimple on air-water interface?, GOPAL VERMA¹, Abhishek Gaurav¹, James Nair¹, Kamal Singh¹; ¹Department of Physical Science, IJSER Mohali, India. We investigate deformations of various fluid interfaces by a low power laser beam under total-internal-reflection. While air-water interface deformations are undetectable, unlike claimed recently [3], soft interface produces large bump-type fluid-lens and not a dimple.

JW2A.09 Withdrawn

JW2A.10

Plasma column from laser filamentation in air as a virtual radio-frequency antenna, Guillaume Point¹, Aurelien Houard¹, Yohann Brelet¹, Jérôme Carbonnel¹, Leonid Arantchouk², Bernard Prade¹, Yves-Bernard Andre¹, Andre Mysyrowicz¹; ¹Laboratoire d'Optique Appliquée, France; ²Laboratoire de Physique des Plasmas, France. We demonstrate the use of a plasma column created by femtosecond filamentation and heated by a high-voltage discharge from a Tesla coil as an effective radiofrequency emitting antenna.

JW2A.11

Photo-induced enhancement of ferroelectricity in Ba0.15r0.9Ti03/La0.75r0.3MnO3 heterostructures, Yu-Miin Sheu¹, Stuart A. Trugman¹, Li Yan¹, Chih-Piao Chuu², Zhenxing Bi¹, Quanxi Ja¹, Antoinette Taylor¹, Rohit P. Prasankumari; ¹Los Alamos National Lab, USA; ²Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan. We optically create an enhanced ferroelectric polarization in ferroelectric/ferromagnet heterostructures that remains stable for over one day, as detected using second harmonic generation. This opens up the possibility of non-contact optically-controlled data storage.

JW2A.12

Dark blue Cerenkov second harmonic generation in the octagonal quasi periodically poled MgO:LiNbO,, Xuedong Fan', Chuanlong Ma', Wan-hua Zheng'; 'Chinese Acad Sci Inst of Semiconductor, China. We report the first observation of the dark blue nonlinear Cerenkov radiation by SHG in an octagonal QPPLN. Experimentally, diffraction patterns are observed, and the measured diffraction angles agree well with the theoretical results.

JW2A.13

Ultraviolet-shift supercontinuum generation by cross-phase modulation in photonic crystal fiber, Lei Zhang', Sigang Yang', Hongwei Chen', Minghua Chen', Shizhong Xie'; 'Department of Electronic Engineering, Tsinghua University, China. We report the experimental demonstration of the supercontinuum extended to ultraviolet region of 200-400 nm by the effect of cross phase modulation between the anti-Stokes signal at 400-550 nm and pump soliton.

JW2A.14

Self-similar parabolic scaling beams in free space, Nan Gao', Changqing Xie', 'Key Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, China. We generalize the concept of diffraction free beams to self-similar scaling solutions, whose beam width scale parabolically during propagation. Utilizing the linearity of free space, these beams are easily realized using binary diffractive optics.

JW2A.15

Mid-wave IR Oscillation Enhanced Optical Amplification in Thin Fe-doped Lithium Niobate Slabs, Jingwen Zhang', Hao Wang¹, Xiudong Sun¹, Hua Zhao¹; ¹Physics, Harbin Institute of Technology, China. Anomalous gain enhancement was observed in thin indium tin oxide-, zinc selenidecoated, and uncoated Fe-doped lithium niobate (Fe:LN) slabs. Coating dependent strong scattering near the surface normal was also observed and investigated in these slabs.

JW2A.16

Wave Instabilities in Nonlinear Schroedinger Systems with nonvanishing background, Klemens Katterbauer¹, Stefano Trillo², Andrea Fratalocchi¹; ¹Primalight (www.primalight.org), Department of Electrical Engineering, King Abdullah Univ of Sci & Technology, Saudi Arabia; ²Department of Engineering, Universita d Ferrara, Italy. Wave instabilities in NLS systems for non-vanishing background were investigated and an effective mechanism for the trapping and localization of energy in small spatial scales was demonstrated.

JW2A.17

Supercontinuum generation by noise-like pump pulses in normally dispersive single-mode fibers, Alexey Zaytsev¹, Chih-Hsuan Lin², Yi-Jing You², Chia-Chun Chung¹, Chi-Luen Wang³, Ci-Ling Pan^{1,2}, 'Department of Physics, National Tsing Hua Univerity, Taiwan; 'Institute of Photonics Technologies, National Tsing Hua Univerity, Taiwan; ³Cleverwave Technology Inc, Taiwan. Low energy threshold (32 nl) and flat supercontinuum spectrum in 1040-1240 nm wavelength are demonstrated by noise-like pump pulses in normally dispersive single mode fibers.

JW2A.18

A Hollow Beam Supercontinuum Generation in A GeO2 Doped Triangular-core Photonic Crystal Fiber, Ben X. Zhang¹², Huifeng Wei²¹, Xian Zhu¹, Weijun Tong², Nengli Dai¹, Jinyan Li¹; ¹Wuhan National Laboratory of Optoelectronics, Huazhong Univ of Science and Technology, China; ²State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable CompanyLtd, China. We report a GeO2 doped triangular-core photonic crystal fiber which is allow the generation of a hollow beam supercontinuum ranging from 540 to 1540 nm through a nonlinear-optical transformation by femtosecond pulses at 1038 nm.

JW2A.19

Dispersion of Nonlinearity and Modulation Instability in Subwavelength Semiconductor Waveguides, Andrey V. Gorbach¹, Xuesong Zhao¹, Dmitry Skryabin¹; ¹University of Bath, United Kingdom. We demonstrate that strong dispersion of nonlinearity in subwavelength waveguides can lead to the modulational instability in the regime of normal group velocity dispersion through the mechanism independent from higher order dispersions of linear waves.

JW2A.20

Enhancing optical nonlinearity through engineered exciton coupling in organic-inorganic nanocomposites, Xiaoze Liu^{1,3}, Yifan Zhang³, Michael Slootsky³, Stephen R. Forrest³⁴, Vinod M. Menon^{1,2}; ¹Dept. of Physics, Graduate School and University Center of the City University of New York (CUNY), USA; ²Dept. of Physics, Queens College of the City University of New York (CUNY), USA; ³Dept. of Physics, University of Michigan, USA; ⁴Dept. of Physics, University of Michigan, USA; ⁴Dept. of Electrical Engineering and Computer Science and Dept. of Materials Science and Engineering, University of Michigan, USA. We show enhancement in optical nonlinear absorption by engineering the coupling between excitons of 3,4,7,8-naphthalenetetracarboxylic dianhydride (NTCDA) and ZnO nanowires. Energy transfer between the excitonic systems and exciton scattering are found to be competing processes.

JW2A.21

High order optical harmonic generation in ionization-free regime: origin of the process, Anatoli V. Andreev¹, Sergey Y. Stremoukhov¹; ¹M. V. Lomonosov Moscow State University, Russian Federation. New interpretation of the high order harmonic generation in atomic gases interacting with laser fields is presented. The mechanism is in the temporal evolution of atomic electron density spatial distribution in the external laser field.

JW2A.22

Nonlinear Graphene Plasmons in Planar Geometries, Andrey V. Gorbach¹; ¹University of Bath, United Kingdom. Using perturbation expansion of Maxwell equations with nonlinear boundary conditions, an amplitude equation is derived and analysis is performed of nonlinear TM and TE surface plasmons in planar dielectric-graphenedielectric geometries.

JOINT

JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics—Continued

JW2A.23

Phase-Sensitive Amplification in Fiber-Loop for QPSK Signal Regeneration, Kyo Inoue¹, Shouma Okazaki¹, ¹Osaka University, Japan. Phase-sensitive amplification in a loop configuration with two pump lights is described. Its output phase has a stepwise transfer function with a step difference of n/2, which can be used for regenerating QPSK signals.

JW2A.24

Supercontinuum Generation in Femtosecond Noncollinear Bi-filamentation, Inhyuk Nam^{1,2}, Yongsing You¹, Taek II Oh', Hyyong Suk², Ki-Yong Kim¹; ¹University of Maryland at College Park, USA; ²Gwangju Institute of Science and Technology. Republic of Korea. We observe enhanced supercontinuum (SC) radiation emitted from noncollinear bi-filaments produced by two crossed femtosecond laser pulses in air. The spectrum is much broader than single-filament-produced SC under the same net input energy.

JW2A.25

Effect of a Tightly Focused Gaussian Beam on the Broadband SHG Response of Chirped Poled Lithium Niobate, Ameneh Bostani¹, Meenu Ahlawat¹, Amirhossein Tehranchi²³, Roberto Morandotti³, Raman Kashyap¹²; ¹Engineering Physics, Ecole Polytechnique de Montreal, Canada; ²Electrical Engineering, Ecole Polytechnique de Montreal, Canada; ³INRS-EMT, Canada. It is demonstrated, both theoretically and experimentally, that employing tightly focused Gaussian beam is possible to engineer the efficiency profiles and suppresses ripples in the second-harmonic response of a 30-nm-bandwidth chirped aperiodically poled lithium niobate.

JW2A.26

 $(\mathbf{\Phi})$

High Repetition Rate MW Peak Power at 532 nm Using Microchip Laser, Rakesh Bhandari¹, Takunori Taira¹; ¹Institute for Molecular Science, Japan. Efficient second harmonic conversion of a passively Q-switched microchip laser, obtaining 1.9 MW peak power, 740µJ, 400 ps pulses at 500 Hz, with>60% SHG conversion efficiency, without using focusing optics, is reported.

JW2A.27

Stability Analysis of an Intracavity Pumped OPO, Xuan Luo', Ladan Arissian', Jean-Claude M. Diels', '*Center for High Technology Materials, University of New Mexico,* USA. Simulation of quasi-phase-matching processes for ultrafast pulses in an intracavity pumped OPO is presented. Results reveal an effective cross phase modulation which introduces the coupling between OPO and pump cavities.

JW2A.28

Complete Pump Depletion by Autoresonant Wave Mixing in Nonuniform Second Order Media, Oded Yaakobi¹, Lucia Caspani¹, Matteo Clerici^{1,2}, Francois Vidal¹, Roberto Morandotti¹; ¹Institut National de la Recherche Scientifique Centre Energie Matériaux et Télécommunications (INRS-EMT), University of Québec, Canada; ²School of Engineering and Physical Sciences, Heriot-Watt University, United Kingdom. We propose an analytical theory for the autoresonant phase matching of parametric processes in generic nonuniform $\chi^{(2)}$ media. We determine the necessary criteria for achieving complete pump depletion in terms of the physical experimental parameters.

JW2A.29

A High Peak Power, Nanosecond Tm:fiber MOPA System for Mid-IR OPO Pumping, Pankaj Kadwani¹, Martin Gebhardt^{1,2}, Christian Gaida^{1,2}, Lawrence Shah¹, Martin Richardson¹; 'University of/Central Florida, CREOL, USA; 'Friedrich-Schiller University Jena, Institute of Applied Physics, Germany. We report on a thulium fiber MOPA system utilizing a photonic crystal fiber (PCF) based power amplifier generating >40 kW, ~6.5 ns pulses as a tunable, narrow linewidth source for mid-IR OPO pumping.

JW2A.30

Thermal effects in SHG with Focused Gaussian Beams, HWANHONG LIM¹, Sunao Kurimura¹, Keisuke Noguchi^{1,2}, Wataru Nagashima^{1,2}, Ichiro Shoji², ¹National Institute for Materials Science, Japan; ²Chuo University, Japan. We present thermal effects in single pass CW SHG with focused Gaussian beams. Thermal dephasing and lensing effects depending on the SH power are demonstrated with the calculated temperature change in PPMgSLT crystals.

JW2A.31

Spectral and Temporal Effects in a Picosecond Optical Parametric Oscillator Based on an Aperiodically Poled Nonlinear Crystal, Cédric Laporte¹, Jean-Baptiste Dherbecourt¹, Jean-Michel Melkonian¹, Myriam Raybaut¹, Cyril Drag², Antoine Godard¹; ¹ONERA-The French Aerospace Lab, France; ¹Laboratoire Aimé Cotton, CNRS-Université Paris Sud 11, France. We investigate cavity length detuning in a picosecond synchronously pumped optical parametric oscillator based on an aperiodically poled nonlinear crystal. A strong dependence on the sign of the quasi-phase matching period chirp is observed.

JW2A.32

Overcoming Intra-Cavity Nonlinear Phase Limitations in Cavity-Enhanced Optical Parametric Chirped Pulse Amplification through Cavity-Locking, Aleem M. Siddiqui¹, Jeffrey Moses¹, Kyung-Han Hong¹, Franz X. Kartner^{1,2}; ¹Massachusetts Institute of Technology, USA; ^aCenter for Free-Electron Laser Science, DESY and Dept. of Physics, University of Hamburg, Germany. In cavity-enhanced OPCPA, nonlinear phase shifts imparted on the intracavity pump pulse limit pump power loading and degrade system performance. We show that cavity-locking offsets these effects, maintaining dramatic bandwidth extension and high conversion efficiency.

JW2A.33

Evolution of ellipticity of ultrashort infrared pulses propagating in air, Shermineh Rostami¹, Ladan Arissian¹, Jean-Claude M. Diels¹; 'Center for High Technology Materials, University of New Mexico, USA. We measure the polarization evolution of ultrashort pulses (filaments) propagating in air for various pulse widths and energies. We observe the change of light ellipticity close to circular polarization.

JW2A.34

Improvement in resolution using four-wave mixing in nonlinear confocal microscopy, Yongzhang Leng^{1/2}, Dong Hun Park^{1/2}, Victor Yun^{1,2}, Pak Cho^{1,2}, Warren N. Herman², Julius Goldhar^{1/2}, ^{1/}University of Maryland at College Park, USA; ²Laboratory for Physical Sciences, USA. Improvement of resolution beyond the Rayleigh limit is obtained by monitoring non-resonant four wave mixing generated by the target in a confocal scanning microscope configuration.

JW2A.35

Reduced propagation losses in quasi-phasematched GaAs/AlGaAs waveguides, Shigeki Yoshida', Kaori Hanashima', Ikuma Ohta', Tomonori Matsushita', Takashi Kondo', 'materials engineering, University of Tokyo, Japan. We have achieved the lowest propagation loss of 1.3 dB/ cm in a quasi-phase-matched GaAs/AlGaAs waveguide by optimizing MBE growth temperature. An expected normalized conversion efficiency of the waveguide will exceed that of a PPLN waveguide

JW2A.36

Hybrid As2S3:Er-TeO2 Loss Compensated Nonlinear Waveguides, Steve Madden¹, Khu T. Vu¹, Zhe Jin¹, Kunlun Yan¹, Duk-Yong Choi¹, Xin Gai¹, Barry Luther-Davies¹; *Laser Physics Centre, Australian National University, Australia.* Single mode anomalous dispersion As2S3 on Er doped TeO2 waveguides with near zero propagation loss under 1475nm pumping are demonstrated. Fully lossless waveguides with high ronlinear coefficient can be achieved with higher 1480nm pump power.

JW2A.37

Triple-wavelength Nd-laser system by cascaded electro-optic periodically poled lithium niobate Bragg modulator, Shoutai Lin¹; *'Feng Chia University, Taiwan.* A cw triple-wavelength selectable Nd:GdVO4 laser was demonstrated. When switching the dc voltages and applying 25 W pump power, the output wavelength can be selected among 912, 1063, and 1342 nm with watt-level output power.

JW2A.38

Evanescent-Coupling-Assisted Four-Wave Mixing in a Silicon Directional Coupler, Wei Ding¹, Owain Staines¹, Gareth Hobbs¹, Andrey V. Gorbach¹, Charles de Nobriga¹, William Wadsworth¹, Jonathan C. Knight¹, Dmitry Skryabin¹, Michael John Strain², Marc Sorel², Richard De La Rue²; ¹Department of Physics, University of Bath, United Kingdom; ²Department of Electronics and Electrical Engineering, University of Glasgow, United Kingdom. Evanescent-coupling-induced group velocity dispersion (GVD) in a subwavelength silicon directional coupler is observed to significantly modify four-wave-mixing (FWM) spectra. As the separation between two silicon wires decreases, the increasing dispersion gradually suppresses the FWM gain.

JW2A.39

Raman laser from an on chip, high Q polymer microcavity, Beibei Li¹, Xue-Feng Jiang¹, Qihuang Gong¹, Yun-Feng Xiao¹; ¹Peking University, China. We observe the polydimethylsiloxane (PDMS) Raman laser from a PDMS coated microcavity, which is to our knowledge the first demonstration of polymer microcavity Raman laser.

JW2A.40

Third-Order Nonlinearities of Ge28Sb12Se60 for Waveguide Devices, Molly R. Krogstad', Elisabeth Rengnath', Wounjhang Park', Juliet Gopinath', ¹University of Colorado, USA. The optical nonlinearities of the chalcogenide Ge28Sb12Se60 are studied using the z-scan technique with femtosecond and picosecond laser pulses at 1.0 µm. Results indicate this glass shows promise for nonlinear optical waveguide devices.

JW2A.41

Oxidation of Ag Nanowires Studied by Terahertz Spectroscopy, Yao-Jun Tsai¹, Chi-Ying Chang¹, Pei-Chen Yu¹, Hyeyoung Ahn¹; *National Chiao Tung University, Taiwan*. The electrical conductivity of silver nanowire assembly is measured by using terahertz spectroscopy. Growth of the surface-oxidized layer on silver nanowires hinders electron transportation through the nanowire-tonanowire junction and reduces the conductivity of nanowire network.

JW2A.42

Asymmetric Backscattering of Ultraviolet Light by Low-Refractive Index Thin Film of Tilted Alumina Nanorods, Xing Yan¹, Kamaraju Natarajan², Tanuj Saxena², Michael Shur^{1,2}, ¹Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, USA; ²Department of Electrical, Computer, and System Engineering, Rensselaer Polytechnic Institute, USA, Asymmetric backscattering was observed at 266 nm for tilted alumina nanorods array. Novel approach for modeling of light scattering by nanoporous films was proposed and was shown to be in good agreement with measured data.

JW2A.43

Optimized Yttrium Iron Garnet Growth On Silicon For Films With High Faraday Rotation, Andrew Block'; 'Electrical Engineering, University of Minnesota, USA. Abstract Bismuth and cerium YIG films with Faraday rotations of 4000°/cm and 10000°/cm were obtained on Si, and a complete model for the growth and crystallization required to obtain such films is presented.

JW2A.44

Analysis of Time-Dependent Electron Distribution in KTa1-xNbxO3 Crystals for High-Speed Beam Deflector, Jun Miyazu¹, Tadayuki Imai¹, Junya Kobayashi¹; ¹NTT Photonics Laboratories, NTT Corporation, Japan. The time-dependent electron distribution generated by applying a voltage is analyzed in KTa1-xNbxO3 crystals. The optimum voltage and its application time for using the crystals as a beam deflector is derived with this analysis.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 147

۲

۲

JOINT

JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics—Continued

JW2A.45

80-MHz difference-frequency generation of femtosecond pulses in the mid-IR using GaS0.4Se0.6, Marcus Beutler¹, Ingo Rimke¹, Edlef Büttner¹, Vladimir Panyutin², Valentin Petrov²; ¹APE, Germany; ²Max Born Institute, Germany. We employ GaS0.4Se0.6 nonlinear crystal for difference-frequency generation between signal and idler of a synchronously pumped femtosecond OPO at 80 MHz achieving continuous tuning from 4 µm (>11 mW) to 12 µm (>0.5 mW).

JW2A.46

Few-Mode Cr-Doped Crystalline Core Fiber Cladded by High-Index Glass, Wei-Lun Wang¹, Yi-Chung Huang¹, Jau-Sheng Wang¹, Sheng-Lung Huang², Wood-Hi Cheng¹; ¹Department of Photonics, National Sun Yat-Sen University, Taiwan; ²Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taiwan. A few-mode Cr-doped crystalline core fiber (FMCDCCF) cladded by high-index glass is demonstrated. The FMCDCCF exhibited a V-value below four at 1400nm to provide five few-mode characteristics for possibility use in broadband fiber amplifiers.

JW2A.47

 $(\mathbf{\Phi})$

Nonlinear Spectra/Dispersion of Quinolinium Dyes Using Dual-Arm Z-scan, Trenton R. Ensley¹, Honghua Hu¹, Zhong'an Li³, Sei-Hum Jang³, Alex K-Y, Jen³, David J. Hagan¹², Eric W. Van Stryland¹², ¹CREOL, The College of Optics & Photonics, University of Central Florida, USA; ¹Department of Physics, University of Central Florida, USA; ³Department of Materials Science & Engineering, University of Washington, USA. We report two-photon absorption spectra and nonlinear refraction dispersion of a new series of quinolinium heptamethine cyanine dyes measured using our dual-arm Z-scan and fit of spectra and dispersion with an essential-state model.

JW2A.48

Observation of Strong Tunable Self-defocusing Nonlinearity in M-cresol/Nylon Thermal Solutions, Valton Smith¹, Brian Y. Leung¹, Zhigang Chen¹, Weining Man¹; 'San Francisco State University, USA. We report a new type of Kerr-like nonlinear media (m-cresol/nylon solutions) exhibiting a giant tunable self-defocusing nonlinearity. Their nonlinear response can be enhanced dramatically by increasing the nylon concentration and is verified to be isotropic.

JW2A.49

Nednesday, 12 June

Absorptive Thin Film Characterization with Spectroscopic Full-field Optical Coherence Tomography, Tuan-Shu Ho¹, Chien-Chung Tsai¹, Kuang-Yu Hsu¹, Sheng-Lung Huang^{1,2}; ¹Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taiwan; ²Department of Electrical Engineering, National Taiwan University, Taiwan. We have developed a spectroscopic full-field optical coherence tomography system, which can provide an ultrahigh isotropic spatial resolution. The complex refractive index and thickness of an embedded absorptive thin film was simultaneously measured.

Complementing Trends of Photoluminescence and Terahertz Intensities in Staggered InGaN Quantum Wells, Guan Sun¹, Ruolin Chen¹, Yujie J. Ding¹, Hongping Zhao¹, Guangyu Liu¹, Jing Zhang¹, Nelson Tansu¹; 'Lehigh University, USA. We demonstrate that photoluminescence and terahertz intensities show complementing trends for staggered InGaN quantum wells (QWs), dictated

by separation of electrons and holes

JW2A.51

JW2A.50

Direct Laser Writing of Metallic Nanostructures for Nanophotonics, Wei-Er Lu¹, Yongliang Zhang¹, Xuan-Ming Duan¹, Zhen-Sheng Zhao¹; ¹*Technical Institute of Physics and Chemistry, Chi*nese Academy of Science, China. We report on controllable fabrication of metallic microstructures by direct laser writing in aqueous solution of metal ion. Various planar nanostructures including metamaterials were demonstrated with subwavelength resolution and high fabrication efficiency.

JW2A.52

Spectroscopic Characterization of Cobalt Doped ZnSe/S Crystals as Saturable Absorbers and Gain Elements for IR Solid-State Lasers, Jeremy Peppers¹, Yuri Terekhov¹, Vladimir Fedorov¹, Dmitri Martyshkin¹, Sergey B. Mirov¹; ¹University of Alabama at Birmingham, USA. We report on fabrication and spectroscopic characterization of Co:(Fe:):ZnSe/S crystals for saturable absorbers and gain elements for IR solid-state lasers.

JW2A.53

Domain engineered EDIT waveguides on z-cut LiNbO₃, Tristan D. Crasto¹, Hendrik Steigerwald¹, Vijay Sivan¹, Andreas Boes¹, Arnan Mitchell¹; ¹Royal Melbourne Institute of Technology, Australia. The fabrication of optical waveguides, using Etching During the Indiffusion of Ti (EDIT) technique, on z-cut lithium niobate crystals of different compositions is presented. It's compatibility with electric field domain engineering is also demonstrated.

JW2A.54

Spontaneous and induced optical absorption in ultra-low loss amorphous Ta2O5 and SiO2 dielectric thin films, Ashot Markosyan¹, Roger Route¹, Martin Fejer¹, Dinesh Patel²³, Carmen Menoni^{2,3}, ¹E.L. Ginzton Laboroatory, Stanford University, USA; ²Department of Electrical and Computer Engineering, Colorado State University, USA; ³NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, USA. The optical absorption @1064 nm in Ta2O5 and SiO2 thin films is affected with simultaneous illumination ranging from 266 to 780 nm. The effect is attributed to filling of trap states in the forbidden gap.

JW2A.55

Emission from a Dipole-Forbidden Energy State in a GaAs Quantum-Ring Induced by Dressed Photon, Takashi Yatsui¹, Wataru Nomura¹, Takaaki Mano², Hideki T. Miyazaki², Kazuaki Sakoda², Tadashi Kawazoe¹, Motoichi Ohtsu¹; ¹University of Tokyo, Japan; ²National Institute for Materials Science, Japan. A significant decrease in the decay time of the emission from a dipole-forbidden state in a GaAs quantum-ring was observed, using the near-field interaction induced by the close proximity of an apertured fiber probe tip.

JW2A.56

Electro-optic Switching of VO2 for Infrared Spatial Light Modulation, Alain Hache', Bassel Abdel Samad', Mohamed Chaker', Ali Herndaoui², Sebastien Vigne²; Universite de Moncton, Canada; ²LMN/INRS-EMT, Canada. Optical switching of VO2 thin films with co-planar surface electrodes is demonstrated and characterized for spatial light modulating applications in the Mid-infrared. Switch time, amplitude, voltage, and recovery are reported for different electrode gap sizes.

JW2A.57

Directional fiber-optic level meter based on a micro-air- bubble drifted in a liquid core fiber Fabry-Pérot interferometer, Cheng-Ling Lee¹, Yang-Chen Zheng¹, Han-Jung Chang¹; 'Electro-Optical Engineering, National University, Taiwan. We propose a novel, directional fiber-optic level meter based on a micro-air-bubble drifted in a liquid-core fiber-Fabry-Pérot-interferometer which can detect non-horizontal state of structure/ object and also be able to discriminate the inclining to clockwise/counterclockeise directions.

JW2A.58

A high-speed quantum random number generator prototype, Feihu Xu^{1,2}, Bing Qi^{1,2}, He Xu¹, Jiancheng Xuan¹, Xiongfeng Ma^{3,2}, Hoi-Kwong Lo^{1,2}, Li Qian¹; ¹Electrical & Computer Engineering, University of Toronto, Canada; ²Physics, University of Toronto, Canada; ¹Institute for Interdisciplinary Information Sciences, Tsinghua University, China. We present a high-speed real-time quantum random number generator prototype by measuring the quantum phase noise of a laser. The simplicity and robustness of our design suggest that it is.

JW2A.59

Fiber-optic DTS Application in Performance Assessment of Pre-drainage Boreholes, Nima Noraei Danesh¹, Saiied M. Aminossadati¹, Mehmet S. Kizil¹, Eddie Prochon¹, 'School of Mechanical and Mining Engineering. The University of Queensland, Australia. The performance of pre-drainage boreholes can be assessed by utilization of fiber-optic Distributed Temperature Sensors (DTS). This study investigates interpretation of flow behavior in pre-drainage boreholes by measuring temperatures in a mechanistic simulator.

JW2A.60

Edge Self-Interference of a Laser Beam and Application to Thin Film Metrology, Alain Hache¹, Phong Anh Do¹, Mohamed Touaibia¹; ¹Physics, Universite de Moncton, Canada. Self-interference of a laser beam reflected off the edge of a thin film is used to measure optical thickness changes. Theory and experiment are presented, and applications include surface temperature measurement and thin film metrology.

JW2A.61

Precise Measurement of High-Speed Vibration Displacement Using Triangle-Wave Phase Modulation, Yosuke Tanaka¹, Naoyuki Miyata¹, Takashi Kurokawa¹; ¹Tokyo Univ of Agriculture and Technology, Japan. We propose a measurement system for high-speed vibration displacement using an interferometer with triangle-wave phase modulation. Displacement less than ±45 nm by 1-MHz vibration is proved measurable within a standard deviation of 1.5 nm.

JW2A.62

Cladding Mode Recoupling based Displacement Sensor by Concatenating Up Taper and Chirped Fiber Bragg Grating, Tao Qi¹, Shilin Xiao¹, Jie Shi¹, Zhao Zhou¹, Meihua Bi¹; 'The State Key Laboratory of Advanced Optical Communication Systems and Networks, China. Displacement sensor based on the cladding modes recoupling by using fiber up taper cascaded with chirped fiber Bragg grating is demonstrated. The reflection power difference reaches 135 μ W within displacement change of 3750 μ m.

JW2A.63

Development of the External Cavity Quantum Cascade Laser for spectroscopic applications, Denys Marchenko¹, Julien Mandon¹, Simona M. Cristescu¹, Frans J.M. Harren¹; '*Molecular and Laser Physics, Radboud University, Netherlands.* We describe the development of a widely and continuously tunable, mode-hop-free External Cavity QCL for the detection of medically relevant molecules. Several key issues are implemented to achieve fast detection and high spectral resolution.

JW2A.64

High sensitivity tapered fiber Mach-Zehnder interferometer with optical attractive nearfield force for active microsensing, Nan-Kuang Chen^{1,2}, Tsung-Hsun Yang¹, Yi-Ning Chen^{1,2}, Zhao-Ying Chen¹, Shien-Kuei Liaw¹, 'Electro-Optical Engineering, National United University, Taiwan; ²Optoelectronics Research Center, National United University, Taiwan; 'Electronic Engineering, National Taiwan University of Science and Technology, Taiwan. We demonstrate micro tapered fiber Mach-Zehnder-interferometer with one of the abrupt tapers is stretched and thinned to a diameter of 3.64 µm to strongly enhance the optical attractive force for high sensitivity cellulardimension microsensing.

۲

JW2A.65

Mid-infrared Chemical Sensors On-a-Chip Using Air-clad Pedestal Silicon Waveguides, Pao T. Lin¹, Vivek Singh¹, Juejun Hu², Kathleen Richardson⁵, J. David Musgraves⁴, Igor Luzinov⁴, Joel Hensley⁵, Anu Agarwal¹, Lionel Kimerling¹; ¹Massachusetts Institute of Technology, USA; ²University of Delaware,, USA; ³The College of Optics & Photonics (CREOL), University of Central Florida, USA; ⁴Clemson University, USA; ⁵Physical Sciences Inc., USA. Pao Tai Lin^{*}, Vivek Singh, Juejun Hu, Kathleen Richardson, J. David Musgraves, Igor Luzinov, Joel Hensley, Lionel C. Kimerling, and Anu Agarwal

JW2A.66

Low-loss High-speed Speckle Reduction using a Colloidal Dispersion, Brandon Redding', Graham Allen', Eric Dufresne², Hui Cao'; 'Applied Physics, Yale University, USA; ²Mechanical Engineering and Materials Science, Chemical and Environmental Engineering, Yale University, USA. We present a simple and robust approach to achieve low-loss, high-speed speckle reduction using a colloidal dispersion. This approach is compact, low cost, requires no external power, and is compatible with commercially available lasers.

JOINT

JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics—Continued

JW2A.67

Design, Fabrication, and Testing of a Pd-Based Integrated Optical Hydrogen Sensor, Nicholas Carriere¹, Farshid Bahrami¹, M.z. Alam¹, Mo Mojahedi¹, J. Stewart Aitchison¹; 'Electrical Engineering, University of Toronto, Canada. A palladium-based integrated optical hydrogen sensor on a silicon-on-insulator platform was designed, fabricated, and tested. The sensitivity and response time of the sensor was recorded for hydrogen concentrations varying from 0-4%.

JW2A.68

Sensitive Detection of Carbon Monoxide using a Compact High Power CW DEB-QCL based QEPAS Sensor, Przemyslaw Stefanski^{1,2}, Rafal Lewicki¹, Jan Tarka^{1,2}, Yufei Ma³, Mohammad Jahjah¹, Frank K. Tittel¹, 'Electrical & Computer Engineering, Rice University, USA; ²Laser & Fiber Electronics Group, Wroclaw University of Technology, Poland; ³National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, China. Development of an ultrasensitive, selective, and compact QEPAS-based CO sensor employing a high power CW DFB-QCL is reported. A minimum detectable concentration of 4ppbv was achieved for CO line (2169.2cm-1) using a 5sec data acquisition time.

JW2A.69

 $(\mathbf{\Phi})$

Silicon-on-Insulator spectrometers with integrated GaInASSb photodiode array for wideband operation from 1500 to 2300 nm, Eva Ryckeboer^{1,2}, Alban Gassenq^{1,2}, Nannicha Hattasan^{1,2}, Laurent Cerutti³, Bart Kuyken^{1,2}, Jean-Baptiste Rodriguez³, Eric Tournie³, Roel Baets^{1,2}, Gunther Roelkens^{1,2}, 'INTEC, Photonics Research Group, Ghent University - imec, Belgium, 'center for Nano- and Biophotonics (NB photonics), Ghent University, Belgium; ³Institut d'Electronique du Sud (IES), Universite Montpellierhotnics (NB photonics), Ghent University, France. Four echelle-type spectrometers on SOI with integrated GaInASSb photodiodes for 1500-2300 nm are realized. A maximum channel crosstalk of -10 dB, dark current of -2.5 µA and responsivity of 0.61 A/W at 1530 nm and 0.7 A/W at 2200 nm are obtained.

JW2A.70

Absorption Spectroscopy of CO2 at 4.3 µm Utilizing an Off-Beam QEPAS Spectrophone and an IR-LED, Stefan Böttger¹, Ulrike Willer², Wolfgang Schade^{1,2}; ¹Faunhofer Heinrich-Hertz-Institute, Germany; ²Clausthal University of Technology. Energy Research Center of Lower Saxony, Germany. An IR-LED at 4.3 µm and an off-beam QEPAS spectrophone as optical detector are utilized for absorption spectroscopy. With an absorption path of 5 cm a detection limit of 150 ppm is achieved for carbon dioxide.

JW2A.71

A large area polymer-based substrate with broadband absorption for surface enhanced Raman scattering, Ming Yang', Qiang Wu', Jiwei Qi', Zhandong Chen', Jingjun Xu'; *'The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, China.* We fabricate a large area polydimethylsiloxane-based substrate for surface-enhanced Raman scattering by combining femtosecond laser microstructuring and soft lithography techniques. The substrate exhibits broadband absorption in the region of 350-1000 nm and reproducible enhancement factor 10^7.

JW2A.72 Interferometric Fiber Strain Sensor using Fiber Bragg Grating based Optical Ruler, Shih-Hsiang Hsu', Jung-Chen Hsu', Shan-Chi Chen'; 'National Taiwan University of Science and Technology, Taiwan. An interferogram from a two-staged optical low-coherence Mach-Zehnder interferometer is demonstrated to double the sensitivity improvement for fiber strain sensing using the fiber Bragg

JW2A.73

linewidth reflection spectrum.

Trace Detection of NO2 Using Cavity Ring-Down Spectroscopy and a Diode Laser, Andreas Karpf¹, Gottipaty N. Rao¹; ¹Physics Dept., Adelphi University, USA. A violet multi-mode diode laser and cavity ring-down spectroscopy were used to detect trace amounts of NO2. The laser excites multiple cavity modes, simplifying the detector alignment and making it less susceptible to vibration.

grating based optical ruler through its narrow

JW2A.74

Compact On-chip Multiplexed Photonic Gas Sensors, Zhixuan Xia', Ali Asghar Eftekhar¹, David Gottfried², Qing Li¹, Ali Adibi'; 'School of Electrical and Computer Engineering, Georgia Institute of Technology, USA; 'Institute of Electronics and Nanotechnology, Georgia Institute of Technology, USA. A compact resonator-based integrated photonic sensor for the detection of multiple gas analytes with high resolution is demonstrated. On-chip references are employed to compensate for environmental effects and laser instabilities to achieve high accuracy.

JW2A.75

Laser Diagnostics as a Tool to Improve Combustion-based Atmospheric SiO2 Layer Deposition, Alfons Burkert¹, Wolfgang Paa¹, Andreas Neudeck³, Dirk Müller¹, Andreas Heft², Arnd Schimansk¹; ¹Microscopy, IPHT Jena, Germany; ²INNOVENT e.V., Germany; ³TITV, Germany. SiO-LIF fields, and temperatures based on OH-LIF and OH^{*} where used to optimize the burner to substrate distance and the thread temperature during SiOX layer deposition on glass and threads in an atmospheric HMDSO/propane/air flame.

JW2A.76

Theory of Phase-Locking of Large Multistable Fiber Amplifier Array Coupled in an External Cavity, Erik J. Bochove¹, Mohammad R. Zunoubi¹, Christopher J. Corcoran¹, ¹Directed Energy Directorate, Air Force Research Laboratory, USA. The transmission characteristic of a fiber amplifier array is shown to be a multivalued function of pump power, analogous to a passive etalon with Kerr nonlinearity (Felber et al, APL,1976), of which highest gain solutions possess robust phase-locking.

JW2A.77

Intrusion Detection Based on Quantum Interference, Clifford Bishop¹, Travis S. Humble¹, Ryan S. Bennink¹, Brian P. Williams^{1,2}, ¹Quantum Information Science Group, Oak Ridge National Laboratory, USA, ²Department of Physics, University of Tennessee, USA. We present a new method for intrusion detection which is based on the Mach-Zehnder interference effect. This device provides monitored surveillance by continuously measuring the intensity of light collected by a pair of photodetectors.

JW2A.78

Photonic Crystal Chemical Absorption Spectroscopy for Multiplexed Detection of Xylene and TCE in Water, Wei-Cheng Lai¹, Swapnajit Chakravarty², Ray T. Chen¹²; ¹University of Texas at Austin, USA; ²Omega Optics, USA. We experimentally demonstrate simultaneous selective detection of xylene and trichloroethylene using photonic crystal waveguide. Sensitivity is improved by slow light effect of PC to 1ppb (v/v) for xylene and 10ppb (v/v) for TCE in water.

JW2A.79

Chirped Laser Dispersion Spectroscopy for Remote Sensing of Methane at 1.65µm - Analysis of System Performance, Genevieve Plant¹, Michal Nikodem¹, David M. Sonnenfroh², Gerard Wysocki¹; 'Electrical Engineering, Princeton University, USA; 'Physical Sciences Inc., USA. A chirped laser dispersion spectroscopy system, operating at 1.65µm to target atmospheric methane, is presented. A discussion of the long-term stability, sensitivity, and long open-path integrated measurements is provided.

JW2A.80

Sensitive Detection of CO and N2O using a High Power CW 4.61 µm DEB-QCL Based QEPAS Sensor, Yufei Ma^{1,2}, Rafal Lewicki², Manijeh Razeghi³, Xin Yu¹, Frank K. Tittel², 'Harbin Institute of Technology, China; 'Rice University, USA; ³Northwestern University, USA. A high power CW DFB-QCL based CO and N2O QEPAS sensor demonstrating the MDL of 1.5 ppbv and 23 ppby, respectively was developed. Continuous monitoring of atmospheric CO and N2O concentration levels were performed.

JW2A.81

Development of an Open-Path / QCL- Setup for Intra-Pulse Determination of NO and NO₂ Emissions, Christoph Reidl-Leuthner¹, Bernhard Lendl¹; ¹Institute of Chemical Technology, Austria. Combining 300ns - pulsed quantum cascade lasers with an open-path- setup allows recording micro-spectra (~2cm¹) of the resolving narrow absorption bands of gaseous analytes during a single pulse, while minimizing the influence of the environmental matrix.

JW2A.82

Influence of morphology on the plasmonic enhancement effect of Au@TiO2 core-shell nanoparticles in dye-sensitized solar cells, Lin Fan Cheng¹; *Chemistry, National Tsing Hua University, Taiwan.* Plasmonic core-shell nanoparticles (PCSNPs) can function as optical nanoantennas and improve the efficiency of dye-sensitized solar cells (DSSCs). We report a new synthesis route for the control of morphology of Au@TiO2 PCSNPs and systematically studied its influence on the enhancement effect.

JW2A.83

Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells, Ya-Ju Lee¹, Yung-Chi Yao¹, Chia-Hao Yang¹; ¹National Taiwan Normal University, Taiwan. A novel scheme of direct electrical contact on vertically aligned silicon nanowire (SiNW) axial p-n junction is demonstrated by means of oblique-angle deposition of slanted indium-tin-oxide (ITO) film for photovoltaic applications.

JW2A.84

Investigation of Nano-Sized Hole/Post Patterned Sapphire Substrates-Induced Strain-Related Quantum-Confined Stark Effect of InGaN-Based Light-Emitting Diodes, Vincent Su', Po-Hsun Chen', Ming-Lun Lee', Yao-Hong You', Cheng-Ju Hsieh¹, Chieh-Hsiung Kuan¹, Yi-Chi Chen', Hung-Chou Lin', Han-Bo Yang', Ray-Ming Lin², Quan-Yi Lee', Fu-Chuan Chu², 'National Taiwan University, Taiwan; ²Chang Gung University, Taiwan. This paper demonstrates that the efficiency of InGaN-based light-emitting diodes with nano-post patterned sapphire substrates is superior to that with nano-hole patterned sapphire substrates under the same nano-scale feature owing to reduced quantum-confined stark effect.

JW2A.85

A Lidar based on Optical Sampling by Cavity Tuning, LIN YANG¹, Jinsong Nie², Lingze Duan¹; ¹Physics, University of Alabama in Huntsville, USA; ²State Key Laboratory of Pulsed Power Laser, China. We report the demonstration of a lidar based on optical sampling by cavity tuning. Target vibration as fast as 50 Hz has been successfully detected at an equivalent free-space distance of over 2 km.

JW2A.86

Observation of Raman Resonance of a Probe in a Rb Cell Added to an Ethane-Rb Laser for Realizing a Superluminal Laser, Joshua M. Yablon', Shih Tseng', Zifan Zhou', Selim M. Shahriar¹²; ¹EECS, Northwestern University, USA; ²Physics, Northwestern University, USA. We report sub-natural linewidth Raman resonance for a probe applied to an auxiliary Rb cell added to an Ethane-Rb laser as a key step towards realizing a superluminal ring laser for ultrasensitive gyroscopy and accelerometry.

JW2A.87

Dynamics of Fourier Domain Mode Locked Lasers, Svetlana Slepneva¹², Ben O'Shaughnessy¹², Bryan Kelleher¹², Stephen P. Hegarty², Andrei G. Vladimirov¹³, Guillaume Huyet¹², ¹Centre for Advanced Photonics and Process Analysis, Cork Institute, Ireland; ³Weierstrass Institute for Applied Analysis and Stochastics, Germany. We analyze the dynamics of Fourier Domain Mode Locked lasers and show that the frequency-sweep asymmetry in the output originates from inherent field-matter nonlinearities, resulting in two regions: chaos and mode group stepping.

JW2A.88

Immersion Birefringent Transducer for Angular Displacement Measurement in Heterodyne Interferometer, Ruey-Ching Twu¹, Ching-Shing Wang¹, Jhao-Sheng Wang¹; 'Electro-Optical Engineering, Southern Taiwan University of Science Technology, Taiwan. A novel birefringent transducer is proposed for optically measuring angular displacement based on a heterodyne interferometry. As a result, a resolution of 2.85×10-5 deg with a dynamic range of over 5deg has been achieved. ۲

2013CLEO Wednesday.indd 16

Exhibit Hall 3

()

JOINT

JW2A • POSTER SESSION II: Energy, Sensing, and Nonlinear Optics—Continued

JW2A.89

Progress of the Beijing regional time and frequency network, Chao Gao¹³, Bo Wang¹², Xi Zhu¹³, Jing Miao¹³, Yu Bai¹³, Tianchu Li¹⁴, Lijun Wang¹²; ¹Joint Institute for Measurement Science, Tsinghua University, China; ²The state key lab of precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, China; ⁴Department of Physics, Tsinghua University, China; ⁴National Institute of Metrology, China. We report progress of the Beijing regional time and frequency network and a series of innovations used for it, including the fiber based multiple-access RF dissemation system, phase-locked free space RF dissemination system.

JW2A.90

Unified Theory of Oscillator Phase Noise with Application to Optoelectronic Oscillators, William Loh^{1,2}, Siva Yegnanarayanan¹, Rajeev J. Ram², Paul Juodawlkis¹; ¹Massachusetts Inst of Tech Lincoln Lab, USA; ²Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA. We present a general theory of phase noise for white noise perturbation that can be applied to any oscillator. Our theory agrees well with phase-noise measurements of a hybrid optoelectronic oscillator. JW2A.91 Interwoven frequency comb, Koji Masuda^{1,2}, Ladan Arissian², Jean-Claude M. Diels²; ¹Department of Physics and Astronomy, University of New Mexico, USA; ²Center for High Tech Materials, University of New Mexico, USA. A mode-locked Ti:sapphire laser with intracavity Fabry-Perot produces a frequency comb at 7 GHz including a fine structure at 100 MHz. The complex nature of

this interwoven comb is analyzed.

JW2A.92

Performance Enhanced of Silicon Solar Cells Using Spin-On-Film Processes and Indium Nanoparticles Plasmonics, Wen-Jeng Ho¹, Yi-Yu Lee¹, Jheng-Jie Liu¹, Yuan-Tsz Chen¹, Chi-He Lin¹, Po-Hung Tsai¹; '*National Taipei University of Technology, Taiwan*. We demonstrate the enhanced performances of Si-solar-cells using the spin-onfilm device-processes and Indium-nanoparticle plasmonics. The short-circuit-current of the cell with indium-nanoparticles-plasmonics increase by 56.03% (from 3.48 to 5.43 mA) is obtained, compared to the bare-solar-cell.

JW2A.93

Observing the Propagation of Fluorescent Light in Doped Polymer Films, Po-Rui Chen¹, Jonathon White¹, Rui-Hung Hsu², Arnold C. Yang³: *IPhotonics Engineering, Yuan Ze University, Taiwan*: ³Materials Science, Sun Yat-Sen University, *Taiwan*: ³Materials Science, Tsing-Hua University, *Taiwan*. By making use of spot excitation to generate photoluminescence, and parallel grooves to extract light, light propagation in a polymer film was quantified. Scatterings contribution in limiting the propagation distance was determined by simulation.

JW2A.94

Effect of InGaN/GaN Multiple Quantum Wells with p-n Quantum Barriers on Efficiency Droop in Blue Light-emitting Diodes, Sheng-Wen Wang¹, Da-Wei Lin¹, Chia-Yu Lee¹, Che-Yu Liu¹, Yu-Pin Lan¹, Hao-chung Kuo¹, Shing-Chung Wang¹; ¹National Chiao Tung University, Taiwan. The QW sandwiched by the sigle-pn-QB had a less electric field than the other QWs. The simulation results demonstrated that by selecting suitable position of p-n QB, the distribution of carriers could be effectively improved.

JW2A.95

The Crystalline and Optical Properties of (11-22) Semipolar GaN and InGaN/GaN MQWs on (1-100) M-Saphire, Yun-Jing Li¹, Shih-Pang Chang², Kuok Pan Sou², Jel-Rung Chang¹, Ruey-Wen Chang², Chun-Yen Chang¹, Yuh-Jen Cheng¹, ¹Electronics Engineering, National Chiao Tung University, Taiwan; ¹Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan; ¹Research Center for Applied Sciences, Academia Sinica, Taiwan. We report the growth temperature effect on the crystalline and optical properties of (11-22) semipolar GaN and InGaN/GaN MQWs. It shows that a lower growth temperature at 1020°C produces better crystalline and optical properties.

Nednesday, 12 June

()

Reminder:
CLEO: 2013 Program
now available in
mobile formats!
Visit

www.cleoconference.org for more information.

Ľ	
-C	

Thank you for attending CLEO: 2013. Look for your post-conference survey via email and let us know your thoughts on the program.

۲

NOTES	
	Weo
	Wednesday, 12 June
	ay, 12
	June

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 151

Executive Ballroom 210A

CLEO: QELS-Fundamental Science

16:30–18:30 QW3A • Optics of Random Media

Presider: Anatoly Zayats; Univ of London King's College London, United Kingdom

QW3A.1 • 16:30 Invited Color Production by Isotropic Nanostructures

Color Production by Isotropic Nanostructures with Short-range Order in Bird Feather Barbs, Hui Cao¹, Heeso Noh¹, Seng Fatt Liew¹, Vinodkumar Saranathan¹, Richard Prum¹, Jason Forster¹, Eric Dufresne¹, Simon Mochrie¹; ¹Yale Univ., USA. We studied how the short-range-ordered nanostructures in bird feather barbs create angleinvariant colors. By manipulating the interplay between light scattering and absorption, we fabricated biomimetic nanostructures that produce isotropic color.

Executive Ballroom 210B

CLEO: Science & Innovations

16:30–18:30 CW3B • Nonlinear Optical Materials Presider: Peter Schunemann; BAE

Systems Inc, United States

CW3B.1 • 16:30 Invited

Advances in Hydrothermally Grown UV Nonlinear Crystals, Joseph W. Kolis¹, Colin McMillen¹, David C. Brown², Henry Giesber², ¹Clemson Univ, USA; ²Snake Creek Lasers, USA; ³Advanced Photonic Crystals, USA. Single crystals of alkali metal borates for deep UV non-linear applications are grown using the hydrothermal method. Particular emphasis will be placed on the structure and properties of the ABBF category of crystals.

Executive Ballroom 210C

16:30-18:30

Simulators II

QW3C • Symposium on

Presider: Philip Walther,

QW3C.1 • 16:30 Invited

tion in parameter space.

Universitat Wien, Austria

Quantum Simulators: Quantum

Quantum Simulation of Dirac Points, Leticia

Tarruell¹, Daniel Greif², Thomas Uehlinger²,

Gregor Jotzu¹, Tilman Esslinger²; ¹Institute fo

Quantum Electronics, ETH Zurich, Switzerland; ²Laboratoire Photonique, Numérique et Nanosciences, CNRS/IOGS/Université, France. We report

on the creation of Dirac points with adjustable

properties in a tunable honeycomb optical lattice

[1,2]. We directly measure their position, observe them merge and map out this topological transi-

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

16:30-18:30

QW3D • Ultrafast Dynamics in Strongly Correlated Materials Presider: Rupert Huber; Universität Regensburg, Germany

QW3D.1 • 16:30

Ultrafast Magnetization Dynamics Induced by Acoustic Pulses in Nickel Thin Films, Jiwan Kim', Mircea Vomir', Jean-Yves Bigot', 'Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, France. : We show that acoustic pulses generated by femtosecond laser pulses in a ferromagnetic thin film can efficiently couple to the magnetization after its propagation at long distances via a change in the magneto-crystalline anisotropy.

QW3D.2 • 16:45

Tracking Charge Localization via Transient Electron-Phonon Coupling in a Stripe-ordered Nickelate, Giacomo Coslovich¹, Bernhard Huber¹, Wei-Sheng Lee2, Yi-De Chuang3, Yi Zhu1, Takao Sasagawa⁴, Zahid Hussain³, Hans A. Bechtel³, Micheal C. Martin³, Zhi-Xun Shen², Robert W. Schoenlein¹, Robert A. Kaindl¹; ¹Materials Sciences Division, Lawrence Berkeley National Laboratory, USA; ²SIMES, SLAC National Accelerator Labora tory and Stanford University, USA; ³Advanced Light Source, Lawrence Berkeley National Laboratory, USA; ⁴Materials and Structures Laboratory, Tokyo Institute of Technology, Japan. We study the lowenergy conductivity dynamics after femtosecond perturbation of the stripe-ordered phase in a strongly-correlated nickelate. The experiments reveal ultrafast suppression and recovery of electron-phonon coupling that tracks the atomicscale localization of correlated charges.

۲

QW3D.3 • 17:00

Coupling between antiferromagnetic and superconducting order in an oxide heterostructure revealed using ultrafast optical spectroscopy, Jingbo Qi¹, Jason Haraldsen¹, Jianxin Zhu¹, Stuart A. Trugman¹, Antoinette Taylor¹, Quanxi Jia¹, Rohit P. Prasankumar¹; ¹Los Alamos National Laboratory, USA. Ultrafast optical pump-probe spectroscopy is used to study a heterostructure consisting of superconducting and antiferromagnetic films. We observed a new slow relaxation process that reveals the interaction between superconducting and antiferromagnetic order at the interface.

 $(\mathbf{\Phi})$

QW3A.2 • 17:00

Active control of the emission of an optofluidic random laser, nicolas bachelard¹, Patrick Sebbah¹, Xavier Noblin², Sylvain Gigan¹; ¹Institut Langevin, CNRS, France; ¹Laboratoire de Physique de la Matire Condensee, CNRS, France. We present an innovative mirrorless optofluidic random laser where the optical cavity has been replaced by a random scattering structure. We achieve emission control at any desired wavelength by iteratively shaping the optical pump profile.

CW3B.2 • 17:00

Studies of Sub Millisecond Domain Dynamics in Rubidium Doped KTP, Using Real-Time In-Situ SHG, Gustav Lindgren¹, Andrius Zukauskas¹, Valdas Pasiskevicius¹, Fredrik Laurell¹, Carlota Canalias¹; ¹Applied Physics, KTH - Royal Institute of Technology, Sweden. We demonstrate real-time, in-situ SHG as a technique for studying the submillisecond dynamics of periodic poling in Rbdoped KTP. Using this technique we established the parameters which have the most influence on the domain dynamics. QW3C.2 • 17:00 Invited

Quantum Dynamics of a Single, Mobile Spin Impurity, Stefan Kuhr¹; University of Strathclyde, Scotland, UK. Our results pave the way for a new approach to study quantum magnetism, mobile impurities in quantum fluids, and polarons in lattice systems.

CLEO: 2013 • 9–14 June 2013

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

16:30–18:30 QW3E • Supercontinuum

Generation and Temporal Solitons

Presider: Mark Foster; Johns Hopkins University, United States

QW3E.1 • 16:30

Rogue wave buster, Ayhan Demircan¹, Shalva Amiranashvili², Carsten Bree², Fedor Mitschke³, Gunter Steinmeyer⁴; ¹Invalidenstr. 114, Germany; ²WIAS, Germany; ³University of Rostock, Germany; ⁴Max-Born-Institute, Germany. Rogue wave formation from a high-order soliton in optical fibers can be inhibited by simultaneously launching dispersive waves at suitable delay, wavelength, and duration. Addition of low-energy wavepackets dramatically affects the emerging soliton amplitude statistics.

QW3E.2 • 16:45

Linking frequency combs to supercontinuum generation: from cascaded four-wave mixing to Cherenkov radiation, Miro Erkintalo², Ray Xu², Stuart Murdoch³, John M. Dudley³, Goëry Genty³, ¹Université de Franche-Comté, France; ²University of Auckland, New Zealand; ¹Tampere University of Technology, Finland. We show theoretically, numerically, and experimentally that cascaded four-wave mixing arising from symmetrybreaking constitute the physical interpretation of soliton-induced Cherenkov radiation and associated soliton spectral recoil observed in supercontinuum generation.

QW3E.3 • 17:00

Propagation of few-cycle pulses in nonlinear Kerr media: Harmonic generation, Yuzhe Xiao¹, Drew N. Maywar², Govind P. Agrawal¹; *'The* Institute of Optics, University of Rochester, USA; *'Electrical, Computer, and Telecom. Eng. Technol*ogy, Rochester Institute of Technology, USA. We apply the recently developed time-transformation technique to optical pulse propagation in nonlinear Kerr media, and to study carrier-wave shocking and generation of odd-order harmonics.

Executive Ballroom 210G

16:30-18:30

Systems II

CW3F.1 • 16:30

CW3F.2 • 16:45

CW3F • Opto-mechanical

Presider: Kartik Srinivasan;

National Inst of Standards &

Chip-Scale Cavity-Optomechanical Accelerom

eter, Tim Blasius¹, Alexander G. Krause¹, Oskar

Painter¹; ¹Applied Physics, California Institute of

Technology, USA. We demonstrate an optome-

chanical accelerometer using a v-groove fiber

coupled photonic crystal nanocavity integrated

with a high-Q nanotethered test mass. The nano-

cavity frequency can be tuned to that of an input laser by on-chip capacitive actuators.

Si3N4 nanobeam optomechanical crystals,

Marcelo I. Davanco^{1,2}, Jasper Chan², Amir Safavi-Naeini², Oskar Painter², Kartik Srinivasan¹; ¹Center

for Nanoscale Science and Technology, National Inst

of Standards & Technology, USA; ²Applied Physics,

Caltech, USA. We demonstrate sideband-resolved

Si3N4 optomechanical crystals supporting 10^5

quality factor optical modes at 980 nm, coupled

to GHz frequency mechanical modes.We also

develop slot-mode-based geometries for en-

hanced optomechanical coupling and multimode

Technology, United States

Executive Ballroom 210F

CLEO: Science & Innovations

16:30–18:30 CW3G • Nano and Polariton Lasers Presider: A. Helmy; Univ. of Toronto. Canada

CW3G.1 • 16:30

Polarization Properties of GaN Nanowire Lasers, Antonio Hurtado^{1,2}, Huiwen Xu¹, Jeremy B. Wright^{1,4}, Sheng Liu^{3,4}, Qiming Li⁴, George T. Wang⁴, Ting S. Luk^{3,4}, Jeffrey Figiel⁴, Karen Cross⁴, Ganesh Balakrishnan¹, Luke Lester¹, Jgal Brener^{3,4}, ¹Center for High Technology Materials, University of New Mexico, USA; ²University of Essex, United Kingdom; ³Center for Integrated Nanotechnology, Sandia National Laboratories, USA; ⁴Sandia National Laboratories, USA: The polarization properties of GaN nanowire lasers are studied experimentally by analyzing their end-facet emission. We demonstrate that the polarization state varies for different transverse modes. Linear and elliptical polarizations are observed in our measurements.

CW3G.2 • 16:45

Dynamically Color-Controllable Lasing from a Single CdSSe Alloy Nanowire, Zhicheng Liu', Leijun Yin', Hao Ning', Zongyin Yang', Limin Tong', Cun-Zheng Ning', 'School of Electrical, Computer, and Energy Engineering, Arizona State University, USA; 'State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, China. We report a simultaneous two-color lasing with wavelength separation of 107 nm in a single CdSSe alloy nanowire. The output color can be tuned continuously from green to red by controlling two pump beams.

Executive Ballroom 210E

16:30–18:30 CW3H • Ultrafast Nonlinear Optics

Presider: Jeffrey Moses; Massachusetts Institute of Technology, United States

CW3H.1 • 16:30

Mid-infrared Supercontinuum Generation in Silicon Waveguides, Michael R. Lamont^{1,3}, Ryan K. Lau¹, Austin Griffith², Y. Henry Wen¹, Yoshitomo Okawach¹, Michal Lipson^{2,3}, Alexander L. Gaeta^{1,3}, ¹School of Applied and Engineering Physics, Cornell University, USA; ²School of Electrical and Computer Engineering, Cornell University, USA; ³Kavil Institute at Cornell for Nanoscale Science, Cornell University, USA. We demonstrate supercontinuum generation (SCG) spanning from telecom to Mid-infrared wavelengths beyond 3.6 µm, using a silicon-on-insulator wire waveguide, which represents the first octave-spanning SCG from a silicon chip.

CW3H.2 • 16:45 Invited

Light Scattering from Soliton-induced Relativistically Travelling Inhomogeneities, Daniele Faccio¹, Eleonora Rubino², S. Cacciatori², F. Belgiorno³, Fabio Biancalana^{1,4}, Mohammed F. Saleh⁴, Arnaud Couairon⁵, 'School of Engineering and Physical Science, SUPA, Heriot-Watt Univ, United Kingdom; 'Dipartimento di Scienza e Alta Tecnologia, Universita dell'Insubria, Italy: ³Dipartimento di Matematica, Politecnico di Milano, Italy; ⁴Max Planck Institute for the Science of Light, Germany: ³Centre de Physique Theorique, CNRS, Ecole Polytechnique, France. Light scattering from a Kerr induced inhomogeneity is revisited, unveiling novel emission channels resulting essentially from the formation of shock front instabilities. These exhibit different features in the presence of negative or positive GVD.

۲

CW3F.3 • 17:00

applications.

Optomechanical torsional sensing in photonic crystal split-beam nanocavities, Marcelo Wu^{1,2}, Aaron C. Hryciw², Mark R. Freeman^{2,3}, John P. Davis³, Paul E. Barclay^{1,2}; ¹Physics and Astronomy, University of Calgary, Canada; ²National Institute for Nanotechnology, National Research Council, Canada; ³Physics, University of Alberta, Canada. Photonic crystal split-beam nanocavities are proposed and fabricated for optomechanical detection of torsional motion. Large optomechanical transduction around 20 GHz/nm allows for predicted torsional sensitivities down to 10^-20 Nm/Hz/(-1/2). CW3G.3 • 17:00 Invited

Nanolasers Employing Epitaxial Plasmonic Layers, Chih-Kang K. Shih'; 'Physics, The University of Texas, USA. By using an atomically smooth epitaxial Ag film as the plasmonic platform and InGaN@GaN core-shell nanorod acting as the gain medium we report successful operation of low-threshold, continuous-wave (CW) operation of a green nanolaser.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 153

NO CAMERAS

2013CLEO Wednesday.indd 20

 (\blacklozenge)

 $(\mathbf{\Phi})$

Meeting Room 211D-B

CLEO: Applications & Technology

16:30–18:30 AW3I • OCT: Technology Development and Applications Presider: Benjamin Vakoc; Harvard Medical School, United States

AW31.1 • 16:30 Invited OCT Image Guidance for RFA Therapy of Cardiac Arrhythmias, Andrew M. Rollins'; 'Case

Western Reserve Univ., USA. OCT imaging has the potential to improve radio-frequency ablation therapy of cardiac arrhythmias by providing realtime information such as confirmation of catheter contact; confirmation of lesion development, early detection of over-treatment; and identification of critical structures.

AW3I.2 • 17:00 ·

Functional optical coherence tomography for imaging middle ear dynamics, Ernest Chang¹; Jeffrey T. Cheng³; John Rosowski², Seok-Hyun Yun³; ¹Physical Sciences inc., USA; ²Massachusetts Eye and Ear Infirmary, USA; ³Wellman Center for Photomedicine, USA. We use OCT to take threedimensional yolumetric snapshots of the moving eardrum and the ossicular chain behind the eardrum in a cadaveric chinchilla with which can generate 3D amplitude and phase maps

Inesday, 12 June

(

oom

212A-C

Meeting Room

16:30–18:30 JW3J • Symposium on High Power Diode Laser Arrays: Technology and Applications:High Power Diode Laser Arrays II Presider: Andy Bayramian; Lawrence Livermore National Laboratory, United States

JW3J.1 • 16:30 Invited

JW3J.2 • 17:00 Invited

High Power High Brightness Laser Diode

Sources, Olivier Rabot¹, Andreas Kohl¹; ¹Quantel

France. This paper reports on progress of QCW

diode pump sources. Performance of the different

building blocks such as the diode stacks, cooling

systems and diode drivers are discussed. An out-

ook on future developments is given.

Engineering Diode Laser Pumps for Extremely Large Scale Laser Systems, Robert Deri'; 'Lawrence Livermore National Laboratory; USA. Several large scale laser applications require diode pumps for high efficiency and average power, but are sensitive to diode performance-cost tradeoffs. This paper describes approaches for addressing these issues, using the example of inertial fusion energy drivers.

Meeting Room

212D-B

Marriott San Jose Salon I & II

CLEO: Science & Innovations

16:30–18:30 CW3K • Advanced THz Emission Mechanisms Presider: Peter Jepsen; Danmarks Tekniske Universitet, Denmark

CW3K.1 • 16:30 Withdrawn

CW3L • Atmospheric Sensing

16:30-18:30

Presider: Uricke Willer, Technische Universität Clausthal, Germany and Mark Zondlo, Princeton, USA

CW3L.1 • 16:30 Invited

Recent Advances QCLs, High Finesse Optical Cavities and Robotic Instrumentation: Addressing Climate Change With New Experimental Strategies, Jim Anderson'; 'Harvard, USA. Accelerating changes in the Earth's climate resulting from potent feedbacks that control the structure of the climate require fundamentally new observational strategies. The union of new laser technology, optics and robotic deployment are described.

CW3K.2 • 16:45

32 μW pulsed terahertz emission from high mobility InAlAs/InGaAs multi-nanolayer structures, Roman J. Dietz', Björn Globisch', Dennis Stanze', Thorsten Göbel', Martin Koch², Bernd Sartorius', Martin Schell', 'Photonic Components, Fraunhofer Heinrich-Hertz-Institute, Germany; 'Department of Physics, Philipps-Universität Marburg, Germany. We measured pulsed THz emission from high-mobility MBE grown InGaAs/ InAlAs multi-nanolayer structures. The detected average THz power was 32 μW at 32 mW optical excitation power. The bandwidth of the THz pulses exceeds 4 THz.

CW3K.3 • 17:00

Broadband THz generation using Interdigitated Photoconductive antennas with a 15 fs, high power oscillator, Peter Hale', Julien Madeo^{1,2}, Catherine Chin¹, Sukhdeep Dhillon², Juliette Mangeney², Jérôme Tignon², Keshav Dani'; ¹Femtosecond Spectroscopy Unit, Okinawa Inst. of Science and Technology, Japan; ¹Laboratoire Pierre Aigrain, Ecole Normale Supérieure, France. We study the generation of broadband THz radiation (~18 THz) with high peak electric field (~0.5 kV/ cm) using a low temperature GaAs interdigitated photoconductive antenna and a high-power, high repetition rate, 15 femtosecond Ti:Sapphire oscillator.

CW3L.2 • 17:00

Resonant photoacoustic gas sensing with silicon tuning forks, Michael Köhring', Ulrike Willer², Wolfgang Schade^{1,2}, ¹Fraunhofer Heinrich Hertz Institute, Germany; ²Institute for Energy Research and Physical Technologies, Technical University of Clausthal, Germany. Silicon micro tuning forks are used as highly frequency selective sound detector for photoacoustic spectroscopy. The resonant properties and temperature dependencies of these sensors are investigated using the example of a fiber coupled methane sensor.

154

Marriott San Jose Salon III

CLEO: Science & Innovations

16:30–18:15 CW3M • Single Frequency Fiber Lasers D Presider: Shibin Jiang; AdValue

Photonics, Inc., United States

CW3M.1 • 16:30 D

Generation of 9 W, 4 kHz linewidth 13C2H2 frequency-stabilized fiber laser output with core pumped erbium-doped amplifier, Akira Fujisaki¹², Keisuke Kasai², Masato Yoshida², Toshihiko Hirooka², Masataka Nakazawa³, 'Telecommunication company, Furukawa Electric, Japan; 'Research Institute of Electrical Communication, Tohoku University, Japan. We demonstrate a record-high output power of 9 W and an ultranarrow linewidth of 4 kHz by combining a 13C2H2 frequency-stabilized fiber laser, a core-pumped erbium-doped fiber amplifier, and a cascaded-Raman 1480-nm fiber-laser pumping source.

CW3M.2 • 16:45 200W Gain-Switched-Diode-Seeded, Single-Polarization, Narrow-Linewidth, All-Fiber, Picosecond MOPA, Peh Siong Teh¹, Ho-Yin Chan¹, Richard J. Lewis¹, Shaif-ul Alam¹, David P. Shepherd¹, David J. Richardson¹; ¹Optoelectronics Research Centre, University of Southampton, United Kingdom. We report a fully fiberized, single-polarization, gain-switched, diode-seeded fiber MOPA delivering 28ps pulses at a repetition frequency of 214MHz with 200W of average output power and up to 0.93µJ pulse energy.

CW3M.3 • 17:00 Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output, Jeffrey W. Nicholson¹, John M. Fini¹, X. Liu¹, A. DeSantolo¹, P. Westbrook¹, R. Windeler¹, E. Monberg¹, F. DiMarcello¹, C. Headley¹, D. DiGiovanni¹; 'OFS Laboratories, USA. Single-frequency and narrow-linewidth pulse amplification is demonstrated in an erbium-doped higher-order mode fiber with effective area of 6000um2 and output long-period grating for re-conversion of the output beam back to the fundamental mode. Marriott San Jose Salon IV

 (\blacklozenge)

CLEO: QELS-Fundamental Science

16:30–18:30 QW3N • Waveguide & Plasmonics

Presider: Natalia Litchinitser; University at Buffalo, The State University of New York, United States

QW3N.1 • 16:30 D

Optically Defined Plasmonic Waveguides in Crystalline Semiconductors at Optical Frequencies, Herman Man Kai Wong', A. S. Helmy'; 'The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada. A nanoscale all-semiconductor waveguide designed to support a plasmonic gap mode (PGM) at high optical excitation intensity is introduced. The PGM properties such as mode confinement and dispersion are widely tunable through varying the excitation intensity.

QW3N.2 • 16:45 Engineering Metallic Nanocavity Radiation for Efficient Uni-/Bi-directional Coupling into Integrated Waveguide, Myung-Ki Kim¹, Zheng Li¹, Ming C. Wu², Ryan Going², Hyuck Choo¹; ¹Electrical Engineering, California Institute of Technology, USA; ²Electrical Engineering & Computer Sciences, UC Berkeley, USA. We propose a new, simple way to engineer the radiation patterns of subwavelength-scale metallic semiconductor cavities for coupling light from a nanoscale metal cavity into integrated waveguides uni-/bi-directionally with efficiency up to ~90%.

QW3N.3 • 17:00 🜔

Plasmonic nanoparticle interaction in hybrid plasmonic-dielectric waveguides, Thomas Kaiser¹, Séverine Diziain¹, Christian Helgert¹, Carsten Rockstuhl², Thomas Pertsch¹; ¹Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Germany; ²Institute of Condensed Matter Theory and Solid State Optics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Germany. We theoretically and experimentally investigate plasmonic nanostructures that are fabricated atop a dielectric waveguide. Different geometric parameters lead to a strongly tunable dispersion that displays even negative group velocity. We analyze the underlying coupling mechanisms.

Marriott San Jose Salon V & VI

CLEO: Science & Innovations

16:30–18:30 CW30 • Optical Materials and Devices II ●

Presider: Zhaowei Liu; University of California San Diego, United States

CW30.1 • 16:30 Invited

Theory-guided Nano-engineering of Organic Electro-optic Materials for Integration with Silicon Photonics, Plasmonics, and Metamaterial Devices, Larry R. Dalton'; '*Chemistry, University*' of Washington, USA. New quantum and statistical mechanical theoretical methods are used to guide the development of new OEO materials optimized for integration with the new hybrid device architectures.

CW30.2 • 17:00 Realization of Tellurium-based all Dielectric

Optical Metamaterials using a Multi-cycle Deposition-etch Process, Sheng Liu^{2,1}, Jon F. Ihlefeld², Jason Dominguez², Edward Gonzales^{2,1}, John E. Bower², Bruce D. Burckel², Michael B. Sinclair², Igal Brener^{2,1}; ¹Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; ¹Sandia National Laboratories, USA. Tellurium dielectric resonator metamaterials were fabricated using a newly developed multi-cycle deposition-etch process. Deposition and etching of Tellurium were studied in detail. All the samples showed two transmission minima corresponding to magnetic and electric dipole resonances.

Wednesday, 12 June

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 155

(

Executive Ballroom 210A

CLEO: QELS-Fundamental Science

QW3A • Optics of Random Media—Continued

QW3A.3 • 17:15

Wave-Particle Duality during Hyper-Transport of Light in Dynamic Disorder, Roman Kreiserman¹, Liad Lev¹, Yevgeny Krivolapov¹, Shmuel Fishman¹, Mordechai Segev¹; ¹Physics, Technion, Israel. We present an analytic spectral wave theory describing the propagation of wavepackets in dynamically-evolving disordered potentials, in the hyper-transport regime. The results are examined in the context of Bohr's correspondence principle.

QW3A.4 • 17:30

Anomalous diffusion of light in 1D random dimer waveguide arrays, Simon Stützer¹, Uta Naether², Tsamikos Kottos³, Rodrigo A. Vicencio², Mario I. Molina², Andreas Tünnermann¹, Stefan Nolte¹, Demetrios N. Christodoulides⁴, Alexander Szameit¹, 'Friedrich-Schiller-Universität Jena, Institute of Applied Physics, Abbe Center of Photonics, Germany: ²Universidad de Chile, Departamento de Fisica and MSI-Nucleus on Advanced Optics, Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Chile; ³Wesleyan University, Department of Physics, USA; ⁴University of Central Florida, College of Optics and Photonics, USA. We experimentally demonstrate super-diffusion and the delocalization-localization phase transition in a random dimer structure. The system is implemented using weakly-coupled optical waveguides.

QW3A.5 • 17:45

Position Dependent Diffusion of Light in Disordered Waveguides, Raktim Sarma¹, Alexey Yamilov², Brandon Redding¹, Ben Payne², Heeso Noh¹, Hui Cao¹, ¹Applied Physics, Yale University, USA; ²Department of Physics, Missouri University of Science & Technology, USA. Position-dependent diffusion of light is observed experimentally in quasi-two-dimensional disordered optical waveguides. Strong wave interference effects make the diffusion coefficient depend on the size and shape of the random medium as well as the dissipation.

QW3A.6 • 18:00

Breakdown of quantum-classical Correspondence Principle when light interacts with fluctuating disorder, Ammon Hanan Sheinfux¹, Tal Kachma¹, Yaakov Lumer¹, Yonatan Plotnik¹, Moti Segev¹; 'Technion Israel Institute of Technology, Israel. We study, experimentally and theoretically, interactions between a soliton and a transient trapping potential. The soliton can be guided by such a potential, while its motion is arrested at the potential minimum by radiation dampening.

Executive Ballroom 210B

CLEO: Science & Innovations

CW3B • Nonlinear Optical Materials—Continued

CW3B.3 • 17:15

CW3B.4 • 17:30

was obtained.

CW3B.5 • 17:45

Periodically Poled KTiOAsO₄ for Second Harmonic Generation in the Green Region, Andrius Zukauskas¹, Valdas Pasiskevicius¹, Fredrik Laurell¹, Carlota Canalias¹; ¹Applied Physics, KTH - Royal Institute of Technology, Sweden. We present highquality room temperature periodic poling of KTiOAsO₄ with a period of 8.49 µm. The crystals are evaluated for SHG at 533 nm, and show d_{eff} = 10.5 pm/V and $\eta_{norm} = 1.19\%/Wcm$.

Enhanced Electro-Optic Spectral Tuning in

Multi-Wavelength APPLN Optical Parametric

Generator, Yen-Hung Chen¹, Hung-Ping Chung¹,

Wei-Kun Chang¹, Hsueh-Tsung Lyu¹, Jui-Wen

Chang¹, Chien-Hao Tseng¹; ¹Department of Optics and Photonics, National Central University, Taiwan.

We report the first demonstration of electro-opti-

cally funable, multi-wavelength optical parametric

generators based on domain-engineered APPLN.

Several orders of magnitude enhancement on

the device tuning rate over a conventional one

Plasma Density Measurement Using a Disper-

sion Interferometer Based on Second-Harmonic

Generation in Orientation-Patterned GaAs,

Douglas J. Bamford¹, Elizabeth Cummings¹, Dmi-

triy Panasenko¹, David B. Fenner², Joel Hensley², Rejean Boivin³, Thomas N. Carlstrom³, Michael A.

OW3C.3 • 17:30

Quantum control of spin-correlations in ultracold lattice gases, Philipp Hauke¹, Robert Sewell¹, Morgan W. Mitchell^{1,2}, Maciej Lewenstein^{1,2}, ¹Institut de Ciencies Fotoniques, Spain, ²ICREA, Spain. We describe a new technique for preparing and detecting spatial spin-correlations and multipartite entanglement in a quantum lattice gas based on entropic cooling via quantum non-demolition (QND) measurement and feedback.

QW3C.4 • 17:45

Correlated photons in quantum dot-cavity quantum electrodynamics: beyond the single cavity, Arka Majumdar^{1,2}, Armand Rundquist¹, Michal Bajcsy¹, Jelena Vuckovic¹; 'Physics Department, U C Berkeley, USA; 'Electrical Engineering, Stanford University, USA. We show that the use of a coupled cavity or a bimodal cavity can improve single photon generation significantly relative to a single quantum dot strongly coupled to a cavity.

QW3C.5 • 18:00

Degenerate high-orbital microcavity excitonpolariton condensates in a lattice, Na Young Kim¹, Kenichiro Kusudo³, Yoshihisa Yamamoto^{1,2}, Andreas Loeffler³, Sven Hoefling³, Alfred Forchel³; ¹Stanford University, USA; ²National Institute of Informatics, Japan; ²University of Wuerzburg, *Germany*. We explore two degenerate high-orbital exciton-polariton condensates in a honeycomb lattice. We measure the order parameter of the condensates, identifying the vortex-antivortex lattice order. We also study the intensity correlation relation between two condensates.

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

QW3C • Symposium on Quantum Simulators: Quantum Simulators II—Continued

Executive Ballroom

210C

QW3D • Ultrafast Dynamics in

Strongly Correlated Materials— Continued

QW3D.4 • 17:15

Coherent Magnetization Dynamics Investigated with Magneto Optical Four Wave Mixing, Marie Barthelemy¹, Mircea Vomir¹, Monica Sanchez Piaia¹, Jean-Yves Bigot¹; ¹Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, France. A three beams four wave mixing experiment using ultrashort pulses in a magneto optical configuration is presented. It allows distinct measurements of population and coherent contributions of magnetization dynamics in a ferrimagnetic bismuth doped garnet.

QW3D.5 • 17:30

Speeding up of Transient Carrier Relaxation during Non-Equilibrium Photoinduced Phase Transition in Manganites, Tianqi Li¹², Aaron Patz¹², Jiaqiang Yan², Thomas Lograsso³, Leonidas Mouchliadis³, Ilias E. Perakis³, Jigang Wang¹², ¹²Department of Physics and Astronomy, Iowa State University, USA; ²Ames Laboratory, USA; ³Department of Physics, University of Crete, Greece. We observe a distinct excitation-fluence-dependent transient carrier relaxation in a strongly correlated colossal magnetoresistive manganite that correlates with photoinduced magnetic and electronic phase transitions characterized by nonlinear photoexcitation behaviors.

QW3D.6 • 17:45

Ultrafast Demagnetization and Precession Damping Times in Rare Earth Doped Cobalt Films, Leandro H. Andrade^{2,3}, Mircea Vomir¹, Jiwan Kim¹, Monica Sanchez Piaia¹, Antonio D. Santos⁴, Jean-Yves Bigot¹; ¹Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, France, France; ²Departamento de Física, ICEB/UFOP, Ouro Preto, MG, Brasil, Brazil; ³Centro de Lasers e Aplicações, IPEN-CNEN, São Paulo, SP, Brasil, Brazil; ⁴Departamento de Física dos Materiais e Mecânica, IF/ USP, São Paulo, SP, Brasil, Brazil. We show that the ultrafast demagnetization (τM) and precession damping (ηM) times of rare-earth-doped Cobalt films have different physical origins. ηM is due to impurity induced spin scattering while τM is attributed to spin-orbit interaction

QW3D.7 • 18:00 Invited

Ultrafast Order Parameter Dynamics and Critical Phenomena of Ising-Nematic Phase in Iron Pnictides, Jigang Wang'; 'lowa State Univ., USA. Femtosecond-resolved polarimetry characterizes a two-step polarization recovery after non-equilibrium photoexcitation of BaFe2As2. This underpins the nematicity as an independent degree of freedom responsible for the anisotropy, which demonstrates a benchmark approach to anisotropic quantum fluids.

Nednesday, 12 June

2013CLEO Wednesday.indd 23

۲

Van Zeeland³; ¹Physical Sciences Inc., USA; ²Physical Sciences Inc., USA; ³General Atomics, USA. A dispersion interferometer based on secondharmonic generation in orientation-patterned GaAs has been used to measure the line density of electrons in a radio-frequency plasma with a detection limit of 7 x 10¹⁶ m⁻².

CW3B.6 • 18:00

A hybrid integrated balanced optical crosscorrelator using PPKTP waveguides, Patrick T. Callahan¹, Tony D. Roberts³, Philip Battle³, Amir Nejadmalayeri¹, Franz X. Kärtner^{1,3}, ¹Dept. of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, USA; ²AdvR, Inc., USA; ³Center for Free-Electron Laser Science, DESY and Dept. of Physics, University of Hamburg, Germany. A hybrid integrated balanced optical cross-correlator using continuous PPKTP channel waveguides and dielectric coatings is demonstrated for use in femtosecond and sub-femtosecond timing applications.

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

OW3E • Supercontinuum **Generation and Temporal** Solitons—Continued

QW3E.4 • 17:15

Raman-assisted octave-spanning continuum generation in single-crystal diamond for subcycle pulse synthesis, Chih-Hsuan Lu1, Fan Yang Li¹, Miaochan Zhi², Alexei Sokolov², Shang-Da Yang¹, Andy Kung¹³, ¹Institute of Photonics Tech-nologies, National Tsing Hua University, Taiwan; ²Institute for Quantum Science and Engineering and Department of Physics and Astronomy, Texas A&M University, USA; 3Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan, A coherent continuum is generated by Raman-assisted fourwave mixing in single-crystal diamond of an 8 fs laser pulse. The bandwidth of the spectrum will support the synthesis of an isolated single-cycle femtosecond pulse.

QW3E.5 • 17:30

Raman enhanced supercontinuum generation from 2 - 20 µm in GaAs using 3 ps CO₂ laser pulses, Jeremy Pigeon¹, Sergei Tochitsky¹, Chan Joshi¹; ¹Electrical Engineering, UCLA, USA. Supercontinua covering the entire mid-IR region were obtained by sending a train of 3 ps CO₂ laser pulses through a 67mm GaAs crystal. The spectral width is attributed to stimulated Raman scattering and self-phase modulation.

OW3E.6 • 17:45

Scalar and vector modulational instability induced by parametric resonance in periodically tapered PCFs, Fabio Biancalana^{2,1}, Andrea Armaroli¹, Arnaud Mussot³, Alexandre Kudlinski³, Maxime Droques³; ¹Max-Planck-Inst Physik des Lichts, Germany; ²School of Engineering & Physical Sciences, Heriot-Watt University, United Kingdom; 3Laboratoire PhLAM UMR CNRS 8523, IRCICA, Universite' Lille 1, France. We analyze the modulational instability process induced by periodic variations of the parameters of a PCF along the propagation direction, induced by an analogue of the parametric resonance in mechanics.

OW3E.7 • 18:00

Supercontinuum Generation by Mid-IR femtosecond Filaments in Molecular Gases, Daniil Kartashov¹, Skirmantas Ališauskas¹, Audrius Pugzlys¹, Alexander Voronin², Aleksei Zheltikov^{2,3}, Massimo Petrarca⁴, Pierre Béjot⁴, Jerome Kasparian⁴, Jean-Pierre Wolf⁴, Andrius Baltuska¹; ¹Photonics Institute, Vienna University of Technology, Austria; ²Physics Department, Russian Quantum Center, International Laser Center, M.V. Lomonosov Moscow State University, Russian Federation; ³Department of Physics and Astronomy, Texas A&M University, USA; 4Université de Genève, Switzerland. We present experimental and numerical investigation of multi-millijoule mid-IR supercontinuum generation by mid-IR femtosecond filaments in molecular gases. Drastic difference in spectra between atomic and molecular gases and crucial role of Raman scattering is demonstrated.

CW3F • Opto-mechanical Systems II—Continued

Executive Ballroom

210G

CW3F.4 • 17:15

Feedback locking of slot-type optomechanical oscillators to external low-noise reference clocks, Jiangjun Zheng¹, Ying Li¹, Noam Goldberg¹, Mick ey McDonald², Archita Hati³, Ming Lu⁴, Stefan Strauf⁵, Tanva Zelevinsky², David Howe³, Chee Wei Wong¹; ¹Columbia University, USA; ²Department of Physics, Columbia University, USA; ³National Institute of Standards and Technology, USA; 4 Center for Functional Nanomaterials, Brookhaven National Laboratory, USA; ⁵Department of Physics and Engineering Physics, Stevens Institute of Technology, USA. We demonstrated feedback and harmonic locking of chip-scale slot-type optomechanical oscillators to external low-noise reference clocks. with suppressed timing jitter by three orders of magnitude at close-to-carrier offset frequencies.

CW3F.5 • 17:30

Experimental demonstration of light-assisted templated self assembly using photonic-crystal slabs, Eric Jaquay¹, Luis Javier Martinez¹, Camilo Mejia¹, Michelle L. Povinelli¹; ¹University of Southern California, USA. We demonstrate experimentally that the near field of a photonic-crystal slab can be used to trap square arrays of nanoparticles. This process of light-assisted, templated, self assembly exploits the guided resonant mode for force enhancement.

Executive Ballroom 210F

CLEO: Science & Innovations

CW3G • Nano and Polariton Lasers—Continued

CW3H • Ultrafast Nonlinear **Optics**—Continued

Executive Ballroom

210E

CW3H.3 • 17:15

A Semiconductor Saturable Absorber for Mid-infrared Wavelengths, Jean Wei^{2,1}, Joel M. Murray^{2,1}, Leonel P. Gonzalez¹, Yong Chang³, Siva Sivanathan4, Shekhar Guha1; 1US Air Force Research Laboratory, USA; ²UES, Inc., USA; ³Sivananthan Laboratories, USA; ⁴University of Illinois at Chicago, USA. Saturable absorption of nanosecond and picosecond duration pulses in a thin HgCdTe film is reported at 4.6 micrometer. The material shows promise as a mode locker for Mid-infrared ultrafast lasers.

Room Temperature Polariton Lasing from GaN Nanowire Array in a Dielectric Microcavity, Bo Xiao¹, Junseok Heo¹, Shafat Jahangir¹, Pallab Bhattacharya1; 1Department of Electrical Engineering and Computer Science, University of Michigan, USA. Polariton lasing from epitaxially grown GaN nanowire array embedded in a dielectric microcavity is demonstrated at room temperature under optical excitation. Simulations of cavity mode and polariton emission characteristics of the device are presented.

GaAs Electrically Injected Exciton-Polariton

Laser, Bo Xiao¹, Ayan Das¹, Sishir Bhowmick¹,

Junseok Heo1, Pallab Bhattacharya1; 1Department

of Electrical Engineering and Computer Science, University of Michigan, USA. Electrically injected

polariton lasing from a GaAs-based modulation-

doped microcavity diode has been demonstrated

under an applied magnetic field of 7 Tesla at 30 K.

Polariton lasing and condensation characteristics

CW3G.4 • 17:30

CW3G.5 • 17:45

CW3H.4 • 17:30

Time transformation approach to nonlinear pulse propagation: Kerr and delayed Raman response, Yuzhe Xiao¹, Drew N. Maywar², Govind P. Agrawal1; 1 The Institute of Optics, University of Rochester, USA; ²Electrical, Computer, and Telecom. Eng. Technology, Rochester Institute of Technology, USA. We extend the time-transformation tech nique to include the delayed Raman response and apply it to study the impact of the width of fewcycle optical pulses on intrapulse Raman scattering and dispersive wave generation.

CW3H.5 • 17:45 Invited

Optical Kerr effect in the strong field regime, Pierre Béjot¹, Eric Cormier², Edouard Hertz¹, Bruno Lavorel¹, Jerome Kasparian³, Jean-Pierre Wolf³, Olivier Faucher¹; ¹ICB, Université de Bourgogne, France; ²CELIA, Université de Bordeaux, France; ³GAP-Biophotonics, Université de Genève, Switzerland. The work reports on a comparative study of the optical Kerr response of atoms exposed to strong and short near infrared laser pulses.

۲

CW3F.6 • 17:45

Giant Resonant Light Forces in Microspherical Photonics, Yangcheng Li1, Alexey V. Maslov2, Oleksiy Svitelskiy¹, David Carnegie³, Edik Rafailov³, Vasily N. Astratov¹, ¹Department of Physics and Optical Science, University of North Carolina at Charlotte, USA; ²University of Nizhny Novgorod, Russian Federation; ³School of Electrical Engineering and Physics, University of Dundee, United Kingdom. Giant optical propelling velocities of 15-20 µm polystyrene microspheres are observed in evanescent fiber-taper-to-microsphere couplers. The results demonstrate a possibility of parallel particle-sorting according to the frequency of their whispering gallery mode resonances.

CW3F.7 • 18:00

Phase shifting, strong coupling, and parametric feedback squeezing of an opto-electromechanical device, Menno Poot¹, Hong X. Tang¹; Electrical Engineering, Yale University, USA. A nanoelectromechanical resonator is used as an on-chip phase shifter. Unprecedentedly strong electrostatic effects are observed and using realtime parametric feedback the thermal motion of the resonator is squeezed below 3dB.

CW3G.6 • 18:00 Invited

have been measured and analyzed.

Polariton Lasing at Room Temperature, Nicolas Grandjean1; 1Ecole Polytechnique Federale de Lausanne, Switzerland, III-nitride semiconductors exhibit robust excitons, which makes them desirable for strong light-matter interaction. Provided high quality factor microcavities, room-temperature non-linear emission is achieved due to quasiequilibrium polariton condensation, referred to as polariton lasing.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 157

Meeting Room 211D-B

CLEO: Applications & Technology

AW3I • OCT: Technology **Development and Applications**— Continued

AW3I.3 • 17:15 In Vivo Optical Coherence Tomography (OCT) Imaging of Transplant Kidney: Feasibil-ity Studies, Yu Chên¹, Pêter Andrews², Jerêmiah Wierwille^P, Wei 'Gong3, Hsing-Wen Wang1; ¹Bioengineering, University of Maryland, USA; ²Cell Biology, Georgetown University, USA; ³Photonic and Electric Engineering, Fujian Normal University, China. We demonstrated the feasibility of OCT. to image human kidneys during transplantation. OCT visualized the extent of tubular necrosis and Doppler OCT (DOCT) revealed renal blood flow dynamics that is correlated with post-transplant renal function.

AW3I.4 • 17:30

OCT-based Profiler for Automating Ocular Surface Prosthetic Fitting, Mircea Mujat¹, R. Daniel Ferguson¹, Ankit Patel¹, Nicusor Iftimia¹, ¹*Physical* Sciences Inc.,º USA.º An OCT-based profiler was developed for ocular surface prosthetic fitting. Multiple surfaces corresponding to different parts of the cornea and sclera were measured and automatically segmented and stitched together generating a large-area anterior-segment ocular surface.

AW3I.5 • 17:45

OCTANE: Optical Coherence Tomography Advanced Nanophotonic Engine, Kyle Preston¹; Arthur Nitkowski1, Nicolás Sherwood-Droz1, Andrew Berkeley2, Bradley S. Schmidt2, Arsen R. Hajian²; ¹Tornado Spectral Systems, USA; ²Tornado Spectral Systems, Canada. We introduce OCTANE, the first product line of chip-based spectrometers using silicon photonics for spectral domain optical coherence tomography (SD-OCT). It is well suited for low-cost, high-volume applications in both the medical and industrial fields.

AW3I.6 • 18:00 Dual Modality Optical Imaging Approach for Real-time Assessment of Skin Burns, Ernest Chang', Mircea Mujat', R. Daniel Ferguson', Ankit Patel', Milind M. Rajadhyaksha², Nicusor Iftimia'; ¹Physical Sciences Inc., USA; ²Memorial Sloan-

Meeting Room 212A-C

JOINT

JW3J • Symposium on **High Power Diode Laser** Arrays: Technology and Applications: High Power Diode Laser Arrays II—Continued

JW3J.3 • 17:30 Invited

energy power plants.

Laser Diode Arrays - Designs and Production

Techniques for Fusion Energy Power Plants,

Ryan Feeler¹; ¹Northrop Grumman Cutting Edge

Optronics, USA. Novel laser diode array designs

and manufacturing methods are discussed, with

a focus on providing the lowest-cost solution for

the specific application of DPSS pumping in fusion

Meeting Room

212D-B

CLEO: Science & Innovations

CW3K • Advanced THz Emission Mechanisms—Continued

CW3K.4 • 17:15

Substantial Radiation Enhancement in Photoconductive Terahertz Emitters by Utilizing Plasmonic Contact Electrodes, Christopher W. Berry¹, Mohammed Reza Hashemi¹, Mehmet Unlu¹, Mona Jarrahi¹; ¹Electrical Engineering and Computer Science, University of Michigan, USA. We experimentally show that utilizing plasmonic contact electrodes enhances the optical-to-terahertz conversion efficiency of photoconductive terahertz emitters and can offer 50 times higher radiation powers than conventional photoconduc-tive terahertz emitter designs without plasmonic electrodes

CW3K.5 • 17:30 Invited Scanning Laser THz Imaging System and Its Ap-plication, Masayoshi Tonouchi¹; ¹Institute of Laser Engineering,, Osaka Univ., Japan. Recent progress of a scanning laser THz emission microscope and a scanning laser THz point source near field imaging system is reviewed and its prospect is discussed.

CW3L • Atmospheric Sensing—Continued

Marriott San Jose

Salon I & II

CW3L.3 • 17:15 D

Faraday Rotation Spectroscopy of O2 Using a Distributed Feedback Diode Laser and a Static Magnetic Field, Eric J. Zhang¹, Brian Brumfield¹, Gerard Wysocki1; Princeton University, USA. Faraday rotation spectroscopy is used for measurement of O2 at atmospheric conditions. Low operating powers (< 10 W) are achieved by using rare-earth magnets for DC magnetic field generation. A sensitivity of 1.7 ppmv/√Hz is demonstrated.

CW3L.4 • 17:30

Cross-band Relative Absorption Technique for Molecular Mixing Ratio Determination, Denis Pliutau¹, Narasimha S. Prasad¹; ¹NASA Langley Research Center, USA. We describe a new approach for molecular mixing ratio measurements based on spectral lines matching of various molecules with oxygen resulting in substantial reductions of temperature and pressure induced errors and close weighting functions matching.

CW3L.5 • 17:45

Remote Range Resolved Chemical Detection Using Dual Comb Interferometry, Sylvain Boudreau1, Simon Levasseur1, Simon Roy2, Jérôme Genest¹; ¹Centre d'optique, photonique et laser, Universite Laval, Canada; ²Rechercher et développement pour la défense Canada, Canada. We demonstrate detection and ranging of various targets, including aerosols, gas spectral signatures and translucent sample thickness using dual comb interferometry. High-resolution hyperspectral traces are obtained from targets at a distance of 175 m.

CW3L.6 • 18:00 D

Advanced Difference Frequency Generation Laser Spectrometer: Design and Airborne Field **Performance,** Dirk Richter¹, Petter Weibring¹, James G. Walega¹, Alan Fried¹; ¹Institute of Arctic and Alpine Research, University of Colorado, USA. We report on the design and performance of a new Difference Frequency Generation spectrometer operated aboard a Gulfstream-V jet during the Deep Convective Cloud and Chemistry research study (DC3) during the spring of 2012.

2

 $(\mathbf{\Phi})$

Kettering Cancer Center, USA. A dual modality optical imaging approach based on high-resolution reflectance confocal microscopy (RCM) and opti-cal coherence tomography (OCT) is proposed for assessing skin burns gravity."

JW3J.4 • 18:00 Invited

Scalable Compact Laser diode Array Technology for High Energy Applications, Prabhu Thiagarajan¹, Steve Smith¹, Brian Caliva¹, Jason Helmrich¹, Suhit Das¹, Feliks Lapinski¹, Greg Pennington¹, Robert Walker¹, Mark McElhinney Lasertel Inc, USA. Multi-kw compact CW and QCW laser diode array technology is presented for use in high energy applications. Performance of the fully soldered compact arrays and approaches for scalability to sub-megawatt class laser diode modules are discussed.

CW3K.6 • 18:00

Coherent effect in nonlinear excitation of lowtemperature-grown GaAs by 1.5 µm pulses, Yuki Tomiyasu¹, Yoriko Tominaga¹, Yutaka Kadoya¹; ¹*Hiroshima University, Japan.* The mechanism of the nonlinear photo-carrier generation in lowtemperature-grown GaAs by 1.5 μm pulses was investigated. The effect of intermediate excitation on the photo response was distinctly observed and found to be largely coherent.

158

Marriott San Jose Salon III	Marriott San Jose Salon IV	Marriott San Jose Salon V & VI
CLEO: Science & Innovations	CLEO: QELS- Fundamental Science	CLEO: Science & Innovations
CW3M • Single Frequency Fiber Lasers—Continued	QW3N • Waveguide & Plasmonics—Continued	CW30 • Optical Materials and Devices II—Continued
CW3M.4 • 17:15 C Highly scalable coherent fiber combining using interferometric technique, Marie Antier ¹ , Jerome Bourderionnet ¹ , Christian Larat ¹ , Eric Lallier ¹ , Eric Lenormand ¹ , Jerome Primot ² , Gerard Mourou ³ , Arnaud Brignon ¹ ; ¹ Thales Research & Technol- ogy, France; ² ONERA, France; ³ IZEST, France. We demonstrate the scalability of fiber phase locking system using interferometric method. The system allows complete phase error map measurement with a l/60 rms accuracy in a single acquisition of only 6 pixels per fiber.	QW3N.4 • 17:15 Q Macroscopic Engineering of Polarized Emission from Aligned Hybrid Gold Nanorods , Jiafang Li', Siyun Liu', Lin Gan', Zhi-Yuan Li'; ' <i>Institute</i> <i>of Physics, Chinese Academy of Sciences, China.</i> Here we report on the generation and engineering of polarized emission from aligned hybrid gold nanorods embedded in a Polyvinyl Alcohol film, where circularly polarized input light can be con- verted into broadband linearly polarized emission.	CW30.3 • 17:15 Engineered Thin Film Lithium Niobate Sub- strate for High Gain-Bandwidth Electro-optic Modulators, Vincent Stenger ¹ , James Toney ¹ , Andrea Pollick ¹ , James Busch ¹ , Jon Scholl ¹ , Peter Pontius ¹ , Sri Sriram ¹ ; ¹ SRICO, Inc, USA. This paper reports the demonstration of a high-speed electro- optic modulator in crystal ion sliced thin film lithium niobate (TFLN [*]). Experimental results indicate potential to realize a 100 GHz TFLN [*] modulator at 1550 nm with V π =2.5V.
CW3M.5 • 17:30 Invited Single-Frequency Fiber Amplifiers for Gravi- tational Wave Detection, Peter Wessels ^{1,2} , Malte Karow ^{1,2} , Vincent Kuhn ^{1,2} , Michael Steinke ^{1,2} , Henrik Tünnermann ^{1,2} , Dietmar Kracht ^{1,2} , Jörg Neumann ^{1,2} , 'Laser Zentrum Hannover e.V., Germany; ² Centre for Quantum Engineering and Space-Time Research - QUEST, Germany. Gravi- tational wave detectors require linearly-polarized, high-power, single-frequency laser sources and set demanding requirements on their stability and beam quality. We discuss current approaches to fulfill the requirements for the upcoming genera- tion of gravitational wave detectors.	QW3N.5 • 17:30 P Plasmonic nano-coaxial waveguides for 90-de- gree bends and T-splitters, Wonseok Shin ¹ , Wenshan Cai ¹ , Peter B. Catrysse ¹ , Georgios Vero- nis ¹ , Mark Brongersma ¹ , Shanhui Fan ¹ , 'Stanford University, USA. Nearly perfect 90-degree bends and T-splitters are demonstrated in plasmonic nano-coaxial waveguides at the telecommunica- tion wavelength, with bending and splitting ef- ficiencies greater than 97% and 99%, respectively.	CW30.4 • 17:30 Tuning Fano Resonances with Graphene, Naresh K. Emani ¹ , Ting-Fung Chung ² , Ludmila Prokopeva ¹ , Alexander Kildishev ¹ , Yong Chen ² , Alexandra Boltasseva ¹³ ; 'Electrical and Computer Engineering, Purdue University, USA; ³ Physics, Purdue University, USA; ³ Photonics Engineering DTU Fotonik, Denmark. We demonstrate strong electrical control of plasmonic Fano resonances in dolmen structures using tunable interband transitions in graphene. Such graphene-plasmonic hybrid devices can have applications in light modulation and sensing.
	QW3N.6 • 17:45 O Holey metallic lens for light focusing, Sa- toshi Ishii ^{1,2} , Vladimir M. Shalaev ¹ , Alexander Kildishev ¹ ; ¹ Birck Nanotechnology Center, Purdue University, USA; ² National Institute of Informa- tion and Communications Technology, Japan. It is experimentally demonstrated that subwavelength holes milled in a metallic film as a set of concentric circular rings can focus linearly polarized light in the visible range.	CW30.5 • 17:45 C Room temperature formation of microcavity polaritons in ZnO nanoparticles, Xiaoze Liu ^{1,2} , David Goldberg ^{1,2} , Vinod M. Menon ^{1,2} , ¹ Dept. op <i>Physics, Graduate School and University Center</i> <i>of the City University of New York (CUNY), USA</i> , ² Dept. of <i>Physics, Queens College of the City Uni-</i> <i>versity of New York (CUNY), USA.</i> We demonstrate the formation of microcavity polaritons at room temperature in a dielectric microcavity embedded with ZnO nanoparticles. Stoke shift of polariton emission is shown to be dependent on the excitonic content of the polaritons.
CW3M.6 • 18:00 Passive Coherent Beam Combining of Fiber Lasers: Accurate Measurements of Phase Er- ror Tolerance, James R. Leger ¹ , Johan Nilsson ² , Hung-Sheng Chiang ¹ , Jayanta Sahu ² , 'Electrical and Computer Engineering, University of Min- nesota, USA; 'Optoelectronics Research Centre, University of Southampton, United Kingdom. A cladding-pumped dual core ytterbium fiber laser is designed and fabricated to measure phase error tolerance in passive coherent beam combining. We show quantitative measurements on the effects of longitudinal modes on phase error tolerance.	QW3N.7 • 18:00 Hybrid Fabrication of Tapered Gold Double- Helices for Near-Infrared Frequencies, Isabelle Staude', Manuel Decker', Michael Renner', Erik Waller', Dragomir N. Neshev', Georg von Freymann', Yuri S. Kivshar'; 'Nonlinear Physics Centre, Australian National University, Australia; 'Physics Department and Research Center OPTI- MAS, University of Kaiserslautern, Germany. We combine direct laser writing with electron-beam lithography to fabricate arrays of 3D tapered gold double-helices with feature sizes well below 100 nm, enabling chiral metamaterials and helical nanoantennas at telecom frequencies.	CW30.6 • 18:00 Efficient field emission from bundle array of carbon-nanotube-on-silicon-nanowire hetero- junctions, Yung-Jr Hung', San-Liang Lee', Hsuan- Chen Chang', Kuei-Yi Lee', Ying-Sheng Huang', 'Dept. Electronic Engineering, National Taiwan Univ. of Sci. & Tech., Taiwan. Released electrostatic screening effect and Joule heating in bundle ar- rays of carbon-nanotube-on-silicon-nanowire heterojunctions realized with novel fabrication approach enables efficient field emission of 0.9 V/ µm turn-on field and >5 mA/cm ² current density.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 159

۲

Executive Ballroom 210A

CLEO: QELS-Fundamental Science

QW3A • Optics of Random Media—Continued

QW3A.7 • 18:15

The resolution limit for far-field optical imaging, Evgenii E. Narimanov¹; ¹Purdue University, USA. Using the methods of the information theory, we derive the fundamental limit to the resolution of optical imaging, and demonstrate that in the far-field, contrary to the conventional wisdom, it is neither equal nor close to one half of the wavelength.

210B CLEO: Science

Executive Ballroom

& Innovations

CW3B • Nonlinear Optical Materials—Continued

CW3B.7 • 18:15

Novel Method on n2 Measurement of Organic Dyes, Shiva Shahin¹, Khanh Kieu¹, Seth Marder², Robert A. Norwood¹, Nasser Peyghambarian¹; ¹College of Optical Sciences, University of Arizona, USA; ²Chemistry and Biochemistry, Georgia Institute of Technology, USA. A novel technique is introduced to characterize the nonlinear properties of organic dyes in solution. This technique uses LCOF system and is based on the spectral broadening of laser pulses due to SPM.

Executive Ballroom 210C

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

QW3C • Symposium on Quantum Simulators: Quantum Simulators II—Continued

QW3C.6 • 18:15

Topological creation and destruction of edge states in photonic graphene, Mikael Rechtsman¹, Yonatan Plotnik¹, Julia Zeuner², Alexander Szameit², Mordechai Segev³; *Technion Israel Institute* of Technology, Israel; ²Institute of Applied Physics, Germany. We experimentally and theoretically demonstrate a topological transition in photonic graphene. By applying a uniaxial strain, the system transforms from one that supports states localized on the edge to one that does not.

QW3D • Ultrafast Dynamics in Strongly Correlated Materials— Continued

NOTES

Wednesday, 12 June

(

160

Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210H 210G 210F 210E **CLEO: QELS-CLEO: Science Fundamental Science** & Innovations QW3E • Supercontinuum CW3F • Opto-mechanical CW3G • Nano and Polariton CW3H • Ultrafast Nonlinear **Generation and Temporal** Systems II—Continued Lasers—Continued **Optics**—Continued Solitons—Continued QW3E.8 • 18:15 CW3H.6 • 18:15 CW3F.8 • 18:15 **Experimental Observation of Three-Soliton** New Directions in High-Q Optomechanical Compressible supercontinuum generation by Molecules in Dispersion-Managed Fibers, two-color excitation in the group velocity ho-Membrane Resonators, Pen-Li Yu¹, Thomas P. Philipp Rohrmann¹, Alexander Hause¹, Fedor Purdy¹, Garrett D. Cole², Cindy A. Regal¹; ¹JILA, rizon, Ayhan Demircan¹, Shalva Amiranashvili², Mitschke¹; ¹Institut für Physik, Universität Rostock, University of Colorado and National Institute of Carsten Bree², Gunter Steinmeyer³; ¹Invalidenstr. *Germany*. We present the first experimental observation of a stable bound state of three dispersion-Standards and Technology, USA; ²Vienna Center for 114, Germany; ²Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Germany; ³Max-Quantum Science and Technology and University of managed solitons. The existence regime of such Vienna, Austria. We study methods to improve the Born-Institut (MBI), Germany. A novel two-color a structure is mapped out in terms of separation, Q of a variety of highly-stressed resonators for cavexcitation scheme is discussed for generation of relative phase, and energy. ity optomechanics. We realize ultrahigh-Q metal/ broadband white-light continua with superior SiN membranes and crystalline membranes, and coherence properties in photonic crystal fibers. These continua promise compression into the have begun to control external loss via modified support structures. single-cycle regime. **NOTES**

۲

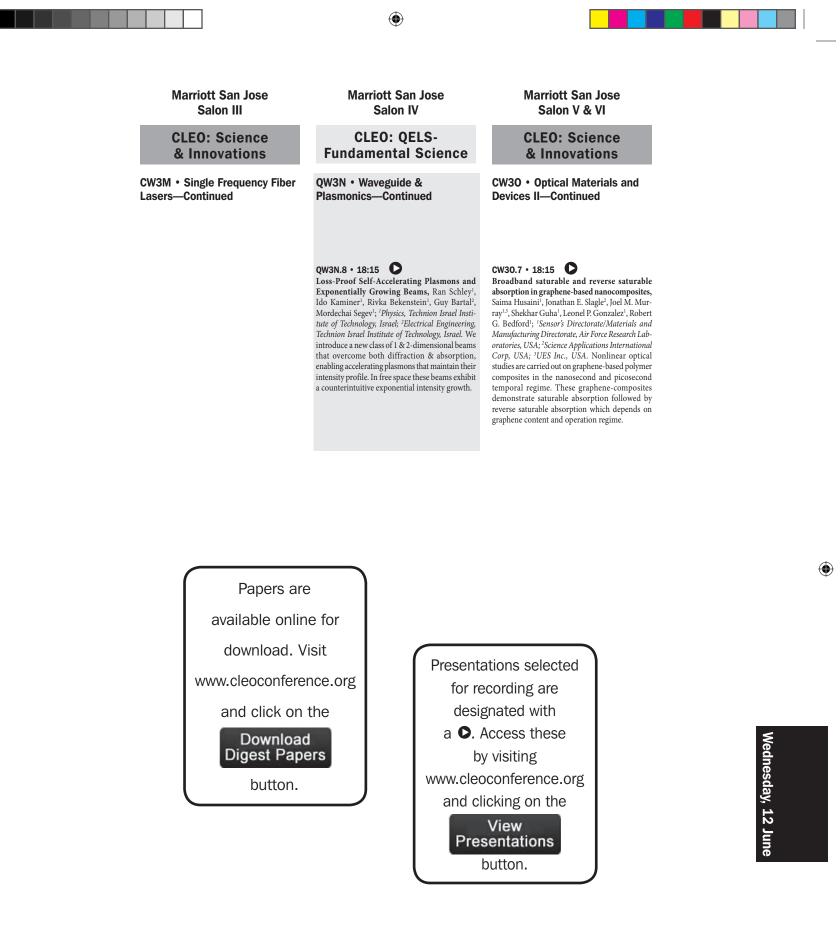
Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 161

((()

Wednesday, 12 June

۲

Meeting Room Meeting Room Meeting Room Marriott San Jose 211D-B 212D-B Salon I & II 212A-C **CLEO:** Applications **CLEO: Science** JOINT & Technology & Innovations AW31 • OCT: Technology JW3J • Symposium on CW3K • Advanced THz Emission CW3L • Atmospheric **Development and Applications**— **High Power Diode Laser** Mechanisms—Continued Sensing—Continued Arrays: Technology and Continued **Applications:High Power Diode** Laser Arrays II—Continued AW3I.7 • 18:15 CW3K.7 • 18:15 CW3L.7 • 18:15 D Extended focus optical coherence tomography Plasmonic Terahertz Monochromatic Coherent Optical Parametric Oscillator based detection with optical fiber based Bessel beam illumi-nation; Dora Juah Juah Hu^{1,2}, Lu Yan³; Paul Steińvurzel³, Michaliňa Gora¹, Weina Lu¹, Sid-dharth Ramachandran³; Yixin Wang², Guillermo Emission from an Asymmetric Chirped Dualof HCN for bio-medical applications, Denis Grating-Gate InP-HEMT with a Photonic Ver-Arslanov¹, Yuwei Jin¹, Julien Mandon¹, Simona M. Cristescu¹, Frans J. M. Harren¹; ¹Molecular tical Cavity, Takayuki Watanabe¹, Akira Satou¹, Tetsuya Suemitsu¹, Wojciech Knap², Viacheslav V and Laser Physics, Radboud Universiteit Nijmegen, J. Tearney¹; ¹Wellman Center for Photomedicine, Massachusetts General Hospital, USA; ²RF and Op-tical Department, Institute for Infocomm Research, Singapore; ³Department of Electrical and Computer Popov³, Taiichi Otsuji¹; ¹Research Institute of Elec-Netherlands. A cw OPO, combined with phototrical Communication, Tohoku University, Japan; ²LC2 Laboratory, Université Montpellier 2 & CNRS, acoustic spectroscopy, is used for the detection of HCN emission from leaves, seeds and Pseudomo-nas bacteria; next to its presence in human breath, France; ³Kotelnikov Institute of Radio Engineering Engineering, Boston University, USA. We demonand Electronics, Russian Academy of Sciences, Ruswith a detection limit of 0.4 ppbv (10s). strate an extended depth of focus (DOF) for optical sian Federation. We designed and fabricated InPbased high electron mobility transistors featuring an asymmetric chirped dual-grating-gate structure coherence tomography (OCT) using a Bessel-like higher order fiber mode. The DOF is enhanced by $7 \times$ and the lateral resolution is about 10 μ m. which greatly enhances plasma instability, resulting in intense monochromatic superradiant emission at 3.55 THz at 140K for the first time.


NOTES

۲

(

162

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 163

()