Executive Ballroom 210A

CLEO: QELS-Fundamental Science

08:00-10:00

Graphene

and plasmons.

Executive Ballroom

210B

QTh1B • Active Plasmonics &

CSIRO Materials Science and

QTh1B.1 • 08:00 Invited Graphene Nano-optoelectronics, Frank Kop-

pens1; 1CFO - The Institute of Photonic Sciences, Spain. In this talk I will review the new

and strongly emerging field of graphene nano-

photonics. In particular, we use the remarkable

nano-optical properties of graphene for inducing strong light-matter interactions and to study

quantum phenomena at the level of single photons

Presider: Timothy Davis,

Engineering, Australia

08:00-10:00 QTh1A • Novel Phenomena in

Complex Media Presider: Vera Smolyaninova;

Towson University, United States

QTh1A.1 • 08:00

Photonic Floquet Topological Insulators, Yonatan Plotnik¹, Julia Zeuner², Mikael C. Rechtsman¹, Yaakov Lumer¹, Mordechai Segev¹, Alexander Szameit2; 1Technion Israel Institute of Technology, Israel; ²Friedrich-Schiller-Universität, *Germany.* We present the first experimental observation of a Floquet Topological Insulator in any physical system. We realize optical topologically-protected unidirectional edge states, without magnetic fields, using honeycomb photonic lattice of helical waveguides.

OTh1A.2 • 08:15

Weyl points and line nodes in 3D photonic crystals, Ling Lu1, Liang Fu1, Marin Soljacic1, John D. Joannopoulos1; 1 Massachusetts Institute of *Technology, USA*. We present theoretical discover-ies of frequency-isolated Weyl points and line nodes, 3D linear point- and line-degeneracies, in gyroid photonic crystals. The associated surface states exhibit topological-protection and flat bands realizable from microwave to optical frequencies.

QTh1A.3 • 08:30

 $(\mathbf{\Phi})$

Ultra-Strong Light-Matter Interaction with Midinfrared Metamaterials, Alexander Benz^{1,2}, Salva-tore Campione³, Ines Montano², Sheng Liu^{1,2}, John Klem², Michael B. Sinclair², Filippo Capolino³, Igal Brener^{1,2}; ¹Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, USA; ²Sandia National Laboratories, USA; ³Electrical Engineering and Computer Science, University of California, Irvine, USA. We present ultra-strong light-matter interaction of a metamaterial mode and an intersubband transition for normal incidence radiation in the Mid-infrared spectral region. The anti-crossed lines show a splitting of 15% of the central frequency.

OTh1A.4 • 08:45

hertz metamaterials, DIBAKAR ROY CHOW-DHURY¹, Ranjan Singh¹, Hou-Tong Chen¹, Antoinette Taylor¹, Abul K. Azad¹; ¹LOS ALAMOS NATIONAL LABORATORY, USA. We demonstrate ultrafast optical control of near field coupled metamaterial resonances. We observed dynamical transition of the metamaterial resonances to change its state from coupled to decoupled, and back to the coupled state under photoexcitation.

Executive Ballroom 210C

CLEO: Science & Innovations

08:00-10:00

CTh1C • Microresonators III Presider: Hiroshi Yasaka; Tohoku University, Japan

CTh1C.1 • 08:00

Linearized Silicon Modulator, Jaime Cardenas¹ Paul A. Morton², Jacob Khurgin³, Austin Griffith¹, Carl B. Poitras¹, Michal Lipson^{1,4}, ¹Cornell University, USA; ²Morton Photonics, USA; ³Johns Hopkins University, USA; ⁴Kavli Institute at Cornell, USA. We demonstrate a linearized ring assisted Mach-Zehnder interferometer (L-RAMZI) modulator in a miniature silicon device. We measure a high degree of linearization, with a Spurious Free Dynamic Range (SFDR) of 105 dB/Hz2/3 at 1GHz.

CTh1C.2 • 08:15

CTh1C.3 • 08:30

are shown to be feasible.

CTh1C.4 • 08:45

Modulating Silicon Resonators beyond the Linewidth Limit, Lawrence D. Tzuang¹, Mohammad Soltani¹, Michal Lipson^{1,2}, ¹School of Electrical and Computer Engineering, Cornell University, USA; ²Kavli Institute at Cornell, Cornell University, USA. We overcome the resonance linewidth limit in silicon ring modulators using photonic transitions between neighboring resonances. As an example, we demonstrate a silicon ring modulated at >20 GHz beyond its resonance linewidth of 11.5 GHz.

High-speed Digital and Analog Charge-

Discharge Microring Modulator Not Limited by Q-factor, Anna Kodanev¹, Meir Orenstein¹;

Electrical Engineering, Technion, Israel. A new

Charge-Discharge microring modulator configu-

ration having RF-bandwidth and extinction ratio

not limited by Q-factor is presented. Digital and

linear analog modulation bandwidth over 50GHz

Integrated Control of Silicon-photonic Micro-

resonator Wavelength with Balanced Homodyne

Locking, Jonathan A. Cox1, Douglas C. Trotter1,

Andrew L. Starbuck¹; ¹Sandia National Labora-tories, USA. We present a new method for active

control of photonic micro-resonator modula-

tor and filter wavelength that is insensitive to

environmental and optical perturbations and

readily integrated on-chip. Experimental results demonstrating precise filter locking are shown.

CLEO: QELS-**Fundamental Science**

08:00-10:00 QTh1D • Strong-field

Interactions Presider: John NEES, University of Michigan, USA

Executive Ballroom

210D

QTh1D.1 • 08:00

Probing Sub-Cycle Dynamics of Virtual States with Attosecond Transient Absorption, Michael Chin¹, Xiaowei Wang¹², Yan Cheng¹, Yi Wu¹, Di Zhao^{3,4}, Dmitry Telnov^{3,5}, Shih-I Chu³, Zenghu Chang'; CREOL and Dept. of Physics, University of Central Florida, USA; ²Dept. of Physics, National University of Defense Technology, China; ³Dept. of Chemistry, University of Kansas, USA; ⁴Dept. of Applied Physics, Xi'an Jiaotong University, China; ⁵Dept. of Physics, St. Petersburg State University, Russian Federation. Isolated attosecond pulses with continuum spectra extending below 15 eV are used to probe the sub-cycle energy shifts and splitting of helium excited states. Additionally, new absorption features appear far from the 1 snp absorption lines.

OTh1D.2 • 08:15

Controlling dielectric properties with light fields, Martin Schultze^{2,5}, Elisabeth M. Bothschafter^{1,4}, Annkatrin Sommer¹, Simon Holzner¹, Wolfgang Schweinberger¹, Reinhard Kienberger^{1,4}, Vadym Apalkov³, Mark Stockman³, Ferenc Krausz1,2, Vladislav S. Yakovlev1,2; 1Laboratory for Attosecond and High-Field Physics, Max-Planck-Institut für Quantenoptik, Germany; ²Fakultät für Physik, Ludwig-Maximilians-Universität, Germany; ³Department of Physics, Georgia State University, USA; ⁴Physik-Department, Technische Universität München, Germany: ⁵Department of Chemistry, UC Berkeley, USA. This work reports on the attosecond real-time observation of the electron processes underlying the ability of ultrastrong few-cycle laser pulses to turn a dielectric solid from an insulating into a conducting state

۲

QTh1D.3 • 08:30

Tunneling Time in Ultrafast Science is Real and Probabilistic, Jochen Maurer¹, Alexandra S. Landsman¹, Matthias Weger¹, Robert Boge¹, André Ludwig¹, Sebastian Heuser¹, Claudio Cirelli¹, Lukas Gallmann¹, Ursula Keller¹; ¹Department of Physics, ETH Zurich, Switzerland. We present experimental results and approach of an angular streaking experiment with elliptically polarized intense few cycle laser pulses that exhibit a real tunneling time in tunnel ionization.

OTh1D.4 • 08:45

Electron Shell Ionization of Atoms with Classical, Relativistic Scattering, Nagitha Ekanayake¹, Sui Luo1, Patrick Grugan1, Willow Crosby1, Arielle Camilo', Caitlin McCowan', Rosie Scalzi', Anthony Tramontozzi', Lauren Howard', Sarah Wells¹, Chris Mancuso', Teddy Stanev', Matthew Decamp¹, Barry C. Walker¹; ¹Department of Physics and Astronomy, University of Delaware, USA. Forward scattering of ionization from noble gases in ultrahigh intensities of 2×10^19 W/cm^2 is investigated. The observed strongly forward scattered photoionization is in agreement with classical field scattering employing the full nonparaxial laser field.

CLEO: 2013 • 9–14 June 2013

Thursday, 13 June

Ultrafast control of near field coupling in tera-

QTh1B.2 • 08:30

Graphene Micro- and Nano-Plasmonics, Parinita Nene¹, Jared Strait¹, Wei Min Chan¹, Christina Manolatou¹, Joshua W. Kevek², Sandip Tiwari¹, Paul L. McEuen², Farhan Rana¹; ¹School of Electrical Engineering and Computer Science, Cornell University, USA; ²Department of Physics, Cornell University, USA: We present experimental and theoretical results of confined plasmons in graphene micro- and nano-structures. We present a FDTD technique to accurately model the measured data and demonstrate the importance of interactions between plasmonic structures.

OTh1B.3 • 08:45

Broad electrical tuning of graphene-loaded optical antennas, Yu Yao¹, Mikhail Kats¹, Patrice Genevet¹, Nanfang Yu^{1,3}, Yi Song², Jing Kong², Federico Capasso¹, ¹School of Engineering and Applied Sciences, Harvard University, USA; ²De-partment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA; ³Department of Applied Physics and Applied Mathematics, Columbia University, USA. We demonstrate electrical tuning of graphene-loaded optical antennas over a broad wavelength range (~650 nm, 10% of the resonance frequency) and optical intensity modulation with a bandwidth of 600 nm in the Mid-infrared wavelength range.

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

08:00-10:00

QTh1E • Quantum Photonics *Presider: Alexander Gaeta; Cornell University, United States*

QTh1E.1 • 08:00

Correlated Photon-Pair Generation in the Low-Raman Window of a Chalcogenide Ge11.5As24Se64.5 nanowire, Chunle Xiong¹, Jiakun He¹, Alex S. Clark¹, Matt J. Collins¹, Xin Gai², Duk-Yong Choi², Steve J. Madden², Barry Luther-Davies², Benjamin J. Eggleton¹; ¹Physics, University of Sydney, Australia; ²Physics, Australian National University, Australia: We experimentally demonstrate a 10 times enhancement to the coincidence-to-accidental ratio of a correlated photon-pair source from a chalcogenide Ge11.5As24Se64.5 nanowire. This improvement is enabled by the low-Raman window of the device.

OTh1E.2 • 08:15

Photon pair generation in nonlinear adiabatic waveguiding structures, Che Wen Wu¹, Alexander Solntsev¹, Dragomir N. Neshev¹, Andrey A. Sukhorukov¹, Yuri S. Kivshar¹; ¹Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Australia. We propose a novel scheme for broadband generation of spatially entangled photon-pair states combined with efficient spatial pump filtering. This is achieved through spontaneous parametric downconversion in a system of nonlinear adiabatically coupled waveguides.

QTh1E.3 • 08:30 Invited

Four-wave mixing and generation of correlated photon pairs in silicon ring resonators and photonic molecules, Stefano Azzini¹, Davide Grassani¹, Michael John Strain², Philippe Velha², Marc Sorel³, Lukas G. Helt³, John E. Sipe³, Dario Gerace¹, Marco Liscidini¹, Matteo Galli¹, Daniele Bajoni¹; ¹Dipartimento di Fisica, Universita degli Studi di Pavia, Italy; ²School of Engineering, University of Glasgow, United Kingdom; ¹Department of Physics and Institute for Optical Sciences, University of Toronto, Canada; ⁴Dipartimento di Ingegneria Industriale e dell'Informazione, Universita degli Studi di Pavia, Italy. We study, both theoretically and experimentally, emission of correlated photonpairs by spontaneous four-wave-mixing in silicon integrated resonators. We show that the number of generated pairs in the quantum experiment is predicted by a classical experiment.

Executive Ballroom 210G

CTh1F • Four-wave Mixing &

Frequency Comb Generation

University of Bristol, United

CTh1F.1 • 08:00 Invited Nanophotonic Structures for Extreme Nonlin-

earities On-chip, Michal Lipson¹; ¹Cornell Univ.,

USA. We show unprecedented strong nonlinear

response from high confinement nanophotonic waveguides from the NIR to the Mid IR spectral

range, by controlling the dispersion and the effec-

tive nonlinearities though novel nanofabrication

techniques and novel materials.

CTh1F.2 • 08:30

CTh1F.3 • 08:45

Mid-infrared Generation by Frequency Down

Conversion Across 1.2 Octaves in a Normally-

Dispersive Silicon Wire, Bart Kuyken¹, Peter

Verheyen², Pamela Tannouri³, Joris Van Campen-

hout², Roel Baets¹, Gunther Roelkens¹, William

M. Green3; ¹Photonics Research Group, Ghent

University, Belgium; ²imec, Belgium; ³IBM T.J. Watson Research Center, USA. Using four-wave

mixing in normally-dispersive Mid-infrared sili-

con nanophotonic waveguides, we demonstrate the

conversion of light across more than 1.2 octaves,

from the telecom band to a wavelength of 3630 nm

Hybrid Electro-Optic Microcombs and Fre-

quency Domain Analysis of Modelocking in

Microresonators, Pascal Del'Haye1, Scott B. Papp1,

Scott Diddams¹; ¹NIST, USA. We present a hybrid

electro-optically modulated microcomb system

for stabilization of frequency comb repetition

rates beyond 100 GHz at the 10-15 level. Moreover,

we present frequency domain measurements on

mode-locked states in microrod resonators.

Presider: Jeremy O'Brien;

08:00-10:00

Kingdom

Executive Ballroom 210F

CLEO: Science & Innovations

08:00-10:00 CTh1G • Microdisks, Microrings & DFB's

Presider: Dominic Siriani, MIT Lincoln Laboratory, USA

CTh1G.1 • 08:00

Widely tunable laser with Dual Ring Resonator and Delayed Interferometer pairs, realized in generic InP technology, pieter kuindersma¹, Xaveer Leijtens¹, Johan van Zantvoort¹, Huug de Waardt¹; ¹TUE, COBRA INSTITUE, Netherlands. A new widely and continuously tunable ring laser contains an integrated series filter with a Vernier pair of Ring Resonators (RR) and a pair of identical Delayed Interferometers (DI). Tuning currents of only a few mA yield tuning ranges of 2000 GHz.

CTh1G.2 • 08:15

AlGaInAs/InP Waveguide-Coupled Unidirectional-Emission Microspiral Lasers for On-Chip Optical Interconnects, Yue-De Yang^{1,2}, Yu Zhang¹, Yong-Zhen Huang², Andrew W. Poon¹; ¹Photonic Device Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong; ¹State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, China. We demonstrate AlGaInAs/InP waveguidecoupled unidirectional-emission microspiral lasers. Our experiments reveal room-temperature continuous-wave electrically injection lasing for 30µm-radius microspiral lasers, with a side-modesuppression ratio exceeding 30 dB.

CTh1G.3 • 08:30

Graphene-contact electrically driven microdisk lasers, Yoon-Ho Kim¹, Soon-Hong Kwon², Jung Min Lee³, Min-Soo Hwang¹, Ju-Hyung Kang¹, Won il Park³, Hong-Gyu Park¹; 'Department of Physics, Korea University, Republic of Korea; 'Department of Physics, Chung-Ang University, Republic of Korea ³Division of Materials Science and Engineering, Hanyang University, Republic of Korea. We demonstrated an electrically driven microdisk laser using a transparent graphene electrode. Lasing operation was achieved with a low-threshold current of ~300 µA at room temperature.

CTh1G.4 • 08:45

Nine-Channel Wavelength Tunable Single Mode Laser Array Based on Slots, Wei-Hua Guo¹, Qiaoyin Lu², Marta Nawrocka³, Azat Abdullaev³, James O'Callaghan³, John Donegan², ¹Department of Electrical & Computer Engineering, University of California Santa Barbara, USA; ³School of Physics, Trinity College Dublin, Ireland, ³Tyndall National Institute, Ireland. We present a 9-channel wavelength-tunable single-mode laser array based on slots. Stable single-mode operation is observed with output-power >35mW and side-modesuppression-ratio >50dB. A quasi-continuous tuning range >27nm is obtained over 35°C (from 10°C to 45°C).

Executive Ballroom 210E

08:00–10:00 CTh1H • Ultrafast Laser Sources I

Presider: Bruno Schmidt; Institut National de la Recherche Sci., Canada

CTh1H.1 • 08:00 Invited

Atomic Inner-Shell X-Ray Lasers pumped by XFEL sources, Nina Rohringer^{1,2}, Clemens Weninger^{1,2}, MIchael Purvis³, Duncan Ryan³, Gregory Brown⁴, Felicie Albert⁴, James Dunn⁴, Alexander Graf⁴, Stefan Hau-Riege⁴, John Bozek⁵, Christoph Bostedt⁵, Richard London⁴, Jorge Rocca3; 1 Max Planck Insitute for the Physics of Com plex Systems, Germany; ²Center for Free-Electron Laser Science, Germany; ³NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, USA; ⁴Lawrence Livermore National Laboratory, USA; 5SLAC National Accelerator Laboratory, USA. We present results on the realization of an atomic inner-shell x-ray laser in neon at 1.46 nm wavelength, by photo-ionization pumping and, alternatively, stimulated resonant Raman scattering with an x-ray free-electron laser source.

CTh1H.2 • 08:30

Watt-level Kerr-Lens Mode-Locked Cr:ZnS Laser at 2.4 µm, Nikolai Tolstik', Irina T. Sorokina', Evgeni Sorokin?; 'Institute of Physics, Norwegian University of Science and Technology, Norway; 'Institut für Photonik, TU Wien, Austria. Power scaling of Kerr-lens mode-locked Cr:ZnS femtosecond oscillator allows reaching 1 W output power and pulse energies over 8 nJ. Soliton and chirped-pulse regimes result in 68 fs and 0.8-2 ps pulses, respectively.

CTh1H.3 • 08:45

Kerr lens mode-locking of a high-average-power thin-disk ring oscillator, Abdolreza Amani Eilanlou¹, Yasuo Nabekawa¹, Makoto Kuwata-Gonokami^{2,3}, Katsumi Midorikawa^{1,2}, ¹Laser Technology Laboratory, RIKEN Advanced Science Institute, Japan; ²Photon Science Center, The University of Tokyo, Japan; ³Graduate School of Science, The University of Tokyo, Japan. We have generated 16.5-MHz, 400-fs pulses with a power of 490 W in a thin-disk ring oscillator under development for intra-cavity high-order harmonic generation.

nursday, 13 June

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 165

Meeting Room 211D-B

CLEO: Applications & Technology

08:00-10:00

ATh11 • Environmental Sensing Presider: John McManus; Aerodyne Research Inc, United States

ATh11.1 • 08:00 Detection of the Mass of Particles in Air in an Optical Sensor utilizing Laser Beam Divergence and inertia-dependent Particle Trajectories, Robert Schrobenhauser1,2, Rainer Strzoda1, Maximilian Fleischer¹, Alexander Hartmann¹, Markus-Christian Amann²; ¹Siemens, Germany; ²Tech. Univ. Munich, Germany. We present a new°method to measure particle mass based°on a shaped, divergent laser beam using the inertiadependent particle movement inside an optical light scattering measurement chamber.

ATh11.2 • 08:15

Application of Faraday Rotation Spectroscopy for Quantifying HO₂ Radicals in Combustion Processes, Brian Brumfield⁴, Wenting^{*}Sun²; Gerard Wysocki^{*}, Yiguang Ju²; ¹Electrical Engineer ing, Princeton University, USA; 2 Mechanical and Aerospace Engineering, Princeton University, USA. Faraday rotation spectroscopy has been used for in situ quantification of HO₂ generated from an atmospheric flow reactor. HO2 species concentrations are determined by non-linear fitting of the experimental data to a signal model.

ATh1I.3 • 08:30 Invited

Airborne Atmospheric Laser Spectroscopy, Dirk Richter¹, Petter Weibring¹, James G. Walega¹, Alan Fried¹; ¹Institute of Arctic and Alpine Research, University of Colorado, USA. Many important atmospheric constituents can be detected with infrared laser absorption spectroscopy. This talk reviews the engineering challenges, opportunities, and selected scientific results from recent airborne campaigns.

Meeting Room 212A-C

CLEO: Science & Innovations

08:00-10:00

08:00-10:00 CTh1J • Fabrications and Applications I Presider: Sunao Kurimura; National Institute for Materials Science, Japan

CTh1J.1 • 08:00 Invited

CTh1K.1 • 08:00

Terahertz plasmonic waveguide based on periodically structured silicon surface, Mohammad M. Jadidi¹, Gagan Kumar¹, Shanshan Li¹, Thomas E. Murphy¹; ¹Institute for Research in Electronics and Applied Physics, University of Maryland, USA. We experimentally investigated terahertz (THz) plasmonic waveguides on heavily doped silicon surface structured with sub-wavelength pillars. We study the propagation properties of the resonant modes and their dependence on dopant concentration and structural parameters.

Meeting Room

212D-B

CTh1K.2 • 08:15

Complex Geometry Plasmonic Terahertz Waveguides Created via 3D Printing, Shashank Pandey¹, Barun Gupta¹, Ajay Nahata¹, ¹University of Utah, USA. We demonstrate the applicability of 3D printing for creating complex terahertz waveguide geometries that are difficult to fabri-cate using other approaches. We will describe the properties of linear waveguides, y-splitters and spiral waveguides.

CTh1K.3 • 08:30

A 2D Maxwell's Fish Eye Lens using Waveguidebased Inhomogeneous Artificial Dielectrics, Jingbo Liu¹, Rajind Mendis¹, Daniel Mittleman¹; Rice University, USA. We realize a 2D Maxwell's fish eye lens using waveguide-based inhomogeneous artificial dielectrics. The lens images a source at the perimeter to a diametrically opposite location, regardless of the direction of the input illumination.

CTh1K.4 • 08:45

Plasmonic Two Wire Terahertz Fibers with Highly Porous Dielectric Support, Andrey Markov¹, Stephan Gorgutsa¹, Hang Qu¹, Maksim Skorobogatiy¹; ¹Engineering Physics, École Polytechnique de Montréal, Canada. A practical plasmonic THz fiber is described that features two metallic wires held together by the porous dielectric cladding. High porosity is required in order to guarantee low loss and low dispersion of guided modes.

Marriott San Jose Salon I & II

CLEO: QELS-**Fundamental Science**

08:00-10:00 QTh1L • Optical Memories and Atomic Ensembles **D**

Presider: James Thompson; University of Colorado at Boulder JILA, United States

QTh1L.1 • 08:00 Invited

Solid-state Quantum Memory for Quantum Communication, Mikael T. Afzelius¹; ¹Group of Applied Physics, University of Geneva, Switzerland Optical quantum memories are essential components of future quantum technologies. Here we show experimental results of heralded quantum entanglement between two memories, storage of single-photon polarization qubits and milliseconds spin-wave storage using rare-earth doped crystals.

QTh1L.2 • 08:30 D

A Reversible Optical Memory for Twisted Photons, Lucile Veissier¹, Adrien Nicolas¹, Lambert GINER¹, Dominik Maxein¹, Alexandra Sheremet², Elisabeth Giacobino¹, Julien Laurat¹; ¹Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure, CNRS, France; ²Department of Theoretical Physics, State Polytechnic University, Russian Federation. We report on an experiment in which orbital angular momentum is mapped at the single photon level into and out of an atomic ensemble, opening the possibility to the storage of qubits encoded in OAM.

QTh1L.3 • 08:45 D

Simultaneous observation of super-Heisenberg scaling and spin squeezing in a nonlinear measurement of atomic spins, Robert Sewell¹, Mario Napolitano¹, Naeimeh Behbood¹, Giorgio Colangelo¹, Ferran Martin Ciurana¹, Morgan W. Mitchell^{1,2}; ¹*Institut de Ciencies Fotoniques, Spain*; ²ICREA, Spain. We report a nonlinear alignmentto-orientation conversion measurement of atomic spins that simultaneously shows super-Heisenberg scaling and achieves projection-noise limited sen sitivity of 990 spins, 20 dB more sensitive than the previous best nonlinear measurement.

Thursday, 13 June

۲

III-As Pillar Arrays by Metal-Assisted Chemi-

cal Etching for Photonic Applications, Parsian Mohseni¹, Pan Lei¹, Xiang Zhao¹, Seung Hyun Kim¹, Karthik Balasundaram¹, Jeong Dong Kim¹, James Coleman¹, Xiuling Li¹; ¹Electrical and Computer Engineering, University of Illinois, USA. Ordered arrays of GaAs/InGaAs micro and nanopillars are formed by metal-assisted chemical etching (MacEtch). The dependence of morphology and etch rate upon temperature, etchant com-position, and doping concentration are explored

imprinting and injection moulding, Anders Kris tensen¹, Jeppe Clausen², Alexander B. Christian-sen¹, Emil Højlund-Nielsen¹, Claus H. Nielsen³, Claus Fogh Hansen⁴, Tommy Kristiansen⁴, Erik Lyngsø Simonsen⁴, Per Høvsgaard⁴, N. Asger

Mortensen²; ¹DTU Nanotech, Danmarks Tekniske Universitet, Denmark; ²DTU Fotonik. Danmarks Tekniske Universitet, Denmark; ³DTU Danchip, Danmarks Tekniske Universitet, Denmark; 4LEGO System A/S, Denmark. Nanostructured polymer surfaces with optical functionality are fabricated by up-scalable methods, nanoimprinting and injection moulding. The fabrication and performance of nanostructured polymer surfaces with antireflective functionality are discussed.

Silicon Nanomembrane Based Photonic Devices

on Foreign Substrates, Xiaochuan Xu¹, Harish

Subbaraman², Amir Hosseini², Ray T. Chen¹; ¹University of Texas at Austin, USA; ²Omega Optics,

Inc., USA. We demonstrate transferring 2cm x 2cm

unpatterned nanomembrane onto glass substrates.

A photonic crystal waveguide is patterned together

with subwavelength grating couplers on the trans-ferred nanomembrane. Group index up to 26.5 is

and optical characteristics are discussed.

experimentally demonstrated.

CTh1J.3 • 08:45

CTh1J.2 • 08:30

Nanostructured optical polymer surfaces by

CTh1K • THz Waveguides and Resonators Presider: Marco Rahm; Technische University Kaiserslautern, Germany

Marriott San Jose Salon III

CLEO: Science & Innovations

08:00-10:00 **CTh1M** • Next Generation Photovoltaics

Presider: Jonathan Wierer; Sandia National Laboratories, United States

CTh1M.1 • 08:00

Limits on nanophotonic solar cell light trapping in the presence of parasitic losses, Aaswath Raman1, Shanhui Fan2; 1 Applied Physics, Stanford University, USA; 2Ginzton Laboratory, Stanford University, USA. We rigorously determine the effect of parasitic loss on the achievable absorption enhancement in nanophotonic, plasmonic light trapping schemes. We show that, even in the presence of parasitic loss, opportunities exist to exceed conventional limits.

CTh1M.2 • 08:15 Light Trapping Using Silicon Nanostructures for Solar Cells, nche fofang^{1,2}, Ting S. Luk^{1,2}, Murat Okandan¹, Gregory Nielson¹, Igal Brener^{1,2};

Sandia National Laboratories, USA; ²Center for Integrated Nanotechnologies, Sandia National Laboratories, USA. Silicon nanostructures are used for efficiency enhancement in Silicon solar cells. A 2 µm thick solar cell with silicon nanostructures on the front and back surfaces show photocurrent of 26.7 mA/cm2 (77% of the Yablonovitch limit).

CTh1M.3 • 08:30 Invited

III-V Compound Semiconductor Nanowire Solar Cells, Takashi Fukui¹, Masatoshi Yoshimura¹, Eiji Nakai¹, Katsuhiro Tomioka^{1,2}; ¹RCIQE, Hokkaido Univ., Japan; ²JST-PRESTO, Japan. Coremulti-shell InP/AlInP nanowire-array solar cells were fabricated using selective-area metal-organic vapor phase epitaxy. The wider-bandgap outer shell layer passivates InP nanowires effectively, increasing conversion efficiency to 6.35%

Marriott San Jose Salon IV

 (\blacklozenge)

CLEO: Applications & Technology

08:00-10:00

ATh1N • Clinical Applications **O** Presider: Nicusor Iftimia; Physical Sciences Inc., United States

ATh1N.1 • 08:00 Invited

OCT-Guided Anterior Eye Surgery, David Huang1; 1Casey Eye Institute, Oregon Health and Science Univ.; USA: Optical coherence tomography can° accurately map corneal, epithelial, stromal thicknesses, and measure corneal curvatures. It's useful in planning LASIK, calculating intraocular lens power, guiding phototherapeutic keratectomy, and managing corneal transplantations.

EnergyAlternative Laser ICF Concepts **D** Presider: Christopher Barty; Lawrence Berkeley National Laboratory, United States ATh10.1 • 08:00 Invited Fast Ignition With Laser-Driven Ion Beams Progress On Ignitor Beam Development Based

ATh10 • Symposium on The

Path to Sustainable Energy:

Laser Driven Inertial Fusion

On A New Relativistic Laser-Plasma Regime, J.C. Fernandez¹; ¹Los Alamos National Labora tory, USA. Requirements for fast ignition (FI) are explained. Relativistically-transparent plasmas (a new regime) enable suitable laser-driven ignitor ion beams. Progress on generating and understanding these beams, plus the laser and target requirements for FI, are discussed. -

ATh1N.2 • 08:30

An Automated Raman Device for Gout Diagnosis, Bolan Li¹; ¹Mechanical and Aerospace Engineering, Case Western Reserve University, USA. This study reports an automated Raman device to identify crystals in synovial aspirates from patients with gout symptoms. Combined with sample preparation, the device could diagnose monosodium urate monohydrate crystals in a point-and-shoot sense.

ATh10.2 • 08:30 Invited Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers, Hiroyuki Shiraga¹; ¹Inst. of Laser Eng., Osaka Univ., Japan: Implosion and heating experiments of fast ignition targets has been performed with Gekko-XII and LFEX lasers, and neutron enhancement was demonstrated. Goal of the FIREX-1 project is to achieve fuel heating up to 5 keV.

ATh1N.3 • 08:45

Optimization of Illumination Frequency and Preclinical Validation of a Wide-field Structured Illumination Microscope Designed for Imaging in situ Tumor Mårgins, Henry L. Fu¹, Jenna L. Mueller¹, Melodi Javíd², Dåvid Kirsch^{2,3}, Nimmi Ramanujam¹, J. Quincy Brown⁴; ¹Biomedical Engineering, Duke University, USA; ²Pharmacology & Cancer Biology, Duke University, USA; ³Radiation Oncology, Duke University, USA; ⁴Biomedical Engineering, Tulane University, USA. We present a widefield structured illumination microscope for imaging surgical tumor margins in situ. The impact of frequency and turbidity on optical section thickness and SNR was characterized to determine the optimal imaging frequency.

μ ω

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 167

۲

Marriott San Jose Salon V & VI

08:00-10:00

Executive Ballroom 210A

CLEO: QELS-Fundamental Science

Executive Ballroom

210B

QTh1B • Active Plasmonics &

Large Modulation of Mid-infrared Light Using

Graphene-Metal Plasmonic Antennas, nanfang

Mathematics, Columbia University, USA. We

show theoretically that large modulation of the amplitude and phase of Mid-infrared light can be

achieved by dynamically shifting the resonance of

graphene-metal plasmonic antennas via electrical

Electrical Control of Optical Plasmon Reso-

nance with Graphene, Jonghwan Kim¹, Hyung-

mok Son¹, David Cho¹, Baisong Geng¹, Will

Regan¹, Sufei Shi¹, Kwanpyo Kim¹, Alex Zettl¹,

Yuen-Ron Shen¹, Feng Wang¹; ¹UC Berkeley, USA.

We demonstrate efficient control of optical plasmon resonance in gold nanorod with graphene by electrical gating. We observe that electrical gating

of graphene efficiently modulates all aspects of the

tuning of the optical conductivity of graphene.

¹Department of Applied Physics and Applied

Graphene—Continued

QTh1B.4 • 09:00

QTh1B.5 • 09:15

plasmon resonance

OTh1A • Novel Phenomena in Complex Media—Continued

QTh1A.5 • 09:00

Electromechanically Switchable Diamagnetism for Efficient Terahertz Modulation, Mehmet Unlu^{1,2}, Christopher W. Berry¹, Shenglin Li¹, Shang Hua Yang¹, Mohammed Reza Hashemi¹, Mona Jarrahi¹; ¹Electrical Engineering and Computer Science, University of Michigan, USA; ²Electronics and Communication Eng. Dept., Yildirim Beyazit University, Turkey. A meta-surface with electromechanically switchable diamagnetic terahertz meta-molecules is presented and experimentally demonstrated. which enables record-high modulation depths and modulation bandwidths at terahertz frequencies without a compromise on modulation speed and modulation voltage.

QTh1A.6 • 09:15

Enhanced electro-optic modulation in a single split-ring resonator, Dmitry Shchegolkov1, Matthew Reiten¹, Dibakar Chowdhury¹, Antoinette Taylor¹, Abul K. Azad¹; ¹Los Alamos National Laboratory, USA. We study experimentally and numerically the electro-optic (EO) effect in a single split-ring-resonator (SRR) fabricated on a ZnTe-substrate resonating at 3 GHz. Measured EO signals at SRR-gap show an order of magnitude enhancement at resonance.

QTh1A.7 • 09:30

OTh1A.8 • 09:45

 $(\mathbf{\Phi})$

A Subwavelength Plasmonic Metamolecule Exhibiting Magnetic-Based Optical Fano Resonance, Farbod Shafiei¹, Francesco Monticone¹, Khai Le¹, Xingxiang Liu¹, Tom Hartsfield¹, Andrea Alu¹, Xiaoqin Li¹; ¹University of Texas at Austin, USA. We demonstrate that a subwavelength plasmonic metamolecule consisting of four nanoparticles supports a magnetic response spectrally overlapped with the electric dipole resonance. Small structural asymmetries lead to interference and thus a Fano resonance in scattering.

Time Domain Modeling of Tunable Response

of Graphene, Ludmila J. Prokopeva¹, Naresh K. Emani¹, Alexandra Boltasseva^{1,2}, Alexander

Kildishev¹; ¹School of Electrical and Computer

Engineering and Birck Nanotechnology Center,

Purdue University, USA; 2Department of Photon-

ics Engineering, Technical University of Denmark,

Denmark. We present a causal numerical model for time domain simulations of the optical response of

graphene. The dielectric function is approximated

.

. . . .

QTh1B.6 • 09:30

Graphene-doped Polymer Optical Nanofibers, Chao Meng¹, Limin Tong¹; ¹Optical Engineering, Zhejiang University, China. By means of doping the initial dissolved polymer, we have successfully fabricated optical-quality graphene-doped polymer nanofibers by a physical drawing technique. Using a waveguiding scheme, single graphene-doped polymer nanofibers exhibit broadband saturable absorbance (transmission change~10%).

Executive Ballroom 210C

CLEO: Science & Innovations

CTh1C • Microresonators III— Continued

CTh1C.5 • 09:00

Parallel-Coupled Adiabatic Resonant Microring (ARM) Filter with Integrated Heaters, Michele Moresco¹, Ehsan S. Hosseini¹, Erman Timurdogan¹, Douglas D. Coolbaugh², Gerald Leake2, Michael R. Watts1; 1 Research Laboratory of Electronics, Massachusetts Institute of Technology, USA; ²College of Nanoscale Science and Engineer ing, University at Albany, USA. Add-drop filters based on parallel adiabatic resonant microrings (ARMs) are demonstrated. The ARM design permits synthesis of maximally flat characteristics up to a FWHM of 54 GHz while keeping the ripple amplitude below 1 dB

CTh1C.6 • 09:15

On-Chip Mode-Division Multiplexer, Lian-Wee Luo¹, Lucas H. Gabrielli¹, Michal Lipson^{1,2}; ¹School of Electrical and Computer Engineering, Cornell University, USA; ²Kavli Institute at Cornell for Nanoscale Science, Cornell University, USA. We demonstrate micron-scale on-chip mode-division multiplexing device with low crosstalk using adddrop silicon ring resonators array. We taper the bus waveguide width to selectively phase-match the different bus waveguide modes to the ring mode.

CTh1C.7 • 09:30

Integrated Cascaded Linear Microcavity Filters, Marcel W. Pruessner¹, Peter G. Goetz¹, Todd H. Stievater¹, William S. Rabinovich¹, Vincent J. Urick¹; ¹US Naval Research Laboratory, USA. We experimentally demonstrate cascaded microcavities for enhanced bandwidth and extinction. The cavities are integrated into waveguides by etching three sets of quarter-wavelength trenches, each set forming a reflector. Experiments compare well with transfer matrix predictions.

.

OTh1B.7 • 09:45 Electrically Tunable Plasmonic Absorber Enabled by Indium Tin Oxide, fei yi¹, Euijae Shim¹, Alexander Zhu¹, Hai Zhu¹, Jason Reed¹, Ertugrul Cubukcu¹; ¹Materials Science and Engineering, University of Pennsylvania, USA. We demonstrate an optical antenna absorber with unity absorption based on gold nanostrip antenna with optical back mirror. Indium Tin Oxide is used as the active material to electrically tune the optical spectra.

CTh1C.8 • 09:45

Low Tuning Voltage Hybrid Silicon and Lithium Niobate Optical Microring Resonator with Integrated Electrodes, Li Chen¹, Michael Wood¹, Ronald M. Reano¹; ¹Electrical and Computer Engineering, Ohio State University, USA. We present a silicon microring resonator with a lithium niobate top cladding and integrated tuning electrodes. The silicon ring functions as an optically transparent conductor to yield a DC tunability of 12.5 pm/V.

Executive Ballroom 210D

CLEO: QELS-**Fundamental Science**

QTh1D • Strong-field Interactions—Continued

QTh1D.5 • 09:00

Cavity enhancement of ps pulses with 30 000 finesse, Fabian Zomer¹; ¹LAL/IN2P3, France. We report on the first demonstration of the locking of a 28000 finesse cavity in picosecond regime. Besides, we have unambiguously measured the CEP drift of 2 ps pulses and characterized its effect on cavity locking

OTh1D.6 • 09:15

Self-compression of Femtosecond Laser Pulses in Ionization-Induced Plasmas from a Free Flow Gas Jet at Relativistic Intensities, Zhaohan He¹, John A. Nees¹, Bixue Hou¹, Karl Krushelnick¹, Alec Thomas¹; ¹Center for Ultrafast Optical Sci-ence, University of Michigan, USA. We measure self-compression of femtosecond laser pulses in an experiment using simple geometrical focusing onto a 100 µm gas plume at relativistic intensities Stable and uniform self-compression from 36 fs to 16 fs is measured using second-harmonicgeneration frequency-resolved optical gating.

QTh1D.7 • 09:30

Generation of coherent N2+ emissions in a plasma string with two-color laser fields, Jinping Yao¹, Guihua Li¹, Jielei Ni¹, Huailiang Xu², Haisu Zhang¹, Bin Zeng¹, Wei Chu¹, Chenrui Jing¹, Hongqiang Xie¹, Ya Cheng¹, See Leang Chin³, Zhizhan Xu¹; ¹State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China; ²State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, China; 3 Center for Optics, Photonics and Laser (COPL) & Department of Physics, Engineer-ing Physics and Optics, Université Laval, Canada. We report on the generation of coherent N2+ emissions in a plasma string driven by two-color laser fields and measure their temporal structures. It is confirmed that the coherent emissions originate from seed-injected amplification.

QTh1D.8 • 09:45

.

Spatio-temporal phase-contrast imaging of tenuous laser plasma structures, Zhengyan Li¹, Yen-Yu Chang¹, Michael C. Downer¹; ¹University of Texas at Austin, USA. We demonstrate a pumpprobe phase-contrast method that reconstructs the spatio-temporal profile of plasma structures at density as low as 10^16 cm^-3. The method is compatible with very thin, very long, even turbulent media.

.

Thursday, 13 June

with a conductivity term, a Drude term and a number of the critical points terms.

09:30–12:30 Technology Transfer Program, Exhibit Hall 2

10:00–11:30 Coffee Break (10:00–10:30) and Unopposed Exhibit Only Time, Exhibit Hall 1 and 2

10:00–15:00 Exhibits Open, Exhibit Halls 1 and 2

CLEO: 2013 • 9–14 June 2013

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QTh1E • Quantum Photonics— Continued

QTh1E.4 • 09:00

A down-conversion source of positively spectrally correlated and decorrelated telecom photon pairs, Thomas Lutz¹, Piotr L. Kolenderski¹, Thomas Jennewein¹; ¹Physics, Institute for Quantum Computing, Canada. We experimentally characterize a spontaneous parametric downconversion source, based on a Beta-Barium-Borate crystal capable of emitting photons with positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.

QTh1E.5 • 09:15

Enhanced transmission for ultra-low-power nonlinear optics experiments using tapered optical fibers in Rubidium vapor, Todd B. Pittman', Meimei Lai', James D. Franson'; 'University of Maryland Baltimore County, USA. We have studied transmission degradation for sub-wavelength diameter Tapered Optical Fibers in Rubidium vapor. A heating strategy is shown to reduce degradation, thereby enhancing the ability to perform ultra-low-power nonlinear optics experiments.

QTh1E.6 • 09:30

 $(\mathbf{\Phi})$

Bell's Measure as a Quantitative Tool in Classical Optical Coherence of Electromagnetic Fields, Kumel Kagalwala', Giovanni Di Giuseppe^{1,2}, Ayman F. Abouraddy¹, Bahaa Saleh'; 'CREOL, The College of Optics and Photonics, University of Central Florida, USA; 'School of Science and Technology, University of Camerino, Italy. We demonstrate an experimental measurement of Bell's inequality for a classical optical beam with two binary degrees of freedom: polarization and spatial parity; and illustrate the usefulness of this measure as a quantitative tool in classical optical coherence theory.

QTh1E.7 • 09:45

Experimental super resolved phase measurements at the shot noise limit, Lior Cohen¹, Hagai Eisenberg¹, Daniel Istrati¹, Liat Dovrat¹; 'Racah Institue of Physics, Hebrew University of Jerusalem, Israel. Using photon-number resolving detectors, we directly measure the parity of coherent states in a Mach-Zehnder interferometer. Phases are super resolved by a factor of 150 and shot noise limited measurements are demonstrated with 200 photons.

.

• • • • • •

2013CLEO Thursday.indd 6

Executive Ballroom 210G

CTh1F • Four-wave Mixing & Frequency Comb Generation-

Frequency Comb Generation— Continued

CTh1F.4 • 09:00

On-chip Mode-locking in Microresonator Frequency Combs without Spectral Filtering and Shaping, Pei-Hsun Wang¹, Jian Wang^{1,2}, Yi Xuan^{1,2}, Leo T. Varghese^{1,2}, Li Fan^{1,2}, Yang Liu¹, Xin Zhao³, Daniel E. Leaird¹, Minghao Ql^{1,2}, Andrew M. Weiner^{1,2}; 'School of Electrical and Computer Engineering, Purdue University, USA; 'Birck Nanotechnology Center, Purdue University, USA; 'School of Electronic and Information Engineering, Beihang University, China. We observe passive mode-locking behavior of an optical frequency comb generated in a silicon nitride microresonator. With the drop geometry, a femtosecond pulse could be generated without shaping and filtering the spectrum.

CTh1F.5 • 09:15

Pump Equalization and Saturation of Microresonator Frequency Combs with Drop Geometry, Pei-Hsun Wang', Yi Xuan¹², Leo T. Varghese¹², Li Fan¹², Jian Wang¹², Daniel E. Leaird¹, Minghao Qi¹², Andrew M. Weiner¹², 'School of Electrical and Computer Engineering, Purdue University, USA; ²Birck Nanotechnology Center, Purdue University, USA. We report the spectral pump equalization of on-chip microresonator frequency combs in the drop-port geometry. A smoother comb spectrum is obtained and a saturation behavior of the optical pump in the microresonator is observed.

CTh1F.6 • 09:30

Efficient continuous-wave four-wave mixing in SOI waveguides with active carrier removal, Junrong Ong', Ranjeet Kumar', Shayan Mookherjea'; 'University of California San Diego, USA. Siliconon-insulator rib waveguides with low loss of -0.74 dB/cm and free-carrier lifetime reduction via reverse biased P/N diodes are used to show highly efficient CW four-wave mixing with conversion efficiency of -8 dB.

Executive Ballroom 210F

CLEO: Science & Innovations

CTh1G • Microdisks, Microrings & DFB's—Continued

CTh1G.5 • 09:00

Monolithic Narrow Linewidth Laterally-Coupled 1.55 μm DFB Laser and Optical Amplifier, Lianping Hou¹, Mohsin Haji¹, John H. Marsh¹; ¹University of Glasgow, United Kingdom. We present a laterally-coupled 1.55 μm AlGaInAs/ InP DFB laser monolithically integrated with an optical amplifier, providing an output power of 210 mW with single mode operation exhibiting a record low linewidth of 64 kHz.

CTh1G.6 • 09:15

Tunable Microwave Signal Generation with an Optically-Injected 1310nm Quantum Dot Distributed-Feedback Laser, Antonio Hurtado^{1,2}, Jesse Mee¹, Mohsen Nami¹, Ian D. Henning², Michael J. Adams³, Luke Lester¹; 'Center for High Technology Materials, University of New Mexico, USA; 'School of Computer Science and Electronic Engineering, University of Essex, United Kingdom. Tunable microwave signal generation with frequencies ranging from below 1 GHz to over 40 GHz is demonstrated experimentally using the period-1 dynamics induced in a 1310-nm Quantum Dot Distributed-Feedback laser under external optical injection.

CTh1G.7 • 09:30

Hertz relative linewidth DFB laser with highfinesse cavity external optical feedback, Yang Zhao^{1,2}, Qiang Wang^{1,2}, Fei Meng¹, Yige Lin¹, Shaokai Wang¹, Jianping Cao¹, Zhanjun Fang¹, Tianchu Li¹, Erjun Zang^{1,2}, ¹Division of Time and Frequency Metrology, National Institute of Metrology, China; ²Department of Precision Instruments and Mechanology, Tsinghua University, China. We report Hertz level relative linewidth DFB diode lasers with optical feedback technique. And laser noise is suppressed to a white phase noise plateau of -124.4 dBc/Hz higher than the Fourier frequency of 17 kHz.

Executive Ballroom 210E

CTh1H • Ultrafast Laser Sources I—Continued

CTh1H.4 • 09:00

Pushing the limits of high-power modelocked thin disk lasers by operating in a vacuum environment, Clara J. Saraceno¹, Florian EM-AURY¹, Oliver H. Heckl¹, Cyrill R. Baer¹, Martin Hoffman¹, Cinia Schriber¹, Matthias Golling¹, Thomas Südmeyer^{1,2}, Ursula Keller¹, IETH Zurich, Switzerland; ²Physics, University of Neuchatel, Switzerland. We present an Yb:YAG modelocked thin-disk laser with a record-high average output power of 275 W, a pulse duration of 583fs and a pulse energy of 16.9µJ. Furthermore, we present first experiments towards higher pulse energies.

CTh1H.5 • 09:15

Broadband mode-locking with phase-matched output couplers, Shih-Hsuan Chia', Li-Jin Chen², Franz X. Kärtner¹²; ¹Center for Free-Electron Laser Science, DESY, Germany; ²Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, USA. A phase-matched output coupler is introduced and used to improve broadband modelocking of a Ti:sapphire laser with a tunable enhancement of >15dB at long wavelengths while maintaining a good beam profile.

CTh1H.6 • 09:30

High-bandwidth, single-pole control of intracavity power in a mode-locked laser based on codoped gain medium, Chien-Chung Lee¹, Thomas R. Schibli^{1,2}; ¹Department of Physics, University of Colorado at Boulder, USA; ²JILA, National Institute of Standards and Technology and University of Colorado, USA. An intracavity, low-insertion-loss graphene electro-optic modulator enables more than two orders of magnitude higher bandwidth for modulating the intracavity power in a laser based on co-doped gain medium than traditional pump power modulation.

CTh1F.7 • 09:45

.

Optimum micro-optical parametric oscillators based on third-order nonlinearity, Xiaoge Zeng¹, Milos Popovic¹; 'University of Colorado at Boulder, USA. We show that optimum designs of optical parametric oscillators require different pump and signal/idler coupling, suggesting novel microphotonic geometries. Normalized models with linear/nonlinear loss show that Si can oscillate at 1550nm below certain free-carrier-to-cavityphoton-lifetime ratios.

CTh1G.8 • 09:45

Possibility for Breaking the Unity Efficiency Barrier: Semiconductor Laser Optically Pumped by an Integrated Light Emitting Diode, Xiaohang Liu¹, Yu Zhang¹, Guowei Zhao¹, Dennis G. Deppe¹; 'CREOL, the College of Optics and Photonics, Univeristy of Central Florida, USA. Experimental results and calculations are presented demonstrating a semiconductor laser integrated with a spontaneous light emitting diode optical pump that can also act as a heat pump. Simulation shows this device could break unity efficiency.

CTh1H.7 • 09:45

. . . .

Mode Locking At and Below the CW Threshold, Shai Yefet¹, Avi Peer¹; ¹Bar-Ilan University, Israel. We explore experimentally a new regime of operation for mode locking in a Ti:Sapphire laser with enhanced Kerr nonlinearity, where the threshold for pulsed operation is lowered below the threshold for continuous-wave operation.

sday, 13 June

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 169

09:30–12:30 Technology Transfer Program, Exhibit Hall 2

10:00–11:30 Coffee Break (10:00–10:30) and Unopposed Exhibit Only Time, Exhibit Hall 1 and 2

10:00–15:00 Exhibits Open, Exhibit Halls 1 and 2

quer

Meeting Room 211D-B

CLEO: Applications & Technology

ATh11 • Environmental Sensing-Continued

ATh11.4 • 09:00

Long open-path high precision quantum cascade laser methane sensing at Toolik Lake, Alaska, David Miller^{1,2}, Anna Michel^{2,3}, Levi Stanton^{1,2}, Kang Sun^{1,2}, Lei Tao^{1,2}, Mark A. Zondlo^{1,2}; ¹Princeton University, USA; ²Center for Mid-Iinfrared Technologies for Health and Environment, Princeton University, USA; ³Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institu-tion, USA. A' long path 'quantum cascade laset' atmospheric methane sensor is demonstrated in an Arctic environment. The sensor has 0.5% precision for methane in 1s and an in-line N2O reference cell to account for system drift.

ATh11.5 • 09:15 Measurement of Water-Vapor Isotopes in the Urban Environment Using a Quantum Cascade Laser-Based Analyzer, Wen Wang12, Anna Michel^{2,3}, Mary Lynn Baeck^{2,4}, James Smith^{2/4}, Gerard Wysocki12; ¹Electrical Engineering, Princeton University, USA; ²Center for Mid-infrared Technologies for Health and the Environment, Princeton University, USA; ³Princeton Institute for the Science and Technology of Materials, Princeton University, USA; ⁴Civil and Environmental Engineering, Princeton University; USA: A QC laser-based water vapor isotope analyzer for fast, real-time measurement of d180 in the urban environment with 1s accuracy of 0.74‰ was developed. The sensor was labora tory tested and the time series of d18O in ambient outdoor air is presented.

ATh11.6 • 09:30

 $(\mathbf{\Phi})$

Sulfur dioxide detection using 7.4 µm DFB-QCL based cavity enhanced absorption spectroscopy, Jan Tarka^{1,2}, Mohammad Jahjah¹, Rafal Lewicki¹; Przemyslaw Stefanski¹⁹², Frank K. Tittel¹, Stephen So3; 'Electrical & Computer Engineering Department, Rice University, USA; ²Laser and Fiber Electronics, Institute of Telecommunications & Acoustics, Wroclaw University of Technology, Poland; 3Sentinel Photonics Inc., USA. A quantita tive measurements of sulfur dioxide using CWs RT DFB-QCL based cavity-enhanced absorption spectroscopy and 2f wavelength modulation detection technique will be reported. Detection limits of 130ppbv (10) were achieved with a 0.4sec averaging time.

ATh11.7 • 09:45

Spectroradiometric Monitoring of Open Algal Cultures, Thomas A. Reichardt¹, Aaron M. Col-lins², Jerilyn A. Timlin², Robert C. McBride³, Craig A. Behnke3; ¹Sandia National Labs, USA; ²Sandia National Labs, USA; 3Sapphire Energy, USA. The outdoor culturing of green algae is monitored with a dual-channel spectroradiometer. The measured reflectance provides information regarding growth rate and light usage, demonstrating potential to meet the monitoring needs for algal biofuel production. .

Zinc Selenide Synthesis in Fiber Draw, Chong ics, Massachusetts Institute of Technology, USA. fiber drawing. Direct atomic-level compositional is performed, and a ZnSe-based in-fiber heterojunction device is achieved.

CLEO: 2013 • 9–14 June 2013

Meeting Room 212D-B

CLEO: Science & Innovations

CTh1J • Fabrications and Applications I—Continued

Meeting Room

212A-C

CTh1J.4 • 09:00

Direct-Write Laser Scanning Holography for Size-Scalable 3D Photonic Crystal Integrated Optofluidics, Liang Yuan^{1,2}, Peter R. Herman^{1,2}; ¹Electrical and Computer Engineering, University of Toronto, Canada; ²Institute for Optical Sciences, University of Toronto, Canada. Laser scanning of diffractive optical masks is developed towards flexible direct-writing of 3D photonic crystal and optofluidic structures for seamless and sizescalable integration into lab-on-a-chip devices with beam size as a processing dimension.

CTh1J.5 • 09:15

Thermal nanoimprint fabrication of chalcogenide glass waveguide resonators, Yi Zou¹, Hongtao Lin¹, Lan Li¹, Sylvain Danto², J. David Musgraves², Kathleen Richardson², Juejun Hu¹; ¹Department of Materials Science and Engineering, University of Delaware, USA; ²College of Optics & Photonics (CREOL), University of Central Florida, USA. We demonstrated thermal nanoimprint fabrication of low loss waveguides and micro-ring resonators in thermally evaporated and solution processed chalcogenide glass films. A high micro-ring quality factor of 75,000 is achieved at 1550 nm wavelength.

CTh1J.6 • 09:30

Fabrication of high-purity single-crystal diamond nano-slabs for photonic applications, Luozhou Li¹, Jonathan Hodges^{1,5}, Edward H. Chen^{2,4}, Matthew Trusheim^{2,4}, Ophir Gaathon^{1,4}, Chen, Mathew Hushelm, Opini Gaadion, Ming Lu³, Igal Bayn^{1,4}, Tim Schröder^{1,4}, Xiaolong Hu^{1,4}, Dirk Englund^{1,4}, 'Electrical Engineering, Columbia University, USA; ²Applied Physics and Applied Mathematics, Columbia University, USA; ³Center for Functional Nanomaterials, Brookhaven National Laboratory, USA; ⁴Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA; 5MITRE Corp., USA. We present a mass fabrication method of diamond nanoscale slabs by alternating plasma etching and mask deposition. These slabs support NV- spins with long coherence times and are suitable for a range of nanophotonic devices.

CTh1J.7 • 09:45

Hou^{1,2}, Xiaoting Jia^{2,3}, Lei Wei^{2,3}, Alexander M. Stolyarov^{2,3}, Ofer Shapira^{2,3}, John D. Joannopoulos^{3,4}, Yoel Fink^{1,2}; ¹Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; ²Research Laboratory of Electronics, Massachusetts Institute of Technology, USA; ³Institute of Soldier Nanotechnology, Massachusetts Institute of Technology, USA; ⁴Department of Phys-We demonstrate a high-throughput method for synthesizing zinc selenide (ZnSe) in situ during and structural analysis of the produced compound

CTh1K • THz Waveguides and **Resonators**—Continued

CTh1K.5 • 09:00

Origins of dispersive terahertz pulse propagation in tapered parallel plate waveguides, Raimund Mueckstein¹, Miguel Navarro-Cía², Oleg Mitrofanov¹; ¹Electronic & Electrical Engineering, University College London, United Kingdom; ²Electrical and Electronic Engineering, Imperial College London, United Kingdom. Unexpected dispersion of the TEM mode in tapered parallel plate waveguides is investigated experimentally and numerically. The TE02 mode that adiabatically converts into the TEM mode interferes with the genuine TEM and explains this behavior.

CTh1K.6 • 09:15

Low Dispersion Propagation of Broadband THz Pulses in a Two-Wire Waveguide, Manoj K. Mridha¹, Anna Mazhorova¹, Maxime Daneau^{1,2} Matteo Clerici^{1,3}, Marco Peccianti⁴, Pierre-Luc Lavertu¹, Xavier Ropagnol¹, Francois Vidal¹, Roberto Morandotti1; 1INRS-EMT, Canada; 2University of Ottawa, Canada; ³School of Engineering and Physical Sciences, Heriot-Watt University, United Kingdom; ⁴Institute for Complex Systems CNR, Italy. Undistorted propagation of broadband terahertz pulses is required to enhance several applications, such as high-sensitivity spectroscopy. Here, we demonstrate the low dispersive guided propagation of a THz pulse over 20cm in a twowire waveguide.

CTh1K.7 • 09:30

Impact of thin AgI coatings on modes in cylindrical metallic waveguides for THz applications, Miguel Navarro-Cía^{1,2}, Carlos Bledt³, Jeffrey Melzer³, Miriam S. Vitiello⁴, Harvey Beere⁵, David Ritchie⁵, James Harrington³, Oleg Mitrofanov¹; ¹UCL, United Kingdom; ²Imperial College London, United Kingdom; ³Rutgers Univ., USA; ⁴NEST, CNR and Scuola Normale Superiore, Italy; ⁵University of Cambridge, United Kingdom. We applied THz near-field space-time mapping, continuous wave far-field imaging and numerical eigenmode calcu-lations to determine the impact of thin dielectric coatings on the main modes in flexible cylindrical metallic waveguides for THz waves.

CTh1K.8 • 09:45

Evanescent Wave Coupling in Terahertz Waveguide Arrays, Kimberly S. Reichel¹, Naokazu Sakoda², Rajind Mendis¹, Daniel Mittleman¹; ¹Electrical and Computer Engineering, Rice University, USA; ²Kobe Steel, Ltd., Japan. We experimentally study THz energy coupling among an array of identical parallel-plate waveguides in close prox-imity, with their unconfined sides facing each other. We observe stronger coupling with larger plate separations and longer propagation paths.

Marriott San Jose Salon I & II

CLEO: QELS-**Fundamental Science**

QTh1L • Optical Memories and **Atomic Ensembles—Continued**

QTh1L.4 • 09:00

Spin cooling via incoherent feedback in an ensemble of cold Rb atoms, Naeimeh Behbood¹, Ferran Martin Ciurana¹, Giorgio Colangelo¹, Mario Napolitano¹, Robert Sewell¹, Morgan W. Mitchell^{1,2}; ¹ICFO - The Institute of Photonic Sciences, Spain; ²ICREA - Institucio Catalana de Recerca i Estudis Avancats,, Spain. We report an experimental study of a new technique for spin cooling an ensemble of ultracold atoms via quantum non-demolition (QND) measurement and incoherent feedback.

QTh1L.5 • 09:15 D

Generation of planar quantum squeezing in an atomic ensemble, Giorgio Colangelo¹, Naeimeh Behbood¹, Ferran Martin Ciurana¹, Graciana Puentes1, Robert Sewell1, Morgan W. Mitchell1,2; ¹ICFO - Institut de Ciencies Fotoniques, Spain; ²ICREA - Institució Catalana de Recerca i Estudis Avançats, Spain. We extend the covariance-matrix description of atom-light quantum interfaces to spin-1 systems including technical noise and decoherences. We use this description to predict and produce a planar squeezed state in a cold 87Rb ensemble.

QTh1L.6 • 09:30 🖸

Narrowband source of correlated photon pairs via four-wave mixing in a cold atomic ensemble, Bharath Srivathsan¹, Gurpreet Kaur Gulati¹, Mei Yuen Brenda Chng¹, Gleb Maslennikov¹, Dzmitry Matsukevich12, Alessandro Cerè1, Christian Kurtsiefer^{1,2}; ¹Center for Quantum Technologies, Singapore; ²Department of Physics, National University of Singapore, Singapore. We demonstrate a bright and narrowband source of time-correlated photon pairs of wavelength 762nm and 795nm generated via four-wave mixing in cold Rubidium-87 atoms using a cascade decay level scheme.

QTh1L.7 • 09:45

Sensitive absolute polarization measurement using vector light shifts in cold atoms, Kunyan Zhu¹, Neal Solmeyer¹, Cheng Tang¹, David S. Weiss¹; ¹Physics Department, The Pennsylvania State University, USA. By measuring the vector light shift in spin-polarized Cs atoms trapped in a cavity built-up optical lattice, we have demonstrated linear polarization that is pure to within 2x10⁻⁸ in fractional intensity.

June

۲

Marriott San Jose Salon III

CLEO: Science & Innovations

CTh1M • Next Generation Photovoltaics—Continued

CTh1M.4 • 09:00 C Angle Dependant Scattering by Dielectric Nanostructures for Light Management in Thin Film Photovoltaics, Brian Roberts¹, Qi Chen¹, Pei-Cheng Ku¹; ¹University of Michigan, USA. Optical scattering properties of nanoporous anodized aluminum oxide films are investigated and applied to improving absorption in thin film photovoltaics. Angle dependent scattering properties improve performance in semitransparent systems and could reduce solar tracking dependence.

CTh1M.5 • 09:15 C Light-trapping: From Order to Disorder in Thin-film Silicon Solar Cells, Marco Liscidini¹, Angelo Bozzola¹, Piotr Kowalczewski¹, Lucio C. Andreani¹; ¹Universita degli Studi di Pavia, Italy. We investigate-light trapping in thin-film crystalline silicon solar cells with rough interfaces and engineered disordered photonic structures. The general aspects of the optical properties are discussed, demonstrating broad band absorption close to the Lambertian limit.

CTh1M.6 • 09:30 Simulations and Experiments of Tunable GaN Microdomes for Broadband Omnidirectional Antireflection, Lu Han¹, Tyler A. Piedimonte¹, Matthew R. McGoogan¹, Ian V. Kidd², Roger French², Hongping Zhao¹; ¹Department of Electrical Engineering and Computer Science, Case Western Reserve University, USA; ²Department of Material Science and Engineering, Case Western Reserve University, USA, Cash microdomes are studied as a broadband omnidirectional anti-reflection structure for high efficiency multijunction concentrated photovoltaics. Simulation and experiment studies indicate a significant reduction of reflectance from the GaN mcirodomes.

CTh1M.7 • 09:45

Temperature-Dependent Carrier Transport in a p-GaN/i-InGaN/n-GaN Solar Cell Heterostruc ture using Ultrafast Spectroscopy, Blair Connelly1, Nathaniel Woodward1, Grace D. Metcalfe1, Lee . Rodak¹, Naresh C. Das¹, Meredith Reed¹, Anand V. Sampath¹, Hongen Shen¹, Michael Wraback¹ Robert M. Farrell², Michael Iza², Samantha Cruz² Jordan Lang², Nathan Young², Yutaka Terao², Carl Neufeld², Stacia Keller², Shuji Nakamura², Steven P. DenBaars², Umesh Mishra², James S. Speck²; ¹US Army Research Laboratory, USA; ²University of California, Santa Barbara, USA. Temperaturedependent carrier transport is investigated using ultrafast spectroscopy in a p-GaN/i-InGaN/n-GaN solar cell with heavily-doped layers to compensate for polarization charges at the heterointerface. We observe a flip in the transport direction at 110 K.

Marriott San Jose Salon IV

 (\blacklozenge)

CLEO: Applications & Technology

ATh1N • Clinical Applications—

Continued

ÅTh1N.4 • 09:00 Invited

Fluorescence Lifetime Spectroscopy and Imaging for Clinical Diagnostics, Laura Marcu¹; ¹Univ. of California Davis, USA. This.presentation provides an overview of clinically compatible time-resolved fluorescence techniques including a fast scanning fluorescence lifetime imaging (FLIm) technique: We will present applications of these techniques in diagnosis of cancer and atherosclerotic cardiovascular disease.

ATh1N.5 • 09:30 D

Diagnosis of hepatic fibrosis using a multiphoton nonlinear optical microspectroscopy imaging system, JANG HYUK LEE¹, long Chul Kim², Giyoong Tae², Myoung-kyu Oh², Do-Kyeong Ko¹, ¹Department of Physics and Photon Science, Gwangiu Inst of Science & Technology, Republic of Korea; ³School of Materials Science and Engineering and Department of Nanobio Materials and Electronics, Gwangju Inst of Science & Technology, Republic of Korea; ³Advanced Photonics Research Institute, Gwangju Inst of Science & Technology, Republic of Korea, ³Advanced Photonics Research Institute, Gwangju Inst of Science & Technology, Republic of Korea, ³Advanced Photonics Research Institute, Gwangju Inst of Science & Technology, Republic of Korea, ³Advanced Photonics Research Institute, Gwangju Steine, ⁴ Technology, Network and Constant and Science & Technology, Republic of Korea, ⁵Advanced Photonics Research Institute, Gwangju Steine, ⁴ Technology, Steine, ⁴ Chrossed, ⁴ Steine, ⁴ Stein

ATh1N.6 • 09:45 D

Cellphone Polarizing Microscopy for Malaria Detection, Itay Remer¹, Alberto Bilenca^{1,2}, ¹Biomedical Engineering, Ben-Gurion University of the Negev, Israel, 'Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel. We developed a cellphone polarizing microscope for detection of minute concentrations of hemozoin - the malaria-pigment - in human blood samples. 0.75 µg/ml hemozoin concentration was detectable, allowing for malaria detection at 0.25% parasitentia.

Salon V & VI

Marriott San Jose

ns— ATh10 • Symposium on The Path to Sustainable Energy:

Path to Sustainable Energy: Laser Driven Inertial Fusion EnergyAlternative Laser ICF Concepts—Continued

ATh10.3 • 09:00 Invited Shock-ignition OMEGA Experiments and Target Design for the NIF, Kenneth S. Anderson, Laboratory for Laser Energetics, Univ. of Rochester, USA: Shock ignition (SI) offers the potential for high gains at low laser energies using a single laser system. ST physics is being validated experimentally on OMEGA. A polar-drive design for the NIF is presented.

ATh10.4 • 09:30 Invited Studies on Shock Ignition Targets for Inertial Fusion Energy, Stefano Atzeni¹, Alberto Marocchino¹, Angelo Schiavi¹, Guy Schurtz², ¹Dipartimento, SBAI, Universita² di Roma La Sapienza, Italy, ²CELIA, Universita² di Roma La Sapienza, Italy, ²CELIA, Universita² Bordeaux 1, France. Studies on targets for laser fusion shock ignition will be reviewed, including earlier target designs, analytical models for target scaling and analysis of sensitivity to asymmetries, instabilities and target defects. Ways to increase target robustness will be discussed.

hursday, 13 June

()

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 171

(

2013CLEO Thursday.indd 9

172

Exhibit Hall 3

 (\blacklozenge)

JOINT

11:30-13:00

JTh2A • POSTER SESSION III: Light-Matter Interactions, ultrafast & Quantum Optics

JTh2A.01 Withdrawn

JTh2A.02

Surface damage reduction on UV direct-write domains engineered LiNbO3, Andreas Boes¹, Tristan Crasto¹, Hendrik Steigerwald¹, Vijay Sivan¹, Elisabeth Soergel², Arnan Mitchell¹; 'Electrical and Computer Engineering, RMIT University, Australia; ³Institute of Physics, University of Bonn, Germany. Thin-film coating of LiNbO3 crystals with chromium was found to greatly enhance the usefulness of UV direct-written domains: the surface damage is strongly reduced thus improving the quality of the, moreover deeper and wider domains.

JTh2A.03

High Longevity Rubidium Packaging Method Suitable for Integrated Optics, Matthieu Giraud-Carrier', John F. Hulbert', Thomas Wall', Aaron Hawkins', Holger Schmidt', Jennifer A. Black'; 'Electrical Engineering Dept., Brigham Young University, USA; 'School of Engineering, University of California, Santa Cruz, USA. We present a construction approach to long-lasting rubidium (Rb) atomic vapor cells compatible with integrated photonic platforms. Indium solder seals di not exhibit any decrease in optical atomic density after being held at 95 °C for thirty days.

JTh2A.04

 $(\mathbf{\Phi})$

Thomson scattering from aluminum laser plasmas in air, Yuan Liu¹, Bruno Bousquet², Martin Richardson¹, Matthieu Baudelet¹; ¹University of Central Florida, CREOL, USA; ²LOMA, UMR 5798, University of Bordeaux 1, France. Thomson scattering is reported for the first time to measure the electron density and temperature of aluminum laser plasma in air. Electron and excitation temperatures are compared to discuss local thermodynamic equilibrium in such plasmas

JTh2A.05

Real-Time Depth Monitoring of Galvo-Telecentric Laser Machining by Inline Coherent Imaging, Y. Ji¹, Cole Van Vlack^{1,2}, Paul J. Webster^{1,3}, James M. Fraser¹; 'Physics, Engineering Physics & Astronomy, Queen's University at Kingston, Canada; 'Laser Depth Dynamics Inc., Canada. We achieve in situ, micron-scale tracking of laser machining through a galvo-telecentric beam delivery system using coherent imaging. We collect both high speed intrapulse and interpulse morphology changes as well as overall sweep-to-sweep depth penetration.

JTh2A.06

Uniformity of GaN Nanorods on Silicon Substrates studied by Ultrafast Acoustic Phonon Spectroscopy, Chi-Yuan Yang^{1,2}, Chih-Ta Chia², Hung-Ying Chen³, Shangir Gwo³, Kung-Hsuan Lin¹, ¹Institute of Physics, Academia Sinica, Taiwan; ²Department of Physics, National Taiwan Normal University, Taiwan; ³Department of Physics, National Tsing Hwa University, Taiwan. We studied acoustic breathing modes of GaN nanorods on silicon substrates by ultrafast acoustic phonon spectroscopy. This technique could be utilized to nondestructively inspect uniformity of nanorods within the area of optical spot. JTh2A.07 Backside Surface Machining of Silicon Wafers Using a Nanosecond Tm:fiber MOPA System, Lawrence Shah¹, Tobias Bonhoff², Ashraf F. El¹, Sherif^{2,1}, Pankaj K. Kadwani¹, Martin Gebhardt¹¹, Christian Gaida⁴¹; ¹CREOL, The College of Optics and Photonics, The University of Central Florida, USA; ²Fraunhofer Institute for Laser Technology, Germany; ³Military Technical College, Egypt; ⁴Institute of Applied Optics, Friedrich-Schiller University Jena, Germany. We report on selective machining of the back surface machining of double-side polished silicon wafers, using a high peak power nanosecond Tm:fiber master oscillator power amplifier with a photonic crystal fiber based power amplifier.

JTh2A.08

Creation of Optical Gain and Absorption via a Virtual Single photon Transition, Jens Herrmann¹, Matthias Weger¹, Reto Locher¹, Mazyar Sabar¹, Paula Rivière^{2,3}, Ulf Saalmann³, Jan-Michael Rost³, Lukas Gallmann¹, Ursula Keller¹, ¹Department of Physics, Institute of Quantum Electronics, ETH Zurich, Switzerland; ²Departamento de Química, Universidad Autónoma de Madrid, Spain; ³Max Planck Institute for the Physics of Complex Systems, Germany. We present the creation and control of optical gain by interrupting the temporal evolution of the dipole response of a quantum-mechanical two-level system. Our theoretical analysis is verified by transient absorption spectroscopy in helium.

JTh2A.09

Laser Driven Proton Acceleration Experiment with Micro-Structured Target at the Texas Petawatt Laser Facility, Donghoon Kuk¹, Gilliss Dyer¹, Samuel Feldman¹, Craig Wagner¹, Chunhua Wang¹, Manuel Hegelich¹, Todd Ditmire¹; ¹Center for High Energy Density Science, The University of Texas, USA. Experiment of laser driven proton acceleration with a micro structured solid target irradiated with ultra-short and ultra-intense laser has been studied at the Texas Petawatt Laser Facility.

JTh2A.10

Quasi-phasematched Laser Wakefield Acceleration In a Corrugated Plasma Channel, Sung J. Yoon', John Palastro', Daniel F. Gordon', Howard Milchberg'; 'Institute of Research in Electronics and Applied Physics, University of Maryland, USA; 'Plasma Physics Division, Naval Research Laboratory, USA. Plasma wakefields driven by laser pulses can accelerate electrons to relativistic energies. The energy saturates when electrons outrun the wakefield's accelerating phase. Quasi-phasematching, enabled by corrugated plasma channels, is applied to overcome this limitation.

JTh2A.11

Shape Resonance and Cooper Minimum in High Harmonic Generation from Strongly Aligned Nitrogen, Xiaoming Ren¹, Varun Makhija¹, Anh-Thu Le¹, Jan Tross¹, Sudipta Monda¹¹, Cheng Jin¹, Carlos Trallero¹, Vinod Kumarappan¹; ¹Physics, Kansas State University, USA. High harmonic generation from strongly aligned nitrogen molecules is shown to directly reveal angle-dependent features in the XUV photoionization cross section of the highest occupied molecular orbital both in pump-probe delay and angle scans.

JTh2A.12

Observation of collective deceleration of laser driven plasma wakefield electrons, Shao-wei Chou^{1,2}, Jiancai Xu¹, Konstantin Khrennikov^{2,1}, Laszlo Veisz¹, Stefan Karsch^{2,1}; ¹Max-Planck-Institut fur Quantenoptik, Germany; ²Physics, Ludwig-Maximilians-Universität, Germany. With the maturity of the technology of laser-wakefieldacceleration, a compact radiological safety solution has become an issue. By exploiting the unique property of such electron source, we have observed experimental indication of collective electron deceleration.

JTh2A.13

The ELI-ALPS secondary sources: a getaway to scientific excellence, Cord L. Arnold², Fernando Brizuela², A. Borot³, Francesca Calegari⁴, Dimitrios Charalambidis^{1,5}, T. Cowan⁶, Zs. Diveki^{1,7}, P. Dombi^{1,8}, J. Fulop^{1,9}, J. Hebling^{9,10}, Christoph M. Heyl², Anne L'Huillier², Dino A. Jaroszynski¹¹, Per Johnsson², V. Malka³, M. Kalashnikov^{1,12}, M. Kaluza^{13,14}, R. Lopez-Martens^{1,3}, Mauro Nisoli⁴, Karoly Osvay^{1,15}, G. Paulus^{14,15}, Fabien Quéré¹⁶, E. Racz1,17, A. Rouzée12, Piotr Rudawski2, Ch. Spindloe¹⁸, M. Tolley¹⁸, P. Tzallas⁵, Mark Vrakking¹² ¹ELI-HU NKft., Hungary; ²Lund University, Dept Phys, Sweden; ³Laboratoire d'Optique Appliquee, ENSTA ParisTech, Ecole Polytechnique CNRS, France; ⁴Politecnico di Milano, Dept. Physics, Italy; FORTH, Greece; ⁶Helmholtz-Zentrum Dresden Rossendorf, Germany; ⁷Imperial College, United Kingdom; ⁸Wigner Research Centre for Physics, Hungary; ⁹MTA-PTE High-Field THz Research Group, Hungary; ¹⁰University of Pecs, Hungary; ¹¹Univ Strathclyde, Dept Phys, Scottish Univ Phys Alliance, United Kingdom; ¹²Max-Born-Institut, Germany; ¹⁵Friedrich-Schiller-University, Germany; ¹⁴Helmholtz-Institute, Germany; ¹⁵University of Szeged, Hungary; ¹⁶CEA, IRAMIS, Service des Photons Atomes et Molécules, France; ¹⁷Obuda University, Hungary; ¹⁸STFC Rutherford Appleton Labora tory, United Kingdom. The essence of ELI-ALPS, the laser driven secondary sources ranging from X-ray and X-UV to THz with duration as short as tens of attoseconds, are designed to be available for users from 2016.

JTh2A.14

Development of a Pump Laser for a Multi-TW OPCPA Component Test Laboratory, Waseem Shaikh¹, Tom Critchlow¹, Alexis Boyle¹, Steve Blake¹, Sonya Chapman¹, Andrew Frackewicz¹, M. Galimberti¹, Steve Hancock¹, I. Musgrave¹, David¹ Pepler¹, Tevor Winstone¹, C. Hernandez-Gomez²; ¹*CLF, CCLRC, United Kingdom.* We present the laser architecture that will be constructed as a pump laser for a Multi-TW OPCPA component test laboratory using glass rod amplifiers and a regenerative amplifier seeded by a modulated fiber laser source

JTh2A.15

Carrier-Envelop Phase Noise of Ultrashort Pulses in a Ti:Sapphire Amplifier, A. Borzsonyi¹², Roland S. Nagymihály¹, Peter Jojart^{1,2}, Karoly Osvay^{1,3}, ¹Department of Optics and Quantum Electronics, University of Szeged, Hungary; ¹CE Optics Kft, Hungary; ³ELI-Hu Nkft, Hungary. The relative carrier-envelop phase (CEP) of pulses are measured at different repetition rates, gain, and saturation levels of a three-pass amplifier, resulting in an increase of <100mrad CEP noise depending on the amplification conditions.

JTh2A.16

New, Simplified Algorithm for Cross-Correlation Frequency Resolved Optical Gating, Daniel J. Kane¹; ¹Mesa Photonics, LLC, USA. I present a new cross-correlation frequency resolved optical gating (X-FROG) algorithm, based on the principal components generalized projections (PCGP) algorithm that is fast, robust, and simple.

JTh2A.17

Compact 325 MHz Er:fiber ring laser with dispersion inversed gain fibers, Hongxia Qi¹, Jian Zhang¹, Gengji Zhou¹, Aimin Wang¹, Guizhong Wang¹, Zhigang Zhang¹, ¹Perking University, China. We demonstrate an Er:fiber ring laser operated at the fundamental repetition rate of 325 MHz. Two gain fibers with opposite dispersion were combined both for compactness and intra-cavity dispersion compensation.

JTh2A.18

Chirped Pulse Amplification Scaling in Thulium-Doped Fiber Lasers, Robert A. Sims¹, Alex Sincore¹, Pankaj Kadwani¹, Lawrence Shah¹, Martin Richardson¹; 'University of Central Florida, CREOL, USA. We will report on our effort to scale the pulse energy and peak power from ultrashort pulse Tm doped fiber laser systems, with >1 μ J pulse energy within 300 fs duration after compression.

JTh2A.19

Two-photon induced tuning of an ultracompact SOI Fabry-Pérot resonator via the thermo-optic effect, Shawn M. Sederberg¹, Abdulhakem Y. Elezzabi'; ¹University of Alberta, Canada. We experimentally investigate the nonlinear response of an ultracompact silicon-on-insulator Fabry-Perot resonator. Two-photon absorption, free-carrier absorption, and the thermo-optic effect act to red-shift the device resonance by 7.57nm and attenuate its amplitude by 66%.

JTh2A.20

760-nm Semiconductor Passively Mode-Locked Monolithic Laser for Picosecond Pulse Generation, Huolei Wang³, Liang Kong¹, David Bajek¹, Stephanie Haggett¹, Xiaoling Wang³, Bifeng Cui³, Jiaoqing Pan³, Ying Ding¹, Maria Ana Cataluna¹, ¹School of Engineering. Physics and Mathematics, University of Dundee, United Kingdom; ²Institute of Semiconductors, Chinese Academy of Sciences, China; ³Key Laboratory of Opto-electronics Technology, Ministry of Education, Beijing University of Technology, China. We report a novel semiconductor passively mode-locked edge-emitting laser based on a multi-quantum-well structure, emitting at 766 nm and enabling the generation of a stable 19.4 GHz pulse train with a pulse duration of~5 ps.

JTh2A.21

Temporal phase zone plates for linear optical pulse compression, Bo Li^{1,2}, Ming Li¹, Shuqin Lou², Jose Azana¹, Institut National de la Recherche Scientifique - Energie, Matériaux et Télécommunications (INRS-EMT), Canada; ²School of Electronic and Information Engineering, Beijing Jiaotong University, China. We demonstrate linear optical pulse compression by using temporal phase zone plates based on electro-optic phase modulation, achieving experimental time-bandwidth products (or equivalent time compression factors) > 150 using phase-modulation amplitudes of only π radians.

۲

JOINT

JTh2A • POSTER SESSION III: Light-Matter Interactions, ultrafast & Quantum Optics—Continued

JTh2A.22

1.2-GHz Repetition Rate, Diode-Pumped Femtosecond Yb:KYW Laser Mode-Locked by a CNT Saturable Absorber, Heewon Yang¹, Chur Kim¹, Sun Young Choi², Guang-Hoon Kim³, Yohei Kobayashi⁴, Fabian Rotermund², Jungwon Kim¹; ¹Korea Advanced Inst of Science & Tech, Republic of Korea; ³Ajou Univ, Republic of Korea; ³KERI, Republic of Korea; ⁴Univ of Tokyo, Japan. We demonstrate a 1.2-GHz repetition rate, diodepumped, carbon nanotube (CNT)-mode-locked Yb:KYW laser with 168 fs pulse duration. To our knowledge, this corresponds to the highest repetition rate from CNT-mode-locked femtosecond bulk solid-state lasers.

JTh2A.23

Wide range wavelength and repetition rate tunable tens of GHz sub-picosecond pulse source, Tadashi Nishikawa¹, Miho Yamazaki¹², Nuremy Binti^{1,2}, Atsuhi Ishizawa², Kenichi Hitachi², Katsuya Oguri², Tetsuoni Sogawa², ¹Department of Electrical and Electronic Engineering, Tokyo Denki University, Japan; ²NTT Basic Research Laboratories, NTT Corporation, Japan. A wide range wavelength and repetition rate tunable tens of GHz sub-picosecond pulse source is demonstrated based on optical modulators. A wavelength tunable range of 1530-1575 nm and a repetition rate tunable range of 18-26 GHz were achieved.

JTh2A.24

 $(\mathbf{\Phi})$

Application of Hybrid Optoelectronic Correlator to Gabor Jet images for Rapid Object Recognition & Segmentation, Mehjabin Sultana Monjur¹, Mih Tseng¹, Adnan Mujahid³, Nasir Rajpoot^{1, A}, Selim M. Shahriar^{1,2}; 'Department of Electrical Engineering and Computer Science, Northwestern University, USA; 'Department of Physics and Astronomy, Northwestern University, USA; 'Computer Science and Engineering Department, Qatar University of Warwick, United Kingdom. We propose an image recognition system using a Hybrid Optoelectronic Correlator where the reference and query images are Gabor Jet Images for individual pixels produced by Gabor filtering, for rapid object recognition and segmentation.

JTh2A.25

Control of Phonon Polariton Propagation in LiNbO3 Single Crystals, Ikufumi Katayama', Yuki Ikegaya', Yasuo Minami', Jun Takeda'; '*Yokohama* National University, Japan. We demonstrated control of E-mode phonon polariton propagation in LiNbO3 single crystals by using double pump excitation. Either forward or backward travelling phonon polariton could be selectively excited by tuning the delay between two pump pulses.

JTh2A.26

Time-Resolved Measurements of Near-Infrared Pulse Induced Ultrafast Optical Modulation of Quantum Cascade Lasers, Hong Cai^{1,2}, Sheng Liu^{1,2}, Elaine Lalanne⁴, Dingkai Guo^{3,2}, Xing Chen^{3,2}, Xiaojun Wang⁴, Fow-Sen Choa^{2,3}, Anthony M. Johnson^{1,2}, 'Physics, University of Maryland Baltimore County, USA; 'CASPR, University of Maryland Baltimore County, USA; 'CSEE, University of Maryland Baltimore County, USA; 'AdTech Optics Inc., USA. We temporally resolve ultrafast modulation of quantum cascade lasers (QCLs) using a near-infrared pump Mid-infrared probe technique. We compare interband and intersubband transition mechanism assisted modulation of QCLs by using different pump wavelengths.

JTh2A.27

Cross-Correlator for the Diagnostics of 3D Ellipsoidal Shaped UV Laser Pulses for XFEL Ultra Low-Emittance Photoinjector, Efim A. Khazanov¹, Alexey Andrianov¹, Ekaterina Gacheva¹, Grigory Gelikonov¹, Victor Zelenogorsky¹, Sergey Mironov¹, Anatoly Poteomkin¹, Mikhail Martya nov², Eugeny Syresin³, Mikhail Krasilnikov⁴, Frank Stephan⁴; ¹Institute of Applied Physics, Russian Federation; ²European Organization for Nuclear Research, Switzerland; ³Joint Institute for Nuclear Research, Russian Federation; ⁴Photo Injector Test Facility at Deutsches Electronen-Synchrotron, Germany. The cross-correlator described below excels in its high speed (>1500cm/s) and high amplitude of the diagnostic channel delay. Such characteristics allow the cross-correlator to scan pulses inside 300-microsecond long pulse trains, repeated with the frequency of 10Hz

JTh2A.28

Subfemtosecond Synchronization between Yb-fiber and Er-fiber Lasers by Controlling the Relative Injection Timing, Wei-Wei Hsiang', Bo-Wei Tsai', Chieh Hu², Shang-Ying Wu³, Yinchieh Lai³⁴, ¹Dep. of Physics, Fu Jen Catholic Univ., Taiwan; ²Laser Lightwave Technology Department, Laser Application Technology Center, ITRI, Taiwan; ³Department of Photonics & Institute of Electro-Optical Engineering, National Chiao-Tung University, Taiwan; 'Research Center for Applied Sciences, Academia Sinica, Taiwan. The relative timing between the injection and slave pulses is found to be the key factor to achieve sub-fs timing jitter (0.87 fs, 1.9 MHz bandwidth) between Yb-fiber and Er-fiber fs lasers with hybrid synchronization.

JTh2A.29

A resonator-based time-stretch oscilloscope with variable magnification, Stefan Weber^{1,2}, Christoph Reinheimer^{1,2}, Georg von Freymann^{1,2}; ¹Physics Department and Research Center OP-TIMAS, Technische Universität Kaiserslautern, Germany; ²Department Terahertz Measurement and Systems, Frauhnofer Institute for Physical Measurement Techniques, Germany. We present a resonator-based approach to time-stretch electrical signals with variable temporal magnification up to M=100 and a time-aperture up to 800 ps. Experimental results agree well with numerical calculations.

JTh2A.30

Generation of femtosecond laser pulse at 1053 nm with contrast ratio of 10^11 by optical-parametric amplification, Zhongwei Shen¹, Zhaohua Wang¹, Wei Zhang¹, Qing Wang¹, Haitao Fan¹, Hao Teng¹, Zhiyi Wei¹, 'Key Laboratory of Optical Physics, The Institute of Physics, Chinese Academy of Sciences(CAS)., China. We demonstrated a high contrast 1053 nm femtosecond laser by exchanging the signal and idler in two stages non-collinear optical-parametric amplifier, 60 µI idler with measurement-limited contrast of 2.3×10^11 was obtained within scale of sub-10 ps.

JTh2A.31

Ultrashort laser pulse characterization from dispersion scans: a comparison with SPIDER, Miguel Miranda¹, Piotr Rudawski¹, Chen Guo¹, Francisco Silva², Cord L. Arnold¹, Thomas Binhammer³, Helder Crespo³, Anne L'Huillier¹; ¹Department of Physics, Lund University, Sweden; ²Department of Physics and Astronomy, Porto University, Portugal; ³Venteon Laser Technologies GmbH, Germany. We investigate the performance of the recently introduced "d-scan" technique for the characterization of ultrashort laser pulses by comparing it with a well-established technique (SPIDER). Good agreement is obtained from the two different measurements.

JTh2A.32

Near-Infrared Laser Pulse Induced Amplitude Modulation of Terahertz Quantum Cascade Lasers, Yohei Sakasegawa¹, Shingo Saito¹, Norihiko Sekine¹, Masaaki Ashida², Iwao Hosako¹; ¹National Institute of Information and Co, Japan; ²Craduate School of Engineering Science/Osaka University, Japan. We have demonstrated amplitude modulation of terahertz quantum cascade lasers by means of the injection of near-infrared laser pulses. Injected 770nm and 1350nm laser pulses both strongly suppressed the output power.

JTh2A.33

Frequency Dispersion and Damping Mechanisms of Terahertz Plasmons in Graphene Transistor Structures, Akira Satou¹, Victor Ryzii¹, Fedir T. Vasko², Vladmir V. Mitin², Taiichi Otsuji¹; '*Tohoku University, Japan; ²University at Buffalo, USA.* We numerically study frequency dispersion and damping mechanisms of plasmons in graphene transistor structures. We investigate the gate-voltage tunability of plasmon frequencies and the damping due to the carrier scattering with disorders and acoustic phonons.

JTh2A.34

Terahertz time-domain measurement of non-Drude conductivity in silver nanowire thin films, Jaeseok Kim¹, Inhee Maeng¹, Jongwool Jung², Hyunjoon Song², Joo-Hiuk Son³, Kilsuk Kim⁴, Jaeik Lee⁴, Chul-Hong Kim⁴, Geesung Chae⁴, Myungchul Jun⁴, YongKee Hwang⁴, Su Jeong Lee⁵, Jae-Min Myoung⁵, Hyunyong Choi¹; School of Electrical and Electronic Engineering, Yonsei university. Republic of Korea; ²Department of Chemistry, Korea Advanced Institute of Science and Technology, Republic of Korea; ³Department of Physics, University of Seoul, Republic of Korea; ⁴Material R&D Department, LG Display Co., Republic of Korea; ⁵Department of Materials Science and Engineering, Yonsei University, Republic of Korea. We study the complex conductivity of silver nanowire thin films using terahertz timedomain spectroscopy. The measured conductivity shows a characteristic non-Drude response and it is explained by the Gans approximation and the Drude-Smith model

JTh2A.35

Theory of 2D photon echo spectroscopy on quantum well intersubband dynamics, Thi Uyen-Khanh Dang', T. Sverre Theuerholz', Marten Richter', 'Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Germany. Intersubband transitions in semiconductor quantum wells are inspected with light in meV range. For low densities electron-phonon interaction dominates the relaxation processes. We theoretically inspect relaxation processes visible in 2D photon echo experiments.

JTh2A.36

Doping Position Control of Nitrogen-vacancy Centers in Diamond using Nitrogen-doped Chemical Vapor Deposition on Micropatterned Substrate, Tomohiro Gomi', Syuhei Tomizawa', Kohei Ohashi', Kohei M. Itoh', Junko Ishi-Hayase', Hideyuki Watanabe', Shinichi Shikata', Hitoshi Umezawa'; 'Department of Applied Physics, Keio University, Japan; 'Diamond Research Laboratory, Advanced Industrial Science and Technology (AIST), Japan. We demonstrate lateral position control of nitrogen-vacancy centers doped near the surface of diamond substrate using micropatterned substrate for nitrogen-doped isotopically-enriched chemical vapor deposition.

JTh2A.37

Carrier Relaxation Dynamics in MoS2 Measured by Optical/THz Pump-Probe Spectroscopy, Jared Strait¹, Parinita Nene¹, Haining Wang¹, Changjian Zhang¹, Farhan Rana¹; ¹Cornell University, USA. We present results on the relaxation dynamics of photoexcited carriers in MoS2 using optical-pump terahertz-probe spectroscopy. Our measurements indicate that carrier recombination is accelerated at low temperatures where defectassisted recombination becomes more efficient. ۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 173

JOINT

JTh2A • POSTER SESSION III: Light-Matter Interactions, ultrafast & Quantum Optics—Continued

JTh2A.38

Photocurrent Generation in a Microdisk Resonator Integrated with Interleaved P-N Junctions, Haike Zhu¹, Linjie Zhou¹, Xiaomeng Sun¹, Jingya Xie¹, Xinwan Li¹, Jianping Chen¹; ¹Electronic Engineering, shanghai jiao tong university, China. We investigate two-photon absorption (TPA) induced photocurrent generation in a microdisk resonator embedded with interleaved p-n junctions. Freecarrier recombination rate is considerably reduced leading to an increased photocurrent.

JTh2A.39

E-mode Phonon-Polariton Dispersion in LiNbO3 Probed via Frequency-Resolved Coherent Phonon Spectroscopy, Takefumi Takizawa¹, Ikufumi Katayama¹, Yasuo Minami¹, Masahiro Kitajima², Jun Takeda¹, ¹Yokohama National University, Japan; ²National Defense Academy, Japan. Dispersion of E-mode phonon-polariton has been investigated in LiNbO3 via coherent phonon spectroscopy with sub-10 fs laser pulses. By spectrally resolving the probe pulses, we could successfully determine the dispersion curves up to 16 THz.

JTh2A.40

Withdrawn

JTh2A.41

 $(\mathbf{\Phi})$

THz Acoustic Attenuation of Silica studied by Ultrafast Acoustic Phonon Spectroscopy, Kung-Hsuan Lin¹, Dzung-Han Tsai¹, Kuan-Jen Wang¹, Sheng-Hui Chen², Kai-Lun Chi³, Jin-Wei Shi³, Po-Cheng Chen¹, Jinn-Kong Sheu¹, 'Institute of Physics, Academia Sinica, Taiwan; 'Department of Optics and Photonics, National Central University, Taiwan; 'Department of Electrical Engineering, National Central University, Taiwan; 'Department of Photonics, National Cheng Kung University, Taiwan. We demonstrated ultrafast acoustic phonon spectroscopy up to 1.5 THz, and measured the acoustic signals up to 1 THz after they travelled through silica. Acoustic properties of silica films were characterized in sub-THz regime.

JTh2A.42 Withdrawn

JTh2A.43 STRONGLY COUPLED HYBRID FRENKEL WANNIER-MOTT EXCITON POLARITONS IN A HIGH Q MICROCAVITY, Niccolo Somaschi¹², Simos Tsintzos³, Dave Coles⁴, David G. Lidzey⁴, Zacharia Hatzopoulos⁵, Pavlos Lagoudakis¹, Pavlos Savvidiš²³, ¹University of Southampton, United Kingdom; ²FORTH, Greece; ³Material Science, University of Crete, Greece; ⁴University of Sheffield, United Kingdom; ²Physics and Astronomy, University of Crete, Greece. We fabricate and study a high Q planar microcavity containing QWs and molecular J-aggregate dye. Hybridization of Frenkel and Wannier-Mott excitons is achieved through cavity photons. Polariton formation is observed in strong coupling regime. Second Harmonic Generation of Topological Insulator Bi2Se3 Surfaces, Chia-Lin Chang', Raman Sankar', Fang-Cheng Chou', Yu-Ming Chang'; 'National Taiwan University, Taiwan. Azimuthal angle-dependent second harmonic generation is carried out to reveal the near surface band bending due to the surface state induced by Se vacancy in Bi2Se3. The surface band bending can be removed by tuning the Se molar ratio.

JTh2A.45

JTh2A.44

Observation of Pseudogap above Tc in 122 and 111 Iron-based Superconductors by Ultrafast Optical Spectroscopy, Kung-Hsuan Lin¹, Kuan-Jen Wang¹, Chung-Chieh Chang¹, Yu-Chieh Wen¹, Dzung-Han Tsai¹, Yu-Ruei Wu¹, Yao-Tsung Hsieh¹, Mingjve Wang¹, Bing Lv², Ching-Wu Chu², Maw-Kuen Wu³¹, ¹Institute of Physics, Academia Sinica, Taiwan; ²Texas Center for Superconductivity, University of Houston, USA; ³Department of Physics, National Dong Hwa University, Taiwan. We studied optimally-doped (Ba_{0.8}K_{0.3})Fe₂As₂ and LiFeAs by using ultrafast optical spectroscopy. Our temperature-dependent experimental results revealed that pseudogap exists above superconducting state in both materials.

JTh2A.46

Resonant Enhancement of Coherent High-Order Phonons in Single-Walled Carbon Nanotubes, Kenji Sato¹, Ikufumi Katayama¹, Keisuke Tahara¹, Yasuo Minami¹, Jun Takeda¹, Kazuhiro Yanagi², Masahiro Kitajima³, ¹Department of Physics, Yokohama National University, Japan; ²Department of Physics, Tokyo Metropolitan University, Japan; ³Department of Applied Physics, National Defence Academy, Japan. Coherent phonons dynamics in metallic carbon nanotubes has been investigated by pump-probe spectroscopy using 7.5-fs laser. High-frequency coherent phonons up to 100 THz have been observed including second-order modes due to the strong electronic resonances.

JTh2A.47

A Terahertz Time-Domain Polarization Spectrometer with High Angular Resolution and Its Application, Zhihui Lü¹, Dongwen Zhang¹², Zengxiu Zhao¹, Jianmin Yuan¹; ¹Physics Department, National University of Defense Technology, China; ²Institute for Research in Electronics and Applied Physics, University of Maryland, American Samoa. A time-domain polarization spectrometer with ultra-broad band (0.3~30THz) and high angular resolution (up to several minutes) has been set up based on terahertz air photonics. Its construction, performances and applications are introduced.

JTh2A.48

Intracavity THz Generation inside Stacked GaP Plates as Output Coupler of Optical Parametric Oscillator, Pu Zhao', Xiaomu Lin', Yujie J. Ding¹, Xiaodong Mu², Huai-Chuan Lee², Stephanie K. Meissner², Helmuth Meissner²; 'Lehigh University, USA; ²Onyx Optics Inc., USA. We have implemented a THz source based on intracavity difference frequency generation in stacked GaP plates as an output coupler of an optical parametric oscillator. The total THz output peak power approaches 200 W.

JTh2A.49

Microwave Synthesis From a Continuous-wave Terahertz Oscillator Using a Photocarrier Terahertz Frequency Comb, Shigeo Nagano¹, Motohiro Kumagai¹, Hiroyuki Ito¹, Masatoshi Kajita¹, Yuko Hanado¹; 'National Institute of Information and Communications Technology, Japan. A low-phase-noise microwave signal was synthesized from 0.3THz radiation using a photocarrier frequency comb in a photoconductive antenna. This technique potentially transfers the phase information of THz radiation into accessible microwave region.

JTh2A.50

Ultrafast Plasmonic Photoconductors for High Sensitivity Terahertz Detection, Ning Wang¹, Christopher W. Berry¹, Mohammed Reza Hashemi¹, Mona Jarrahi¹; 'Electrical Engineering and Computer Science, University of Michigan, USA. A photoconductive terahertz detector based on plasmonic contact electrodes is experimentally demonstrated. Incorporating plasmonic contact electrodes mitigates inherent tradeoff between high quantum-efficiency and ultrafast operation, enabling over 30 times higher terahertz detection sensitivities.

JTh2A.51

Dual THz emissions of GaAsBi for THz photoconductive switching, Barmak Heshmat¹, Mostafa Masnadi-Shirazi^{1,2}, Ryan Burton Lewis^{2,3}, Thomas Tiedje¹, Thomas E. Darcie¹; ¹Electrical and computer Engineering, University of Victoria, Canada, ²Electrical and computer Engineering, University of British Columbia, Canada; ³Department of Physics and Astronomy, University of British Columbia, Canada. We have measured dual THz emissions and their variations with growth condition (Bi content and annealing temperature) for GaAsBibased THz photoconductive switches. Results reveal the opposing effects of such property in emission and detection.

JTh2A.52

Study of efficient optical parametric generation in KTP crystal as pump source for DAST-DFG, Kouji Nawata¹, Yoshiki Miyake^{1,2}, Shin'ichiro HAYASHI¹, Takashi Notake¹, Hiroshi Kawamata¹, Takeshi Matsukawa¹, Feng Qi¹, Hiroaki Minamide¹; ¹*RIKEN, Japan*; ²*Tohoku Institute of Technology, Japan.* We have developed injectionseeded KTP optical parametric generator for DAST-DFG terahertz-wave source. Using a microchip Nd:YAG laser, the energy conversion efficiency of 10% and peak-power output of 2.5 MW were obtained at 1300 nm.

JTh2A.53

Bridging the THz to RF gap by four-wave mixing in a highly nonlinear fiber, Antoine Rolland¹, Lucien Pouget¹, Marc Brunel¹, Goulc'hen Loas¹, Mehdi Alouini¹; ¹Optique et Photonique, Universite de Rennes I, France. Down-conversion from a THz beat generated by a two-frequency solid-state laser to a RF intermediate frequency is performed with a zero dispersion-slope fiber. The two interleaved four-wave mixing spectra contain more than 75 harmonics.

JTh2A.54

Terahertz Characterization via an All-Optical, Ultra-Thin-Knife-Edge Technique, Sze Phing Ho¹², Mostafa Shalaby¹, Marco Peccianti³, Matteo Clerici¹⁴, Alessia Pasquazi¹, Yavuz Ozturk¹⁻⁵, Jali Ali², Roberto Morandotti³, 'INRS-EMT, University of Quebec, Canada; ²Nanophotonics Research Alliance, Universiti Teknologi Malaysia, Malaysia; ³Institute for Complex Systems- CNR, Italy; ⁴School of Engineering and Physical Sciences, Heriot-Watt University, United Kingdom; ⁵Ege University, Turkey. An all-optical, terahertz characterization based on a ultra-thin-knife-edge is demonstrated employing an ultraviolet-pulse to project the image of a blade on a ZnTe crystal, where the free carriers excited on a blade-shaped area act as a field-shield.

JTh2A.55 Withdrawn

JTh2A.56

Anisotropic Structure Induced Electrical Properties of A-plane InN, Pang-Hsian Chang¹, Ihe-Wei Chia¹, Shangjr Gwo², Hyeyoung Ahn¹; ¹National Chiao Tung University, Taiwan; ²National Tsing Hua University, Taiwan. Terahertz spectroscopy reveals that the anisotropic electrical properties of nonpolar InN film along in-plane c-axis and in-plane m-axis are determined by the orientation of narrow and thin stacking faults, not by the density of defects.

JTh2A.57

Enhanced Terahertz Generation from InGaN/ GaN Dot-in-a-Wire Light Emitting Diodes, Guan Sun¹, Ruolin Chen¹, Yujie J. Ding¹, Hieu P. Nguyen², Zetian Mi²; ¹Electrical and Computer Engineering, Lehigh University, USA; ²Electrical and Computer Engineering, McGill University, Canada. Efficient Terahertz output is generated from InGaN/GaN dot-in-a-wire light emitting diodes (LEDs) grown on Si(111). Under reverse bias, the THz output power is enhanced more than 4 times.

JTh2A.58

Demonstration of Coherent Interference of THz Waves Simultaneously Generated by Frequency Mixing, Xiaomu Lin¹, Xingquan Zou¹, Zhaojun Liu¹, Yujie J. Ding¹, Xiaodong Mu², Huai-Chuan Lee², Stephanie K. Meissner², Helmuth Meissner²; ¹Lehigh University, USA; ²Onyx Optics Inc., USA. By mixing three nearly-even-spaced optical frequencies generated by coupled optical parametric oscillators based in KTP stacks and bulk KTP in a nonlinear medium, we demonstrate coherent interference of THz waves.

JTh2A.59

High Efficiency Coupling into Tapered Parallel Plate Terahertz Waveguides, Marko Gerhard', Michael Theuer', Marco H. Rahm', René Beigang'; 'Department of Electrical and Computer Engineering and Research Center OPTIMAS, University of Kaiserslautern, Germany; 'Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Germany. We present efficient coupling of focused broadband terahertz radiation into tapered metal parallel plate waveguides of subwavelength gap widths. The achieved amplitude coupling ratio of more than 70 % is investigated for different polarizations.

Thursday, 13 June

JOINT

JTh2A • POSTER SESSION III: Light-Matter Interactions, ultrafast & Quantum Optics—Continued

JTh2A.60

Impacts of Side Strips and Ridge Width on Terahertz Quantum Cascade Lasers with Metal-Metal Waveguides, chao xu¹, Simon Ferre¹, Dayan Ban¹; ¹ECE, Uwaterloo, Canada. Effects of side uncovered strips and ridge width on terahertz quantum cascade laser performance are investigated numerically and experimentally. Results show substantial performance degradation with shrinking ridge width. An optimal strip width is obtained.

JTh2A.61

Comparing the Sensitivity of Four Laser Induced Damage Tests at 266 nm and 532 nm, Tamas Somoskoi¹, Csaba Vass¹, Mark Mero¹, Robert Mingesz², Zoltan Bozoki¹, Karoly Oswa^{1,3}, ¹Department of Optics and Quantum Electronics, University of Szeged, Hungary, ¹Department of Technical Informatics, University of Szeged, Hungary; ³ELI-Hu Nkft., Hungary. The techniques of visual inspection, scattered light measurement, and shock wave detection in air and in the sample material have been tested simultaneously on high reflector laser mirrors with ns laser pulses.

JTh2A.62

Enhancing the pulse shaping precision of energetic high aspect ratio infrared pulses in the National Ignition Facility laser system, Eyal Feigenbaum¹, Richard A. Sacks¹, Mike J. Shaw¹; ¹Lawrence Livermore National Laboratory, USA. NIF's ability to deliver precise, high-contrast pulses is limited by the fidelity of our numerical model. Model fidelity is enhanced by fitting small-signal gain and saturation parameters to measurements and by including temporal overlap effects.

JTh2A.63

 $(\mathbf{\Phi})$

High Stability, Single Frequency 136ps Laser Pulse Generation Based on Stimulated Brillouin Scattering, Xuehua Zhu¹, Zhiwei Lu¹, Yulei Wang¹, Xiwen An¹, Mu Li¹; ¹National Key Laboratory of Science and Technology on Timable Laser, Harbin Institute of Technology, China. We obtained a single-frequency laser pulse with energy of 300mJ and duration of 136-ps based on stimulated Brillouin scattering using an 8-ns pulse width Q-switched Nd:YAG laser. The achieved pulse duration stability is about 4.1%.

JTh2A.64

High-energy 266-nm picosecond pulse generation from a narrow spectral bandwidth gain-switched LD MOPA, Yosuke Orii', Yuichi Takushima', Mieko Yamagaki', Asa Higashitani', Shoji Matsubara', Shinichi Murayama', Takeshi Manabe', Isao Utsumi', Daisuke Okuyama', George Okada'; 'Spectronix Corporation, Japan. We generated 45-µJ 266-nm picosecond optical pulses at 100kHz repetition rate by fourthharmonic generation of 150-µJ, 72-ps, 1064-nm optical output from a narrow spectral bandwidth hybrid MOPA seeded by a gain-switched laser diode.

Efficient amplification of tunable Ti:sapphire laser seeded with single longitudinal mode laser at 1 kHz repetition rate, Rui Wang¹, Hao Teng¹, Nan Wang¹, Peng He², Dehua Li¹, Zhiyi Wei¹; 'Optics Physics, Institute of physics, CAS, China, ²School of Technical Physics, Xidian University, China. Tunable Ti:sapphire laser amplifier covered from 765 nm to 835 nm was demonstrated by using a 1-kHz single longitudinal mode laser as seed. Maximum output power of 6.9 W with <200 MHz linewidth was obtained.

JTh2A.66

JTh2A.65

An all-solid-state Argon ion laser replacement, Tobias Beck¹, Benjamin Rein¹, Thomas Walther¹; ¹Institute of Applied Physics, TU Darmstadt, Germany. We present a solid-state laser system at 1028 nm. It is frequency doubled and quadrupled to 514 nm and 257 nm, respectively. The system is applicable as a tunable narrowband replacement for Argon ion lasers.

JTh2A.67

Radially polarized Bessel-Gauss beams in ABCD optical systems and fiber-based generation, Damian N. Schimpfl², William P. Putnam¹, Michael D. Grogan³, Siddharth Ramachandran³, Franz X. Kärtner^{1,2}, 'Research Laboratory of Electronics, Massachusetts Institute of Technology, USA; ²Center for Free-Electron Laser Science, DESY, Germany; ³Photonics Center ECE, Boston University, USA. We derive solutions for radially polarized Bessel-Gauss beams in ABCD optical systems by superimposing decentered Gaussian beams with linear polarization states. We experimentally confirm the expression by employing a fiber-based mode-converter.

JTh2A.68

ISO compliant M-square measurement using a quadriwave lateral shearing interferometer wave front sensor, Benoit Wattellier', Ivan Doudet', 'PHASICS, France. We validate the use of a quadriwave lateral shearing Wave Front Sensor (WFS) to make an ISO compliant M-square measurement. We compare measurements made following the ISO standard method with those made with the WFS.

JTh2A.69 Withdrawn

JTh2A.70

Effect of Interatomic Separation and Spatial Spread of Individual Atoms in a Collective State Interferometer, Resham Sarkar¹, May E. Kim¹, Yanfei Tu¹, Selim M. Shahriar¹; *Northwestern University, USA*. We establish the precise role of interatomic distance and the irrelevance of free propagation broadening of atomic wavepacket in determining the fidelity of collective excitation in an ensemble based atom interferometer with high Compton frequency.

JTh2A.71

Simultaneous Unbalanced Shared Local Oscillator Heterodyne Interferometry (SUSHI) for high SNR, minimally destructive dispersive detection of time-dependent atomic spins, Mary Locke¹, Chad Fertig¹; ¹Physics and Astronomy, University of Georgia, USA. We demonstrate a method for 2-arm, quantum limited dispersive detection with probes between 650 pW and 230 uW, based on simultaneous heterodyne interferometery. SUSHI is suited to continuous observations of Rabi flopping in cold atoms.

JTh2A.72

Superradiance in Parametric Fluorescence, Marco Liscidini¹, Tatsuhiro Onodera², Lukas G. Helt^{2,3}, John E. Sipe³, ¹Physics, Universita degli Studi di Pavia, Italy; ²Physics, University of Toronto, Canada; ³Physics and Engineering, Macquarie University, Australia. We show that the pair generation rate in spontaneous four-wave-mixing in a sequence of N resonators can scale quadratically with N as a result of a quantum interference in analogy with Dickie superradiant spontaneous emission.

JTh2A.73

Scattering of a Bose-Einstein Condensate from an Oscillating Barrier, Megan K. Ivory¹, Andrew J. Pyle¹, Tommy Byrd¹, Kevin Mitchell³, John Delos¹, Kunal Das², Seth Aubin¹, 'College of William & Mary, USA; ²Kutztown University, USA; ³University of California at Merced, USA. We experimentally and theoretically investigate the scattering of a Bose-Einstein condensate from a single amplitudemodulated potential barrier as a first step towards a turnstile quantum pump.

JTh2A.74

Indistinguishable Particles and their Correlations in Non-Hermitian Lattices, Markus Gräfe¹, René Heilmann¹, Roert Keil¹, Toni Eichelkraut¹, Matthias Heinrich², Stefan Nolte¹, Alexander Szameit¹, 'Diamond-/carbon based optical systems, Institute of Applied Physics; Friedrich-Schiller-Universität Jena, Germany: ²CREOL, The College of Optics & Photonics, University of Central Florida, USA. A novel approach to investigate the dynamics of indistinguishable particles in non-Hermitian lattice systems exhibiting loss is presented. Especially analyzed are two-particle dynamics in quasi-parity-time-symmetric systems for a variety of input states.

JTh2A.75

Field-Field and Photon-Photon Correlations of Light Scattered by Two Solid-State Emitters, kumarasiri konthasinghe¹, Manoj Peiris¹, Ying Yu², Mifeng Li², Jifang He², Haiqiao Ni², Zhichuan Niu², Chih-Kang K. Shih³, Andreas Muller¹; ¹Physics, USF, USA; ²Institute of Semiconductors, China; ³Physics, University of Texas at Austin, USA. We report the measurements of one-photon and two-photon interference of light scattered by two quantum dots, separated by 40 µm. We show how fringe contrasts are strongly affected by spectral diffusion.

JTh2A.76

Coherent Transfer and Retrieval of Terahertzbandwidth Single Photon Pulses to a Quantum Dot Ensemble at Telecommunication Wavelengths, Kazumasa Suzuki¹, Koichi Akahane³, Junko Ishi-Hayase¹; ⁴Keio University, Japan; ²National Institute of Information and Communications Technology (NICT), Japan. We demonstrate the coherent transfer and on-demand retrieval of quantum state of telecom-wavelength terahertzbandwidth single photon pulse to a collective excitation of a large number of quantum dots using photon-echo technique.

JTh2A.77

Tailoring single photon emission from diamond using nano-structures, Sebastian Knauer¹², John Patrick Hadden², Nikos Sergis¹, Jake Kennard², Jeremy L. O'Brien²¹, John G. Rarity¹², ¹Department of Electrical and Electronic Engineering, University of Bristol, United Kingdom, ²Center for Quantum Photonics, H.H. Wills Physics Laboratory, University of Bristol, United Kingdom. We describe fabrication methods for making nano-cavities in pure diamond centered around light emitting color centers. We will present results showing how nearby structures change the emission and spin properties.

JTh2A.78

Diamond Nitrogen-Vacancy Centers Creation with Helium-Ion Microscope, Zhihong Huang', Wen-Di Li^{1,2}, Charles M. Santori¹, Victor M. Acosta¹, Andrei Faraon¹³, R. Stanley Williams¹, Raymond G. Beausoleil¹; ¹Hewlett Packard Laboratories, USA; ²Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, ³Applied Pysics and Material Science, California Institute of Technology, USA. We investigate a method to create nitrogen-vacancy (NV) centers in diamond using a focused-helium-ion-microscopy. Near-surface NV centers can be created with spatial resolution below 0.6um. NV center spectral linewidths at various optical and microwave frequencies were also studied.

JTh2A.79

Towards Lasing Without Inversion in mercury at 253.7 nm, Benjamin Rein¹, Thomas Walther¹; ¹Institute for Applied Physics, TU Darmstadt, Germany. We report on the status of the first implementation of lasing without inversion (LWI) where the lasing wavelength will be significantly shorter than the laser radiation used to create the coherence.

JTh2A.80

Full Solid Angle Ion-Light Interface, Martin Fischer¹², Robert Maiwald^{1,2}, Andrea Golla^{1,2}, Marianne Bader¹², Markus Sondermann^{1,2}, Gerd Leuchs^{1,2}, ¹Institute of Optics, Information and Photonics, Germany; ²Max Planck Institute for the Science of Light, Germany. We present an optical system covering 81% of the solid angle into which an ion emits light. With this configuration we focus light close to the diffraction limit, while also approaching optimal light matter coupling.

JTh2A.81

Two-photon absorption in an Atomic Cladding Wave Guide, Liron Stern¹, Ilya Goykhman¹, Boris Desiatov¹, Uriel Levy¹; 'Applied Physics, Hebrew University of Jerusalem, Israel. We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. ۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 175

JOINT

JTh2A • POSTER SESSION III: Light-Matter Interactions, ultrafast & Quantum Optics—Continued

JTh2A.82

Persistent Multipartite Entanglement in a Quantum Spin System, Jiang Zhou¹, Hong Guo¹; ¹The State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, and Center for Computational Science and Engineering, Peking University, China. We find the very eigenspaces where multipartite entanglement is more persistent than the bipartite entanglement and can even evolve into a specific constant in a model many-spin systems decohered by a thermal bath.

JTh2A.83

Time-dependent Multiphoton Emission from a Quantum Dot, Sergey Polyakov^{1,2}, Edward B. Flagg^{1,2}, Tim Thomay^{1,2}, Glenn Solomon^{1,2}, 'Joint Quantum Institute, UMD, USA; 'National Inst of Standards & 'Technology, USA. We discuss features seen in a time-resolved experimental measurement of statistical properties of non-classical light from a quantum dot. We present a model that describes properties of a quantum dot excitation via carrier reservoirs.

JTh2A.84

Self-stabilized Quantum Optical Fredkin Gate Enabled by the Raman Effect, Jonathan Hu¹, Yu-Ping Huang², Prem Kumar²; ¹Baylor University, USA; ²ECS, Northwestern University, USA. We demonstrate a quantum optical Fredkin gate in an all-fiber setup, which is self-stabilizing against pump fluctuations owing to stimulated Raman scattering occurring naturally in such a system.

JTh2A.85

 $(\mathbf{\Phi})$

A Fast, Low Loss, Electro-optic Single Photon Switch, Matthew S. Bigelow¹, Philip Battle¹, Tony D. Roberts¹; ¹ADVR Inc, USA. We demonstrate a fast, low loss electro-optic (EO) deflector operating as a single photon switch. The device is based on electro-optically controlled prisms engineered into a ferroelectric substrate.

JTh2A.86

Efficient, low-noise, single-photon frequency conversion, Paulina S. Kuol², Jason S. Pelc², Oliver Slattery¹, Yong-Su Kim¹, M. M. Fejer³, Xiao Tang¹; ¹Information Technology LuShariotan Inst of Standards & Technology, USA; ³Joint Quantum Institute, USA; ³E. L. Ginzton Laboratory, Stanford University, USA. We demonstrate simultaneous low-noise and efficient frequency conversion in a periodically poled LiNbO3 waveguide with spectral filtering. We achieve >50% external conversion efficiency and 600 noise counts per second at peak conversion.

JTh2A.87

Experimental Controlled-Swap Operation for Direct Measurement of the Overlap between Photonic States, Hee Su Park¹, Sang Min Lee¹, Sang-Kyung Choi¹; ¹Korea Research Inst of Standards & Sci, Republic of Korea. A controlled-swap operation for photons using two optical paths as a control qubit is demonstrated. The overlap between the input states can be directly evaluated by measuring the interference fringe visibility of the control qubit. Robust Phase Estimation of Squeezed State, Shibdas Roy¹, Ian R. Petersen¹, Elanor H. Huntington¹; 'School of Engineering and Information Technology, University of New South Wales, Australia. Optimal phase estimation of a phase-squeezed quantum state of light has been recently shown to beat the coherent-state limit. Here, the estimation is made robust to uncertainties in underlying parameters using a robust fixed-interval smoother.

JTh2A.89

JTh2A.88

Fiber-Based Multichannel Correlated Photon-Pair Source with High Efficiency and Low Crosstalk, Yu-Zhu Sun¹, Yu-Ping Huang², Neal N. Oza², Prem Kumar^{1,2}, ¹Physics and Astronomy, Northwestern University, USA; ²Electrical Engineering and Computer Science, Northwestern University, USA. We present a fiber-based multichannel source of correlated photon pairs in the telecommunication O-band. Coincidence-to-accidental ratios >100 (~1) are measured between the paired (unpaired) signal-idler channels.

JTh2A.90

Post-Selection-Free Mode-Locked Two-Photon State for High-Dimensional Hyperentanglement Generation, Zhenda Xie¹, Tian Zhong², Xinan Xu¹, Dirk Englund¹, Jeffrey H. Shapiro², Franco N.C. Wong², Chee Wei Wong¹; ¹Columbia University, USA; ²Massachusetts Institute of Technology, USA. We report realization of high-dimensional hyperentanglement in frequency and polarization from a postselection-free mode-locked twophoton state. Quantum-interference dips and revivals are observed with 97.8% visibility and a Bell inequality is violated in polarization.

JTh2A.91

Continuous wave correlated photon pairs generation in quasi-phase-matched superlattice AlGaAs waveguides, Peyman Sarrafi', Eric Y. Zhu', Ksenia Dolgaleva', Barry Holmes², David Hutchings², J. Stewart Aitchison', Li Qian'; 'Electrical and Computer Engineering, University of Toronto, Canada; ²School of Engineering, University of Glasgow, United Kingdom. We report the first demonstration of CW-pumped correlated photon-pair generation in an AlGaAs waveguide with a coincidence-to-accidental ratio > 100. This is about two orders of magnitude greater than previously reported in AlGaAs waveguides.

JTh2A.92

Photonic Quantum Digital Signatures: An Experimental Test-Bed, Robert J. Collins¹, Patrick J. Clarke¹, Vedran Dunjko¹², Ross J. Donaldson¹, John Jeffers³, Erika Andersson¹, Gerald S. Buller¹; ¹Institute of Photonics and Quantum Sciences, Heriot-Watt University, United Kingdom; ²School of Informatics, University of Edinburgh, United Kingdom; ³Department of Physics, University of Strathclyde, United Kingdom. We have built and tested the first experimental demonstration of a photonic quantum digital signature test-bed. We will present a case for quantum digital signatures, overview of the protocol, description of the system and results.

JTh2A.93

Object Identification Using Correlated Orbital Angular Momentum States, Andrew Fraine¹, Nestor Uribe-Patarroyo¹, David Simon², Olga Minaeva³, Alexander Sergienko¹⁴; ¹Dept. of Electrical and Computer Engineering, Boston University, USA; ²Dept. of Physics and Astronomy, Stonehill College, USA; ³Dept. of Biomedical Engineering, Boston University, USA; ⁴Dept. of Physics, Boston University, USA; A technique for object identification using pairs of correlated photons is presented. The detection of rotational symmetries by measuring the joint orbital angular momentum spectrum demonstrates a sparse sensing technique relevant to remote sensing applications.

JTh2A.94

Many-Body Effects in Terahertz Quantum Well Infrared Photodetectors, Simon Ferré¹, Seyed Ghasem Razavipour¹, Chao Xu¹, Dayan Ban¹; *IECE*, University of Waterloo, Canada. A study on many-body effects on Terahertz Quantum Well Photodetectors is reported. Absorption frequency differs by more than 20% when taking many-body effects into account. The phenomenon is critical in designs with small barrier height.

JTh2A.95

Characterization of Hybrid Entanglement via a Photonic Basis Converter, Jonathan Hodges¹, Stephen P. Pappas¹, Yaakov S. Weinstein¹, Gerald Gilbert¹; ¹Quantum Informaiton Science Group, MITRE Corp., USA. Photonic entanglement interconversion between time-bin and polarization bases has application to quantum communication, computation and memories. We characterize hybrid-basis entanglement between a pair photons obtained through such interconversion and show that non-classical correlations persist.

JTh2A.96

Reducing spin decoherence in a Tm³⁺:YAG crystal by dynamical decoupling, Tongning Robert-Christopher¹, Pascual-Winter Maria Florencia¹, Chanelière Thierry¹, Le Gouët Jean-Louis¹; '*laboratoire Aimé Cotton, Université Paris-Sud, France.* We extend Tm³⁺ nuclear spin coherence lifetime to ~230 ms. This 450-fold gain is achieved within the quantum memory context, involving spin hyperpolarization by optical pumping, dynamical decoupling and optical detection of Tm³⁺ ions.

JTh2A.97

Joint Spectral Measurements at the Hong-Ou-Mandel Interference Dip, Gerrits Thomas¹, Francesco Marsili¹, Varun Verma¹, Martin J. Stevens¹, Jeffrey A. Stern², Matthew D. Shaw², Richard P. Mirin¹, Sae Woo Nam¹; ¹National Inst of Standards & Technology, USA; ²Jet Propulsion Laboratory, USA. We measure the joint spectral probability distribution of correlated photons at the output ports of a Hong-Ou-Mandel interferometer. Simultaneous measurement of all frequency components shows an evolution from bunching to anti-bunching at the beampsplitter outputs.

JTh2A.98

Transverse Entanglement of Biphotons, Felix Just¹, Andrea Cavanna¹, Maria V. Chekhova¹, Gerd Leuchs¹; ¹Max-Planck-Gesellschaft, Germany. We study the transverse entanglement of biphotons generated via parametric downconversion as they propagate from the near to the far field. We obtain the Fedorov ratio and the Schmidt number and compare the results.

JTh2A.99

Measurement of third-order dispersion in a Hong-Ou-Mandel interferometer, Adrian Quarterman¹, John Carroll¹, Adrian Wonfor¹, Richard Penty¹, Ian H. White¹; ¹Department of Engineering, University of Cambridge, United Kingdom. The effect of third-order dispersion in a Hong-Ou-Mandel interferometer is investigated using a ZnSe crystal as a dispersive medium. A value for the TOD coefficient of ZnSe is extracted which is consistent with literature values.

JTh2A.100

Entanglement Dynamics in the Presence of Unital Noisy Channels, Assaf Shaham', Assaf Halevy', Iait Dovrat', Eli Megidish', Hagai Eisenberg', '*Racah Institute of Physics, The Hebrew* University of Jerusalem, Israel. The entanglement level of two initially entangled qubits, subjected to an uncorrelated unital noisy channel is simply manifested by the radii of its Bloch sphere mapping. We demonstrate this relation experimentally using an all-optical setup.

JTh2A.101

Nonlocal Cancellation of Multi-Frequency-Channel Dispersion Yields Double Coincidence Peaks, Xiaolong Hu¹, Xiang Mao¹, Jacob Mower¹, Catherine Lee¹, Prashanta Kharel¹, Zhenda Xie², XinAn Xu², Chee Wei Wong², Dirk Englund¹; ¹Electrical Engineering, Columbia University, USA; ²Mechanical Engineering, Columbia University, USA. We have observed that temporally-correlated photon pairs, experiencing multi-frequency-channel, opposite dispersion, yield double coincidence peaks. We present and compare theoretical and experimental results.

JTh2A.102

Near Infrared light emitting from InN/InGaN/ GaN Dot-in-a-Nanorod Heterostructure, Moon-Deock Kim¹, Song-Gang Kim², Woo-chul Yang³, Sang-Tae Lee¹, Hyo-Seok Choi¹, Byung-Guon Park¹, Kyung-Jin Kim¹; ¹Physics, Chungnam National University, Republic of Korea; ²Information and Communications, Joonghu University, Republic of Korea; ³Physics, Donghu University, Republic of Korea; ³Physics, Donghu University, Republic of Korea; ³Une report on the light emitting of InN/ InGaN/GaN dot-in-a-nanorods heterostructure grown on Si(111) substrates using plasma-assisted molecular beam epitaxy. Sharp and isolated single exciton emission line in the near infrared spectral range was observed.

JTh2A.103

Superconducting Nanowire Single Photon Detectors with High System Detection Efficiency at Telecom Wavelengths, Francesco Marsili¹, Varun Verma¹, Jeffrey A. Stern², Sean D. Harrington¹, Adriana E. Lita¹, Thomas Gerrits¹, Igor Vayshenker¹, Burm Baek¹, Matthew D. Shaw², Aaron Miller³, Richard P. Mirin¹, Sae Woo Nam¹; ¹National Inst of Standards & Technology, USA; ²Jet Propulsion Laboratory, California Institute of Technology, USA; ³Department of Physics, Albion College, USA. We report on a fiber-coupled eightchannel single-photon-detection system employing superconducting nanowire single-photon detectors (SNSPDs) based on amorphous tungsten silicide (WSi) with system detection efficiency ranging from 81 to 89 % at 1550 nm wavelength.

Thursday, 13 June

۲

JOINT

JTh2A • POSTER SESSION III: Light-Matter Interactions, ultrafast & Quantum Optics—Continued

JTh2A.104

Evaluation of Tunable Microwave Signals Generated by Monolithic Two-section Distributed Feedback Lasers, Chien-Chung Lin¹, Chen-Yu Chien¹, Yu-Chang Wu¹, Hao-chung Kuo², Chun-Ting Lin¹; ¹Institute of Photonic System, National Chiao Tung University, Taiwan; ²Department of Photonics, National Chiao Tung University, Taiwan. We demonstrated a two-section 1.55µm laser with an air gap in the middle section. When two DFB lasers are powered together, an optical heterodying operation can produce microwave signals up to 44 GHz.

JTh2A.105

Asymmetric MQW Semiconductor Optical Amplifier for Next-Generation Optical Access Networks, Julie Nkanta', Ramon Maldonado-Basilio¹, Abdessamad Benhsaien¹, Kaiser Khan¹, Sawsan Abdul-Majid¹, Jessica Zhang², Trevor J. Hall'; 'Center for Research in Photonics, University of Ottawa, Canada; 'CMC Microsystems, Canada. A broadband and low polarization sensitive MQW SOA with an asymmetric structure is reported for operation in E-band wavelength range. A peak gain of 13.5dBm for >50mm bandwidth and polarization sensitivity of 0.5dB are measured.

JTh2A.106

Blue GaN-based surface-emitting lasers incorporating a sub-wavelength high contrast grating, Tzeng-Tsong Wu¹, Shu-Hsien Wu¹, Hao-Wen Chen¹, Tien-Chang Lu¹, Shing-Chung Wang¹; ¹Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan. Blue GaN-based surfaceemitting lasers incorporating a sub-wavelength high contrast grating were reported. The laser characteristics such as threshold energy, degree of polarization and divergence angle were measured to be 0.56 mJ/cm2, 73% and 12°. JTh2A.107 Rate Equation Analysis of Three Phonon-Photon-Phonon Terahertz Quantum Cascade Lasers, Seyed Ghasem Razavipour¹, Emmanuel Dupont², Saeed Fathololoumi^{1,2}, Zbig Wasilewski^{1,2}, Sylvain Laframboise², H.c. Liu³, Dayan Ban¹; ¹Electrical and Computer, University of Waterloo, Canada; ²National Research Council of Canada, Canada; ³Department of Physics, Shanghai Jiao Tong University, China. A rate equation model is presented to analyze the performance of terahertz quantum cascade lasers based on consecutive phonon-photon-phonon emissions. Devices lased up to 128.5, 138, and 144 K at 2.5, 3.2 and 2.6 THz, respectively.

JTh2A.108

Measurements of Optical Mode-Linewidth and Mode-frequency drift of a Mode-Locked Laser using Coherent Intradyne-Detection, Christophe Gosset!, Fausto Gomes-Agis', XIn You', Laurent Bramerie', Philippe B. Gallion', 'Centre National de la Recherche Scientifique, Télécom ParisTech, Ecole Natl Sup des Telecommunications, France; 'Centre National de la Recherche Scientifique, ENSSAT, France. We propose a time-resolved technique based on coherent intradyne-detection to measure the short-term optical spectral line width and the long-term mode: Afasing inherent in selfdelayed homodyne technique is avoided.

JTh2A.109

Toward an Efficient Germanium-on-Silicon Laser: Ultimate Limits of Tensile Strain and n-Type Doping, David Sukhdeo¹, Donguk Nam¹, Ze Yuan¹, Birendra (Raj) Dutt^{2,3}, Krishna C. Saraswat¹; ¹Electrical Engineering, Stanford University, USA; ²APIC Corporation, USA; ³PhotonIC Corporation, USA. We investigate the ultimate limits of tensile strain and n-type doping for improving germanium lasers. These ultimate limits occur around 2.3-3.7% biaxial strain and 10^18-10^19 cm^-3 electrically-active doping. >1000x threshold reductions are possible.

JTh2A.110

Wavelength Tunable Selectively Intermixed Quantum Well Laser, Abdullah J. Zakariya¹, Patrick L. Likamwa¹; ¹University of Central Florida, USA. We demonstrate a monolithic Fabry-Pérot laser in which the wavelength is tuned by electrically steering the laser beam over a gain medium consisting of three laterally adjacent selectively intermixed quantum well regions

JTh2A.111

Lateral Current Density Distribution and Spatial Hole Burning in Quantum Cascade Lasers, Xue Huang¹, Yamac Dikmelik², Claire F. Gmach¹, ¹*Princeton University, USA*, ¹*Johns Hopkins University, USA*. We have investigated non-uniformity of the lateral current density and lateral hole burning in Quantum Cascaded lasers, e.g., the current density in the mode center is 1.8 times that in the edge region.

JTh2A.112

Dynamics of Split-Pulsing in a Two-Section Passively Mode Locked Quantum Dot Laser, Ravi Raghunathan¹, Alexandre Braga¹, Mark Crowley², Jesse Mee¹³, Luke Lester¹; 'Center for High Technology Materials, University of New Mexico, USA; ²BinOptics Corporation, USA; 'AFRL/RVSE, Air Force Research Laboratory, Kirtland AFB, USA. The measured dynamics of split-pulsing in a mode-locked quantum dot laser have been studied using a numerical model. This is important to understand the origin of such parasitic dynamical effects, and to minimize their occurrence in practical devices.

JTh2A.113

Long Photon Lifetime from Microdisk Cavity Laser with Type II GaSh/GaAs Quantum Dots, Kung shu Hsu¹², Chih Chi Chang', Wei Hsun Lin', Min-Hsiung Shih¹², Shih Yen Lin¹², Yia Chung Chang¹²; '*Research Center for Applied Sciences* (*RCAS*), Academia Sinica, Taiwan, 'Photonics, National Chiao Tung University, Taiwan. Microdisk lasers with active region made of type II GaSh/ GaAs quantum dots on the GaAs substrate have been demonstrated. Lasing wavelengths near 1µm was achieved and longer photon lifetime from type II structure also observed.

13:00–14:00 Pizza Lunch and Unopposed Exhibit Only Time, *Exhibit Hall 1 and 2 (concessions available)*

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 177

14:00–16:00 QTh3A • Particle Acceleration by Lasers

Presider: Csaba Toth; Lawrence Berkeley National Laboratory, United States

QTh3A.1 • 14:00 Tutorial

Laser Plasma Acceleration of Electrons and Plasma Diagnostics at High Laser Fields, Michael C. Downer¹; ¹Univ. of Texas at Austin, USA. Laser-plasma acceleration is now entering an era of petawatt lasers, tenuous plasmas and multi-GeV electron energies. I will review initial results in this regime, and discuss plasma diagnostics needed to understand, optimize and scale them.

Mike Downer is College of Natural Sciences Distinguished Professor of Physics and Distinguished University Teaching Professor at the University of Texas at Austin. He earned a Ph.D. in 1983 from Harvard University under Nicolaas Bloembergen. During postdoctoral work at AT&T Bell Laboratories, he contributed to the early development of femtosecond light sources and spectroscopy. Since joining the faculty at the University of Texas in 1985, he has supervised 32 Ph.D. and 20 M.S. dissertations on topics ranging from laser-plasma particle accelerators to nonlinear optical spectroscopy of semiconductor interfaces. He has published over 150 articles in refereed journals. Professor Downer has served as Topical Editor of the Journal of the Optical Society of America B, General Chair of the 2005 QELS conference and Chair of the 2012 Advanced Accelerator Concepts workshop. He is a Fellow of the American Physical Society and the Optical Society of America.

210B

Optomechanical Metamaterials

Presider: Frank Koppens, Institut

Phonon Polariton Spectroscopy in the Ther-

mal Near-Field, Brian O'Callahan1, Markus B.

Raschke1; 1Physics, Chemisty, JILA, University of

Colorado at Boulder, USA. Using scattering near-

field spectroscopy with heated tips and substrates

we characterize the distinct spatial, spectral, and coherence properties of the resonantly enhanced thermal near-field, and the optical antenna medi-

High Temperature Plasmonics, Yu Guo¹, Zubin

Jacob¹; ¹University of Alberta, Canada. We propose an approach for controlling Wein's displacement law in the near-field leading to a narrowband, tun-

able, spatially-coherent high temperature thermal

source. Our approach utilizes engineered plas-

monic states of metals with a high melting point.

Temporal Coupled mode theory for thermal

emission from a single emitter, Linxiao Zhu¹, Sunil Sandhu², Clayton R. Otey¹, Michael B. Sin-

clair3, Ting S. Luk3, Shanhui Fan2; 1 Applied Physics,

Stanford University, USA; ²Electrical Engineering,

Ginzton Laboratory, Stanford University, USA; ³Sandia National Laboratories, USA. We propose a temporal coupled mode theory for thermal

emission from a single emitter. We validate the

coupled mode theory formalism by a direct

numerical simulation of the emission properties

ated projection into far-field emission.

de Ciencies Fotoniques, Spain

14:00-16:00

QTh3B.1 • 14:00

OTh3B.2 • 14:15

QTh3B.3 • 14:30

QTh3B • Thermal &

Executive Ballroom

210C Intal Science

Executive Ballroom

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

14:00–16:00 QTh3C • Photon Pair Sources and Entanglement Presider: Kevin Resch; University of Waterloo, United States

QTh3C.1 • 14:00

Engineered Photon-Pair Generation through Dual-Pump Spontaneous Four-Wave Mixing, BIN FANG¹, Offir Cohen^{1,2}, Jamy B. Moreno¹, Virgina O. Lorenz¹; ¹Physics and Astronomy, University of Delaware, USA; ²National Institute of Standards and Technology & University of Maryland, USA. We show one can engineer the spectral correlations of photon-pairs pro- duced in optical fibers by employing the temporal walk-off between two distinct pumps in spontaneous four-wave mixing to create completely factorable states without spectral filtering.

QTh3C.2 • 14:15

Photon pair generation and manipulation in an integrated silicon chip, Damien Bonneau¹, Josh W. Silverstone¹, Robert H. Hadfield³, Val Zwiller⁴, Kazuya Ohira², Nobuo Suzuki², Haruhiko Yoshida², Norio Iizuka², Mizunori Ezaki², John G. Rarity¹, Jeremy L. O'Brien¹, Mark G. Thompson¹; ¹Centre for Quantum Photonics, University of Bristol, United Kingdom; ²Corporate Research & Development Center, Toshiba Corporation, Japan; ³School of Engineering, University of Glasgow, United Kingdom; 'Kavli Institute of Nanoscience, TU Delft, Netherlands. Quantum photonics is a promising technology for implementing quantum information tasks. We demonstrate integration of multiple photon pair sources together with a circuit enabling creation and manipulation of photon pairs in a monolithic silicon-on-insulator chip

QTh3C.3 • 14:30

Don't worry, be happy: A look at undesirable nonlinear effects in integrated photon pair sources based on spontaneous four-wave mixing, Lukas G. Helt^{1,2}, Michael J. Steel², John E. Sipe¹, ¹Physics, University of Toronto, Canada; ³Physics and Astronomy, Macquarie University, Australia. We theoretically demonstrate that if pump powers are kept low enough to suppress multi-pair events in integrated photon pair generation via spontaneous four-wave mixing, many other nonlinear effects are often also constrained to negligible levels.

14:00–16:00 QTh3D • Graphene Optics and Photonics

Presider: Robert Kaindl; Lawrence Berkeley National Laboratory, United States

QTh3D.1 • 14:00 Tutorial

Optical Properties and Photonics Applications of Graphene, Tony F. Heinz¹; ¹Depts of Physics and Electrical Engineering, Columbia University, USA. The optical response of graphene, a single atomic layer of carbon, exhibits distinctive properties from the THz to the ultraviolet. We review these features and describe recent advances in incorporating graphene into diverse photonic devices.

Tony Heinz is the Rickey Professor in the Departments of Physics and Electrical Engineering at Columbia University. His research interests lie in the area of nonlinear optics and ultrafast spectroscopy, particularly as applied to surfaces, interfaces, and nanoscale materials. He has recently worked extensively on the optical properties and applications of nanoscale carbon in the form of nanotubes and graphene. Heinz received his BS degree in Physics from Stanford University and a PhD degree, also in Physics, from the UC Berkeley in 1982. Prior to joining Columbia University in 1995, Heinz was with the IBM Research Division in Yorktown Heights, NY. His research has been recognized by Optics Prize of the International Commission for Optics, a Research Award of the von Humboldt Foundation, and the Julius Springer Prize for Applied Physics. Heinz is a Fellow of the OSA and APS. He served as President of the OSA in 2012.

Thursday, 13 June

178

 $(\mathbf{\Phi})$

QTh3B.4 • 14:45

of single emitters.

Strong Chiral Optical Response using Phaseshifts in a Planar Plasmonic Metamaterial, Fatima Eftekhari^{1,2}, Timothy J. Davis^{1,2}, ¹Materials Science and Engineering, CSIRO, Australia; ²Melbourne Centre for Nanofabrication, Australia. The chiral optical response is an ability to distinguish between states of circular polarization. We show theoretically and experimentally how to obtain a strong chiral response by exploiting phase shifts in arrays of subwavelength-scale plasmonic structures.

QTh3C.4 • 14:45

1.5 μm Polarization Entanglement Generation based on Polarization Maintaining All-fiber Scheme, Qiang Zhou¹, Wei Zhang¹, Feng Zhu¹, Tianzhu Niu¹, Shuai Dong¹, Yidong Huang¹, Jiangde Peng¹; ¹Department of Electronic Engineering, Tsinghua University, China. 1.5 μm polarization entanglement generation is experimentally demonstrated utilizing off-the-shelf components based on polarization maintaining all-fiber scheme. Quantum state tomography is performed, achieving an entanglement fidelity of 0.94±0.03, indicating its potential in quantum information.

CLEO: 2013 • 9–14 June 2013

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

14:00-16:00 QTh3E • Plasmonic Nanostructures Presider: Minghao Qi; Purdue

University, United States

QTh3E.1 • 14:00 Tutorial

Strong-field Effects in Metallic Nanostructures, Claus Ropers1; 1Georg-August-Universite Gottingen, Germany. Local field enhancements in metallic nanostructures enable the study of various highly nonlinear optical processes in nanoscopic volumes. In this talk, the prominent examples of strong-field photoemission and extreme ultraviolet light generation will be discussed.

Claus Ropers studied physics at the University of Göttingen and the University of California at Berkeley. Conducting his doctoral studies at the Max Born Institute, he received a PhD from the Humboldt University in Berlin in 2007. He was appointed Assistant Professor at the Courant Research Centre "Nano-Spectroscopy and X-Ray Imaging" (2008) and Associate Professor at the Institute of Materials Physics (2011), both at the University of Göttingen. His research focuses on ultrafast processes in solids, nanostructures and at surfaces. To this end, his group develops novel experimental tools for the study of ultrafast structural and electronic dynamics. For his scientific achievements, he was awarded the Carl-Ramsauer Prize, Nanoscience Prize (awarded by AGeNT-D) and Walter-Schottky Prize by the German Physical Society.

Executive Ballroom 210G

CTh3F • Nonlinear Optics in

Presider: Alexander Gaeta;

Cornell University, United States

Ultralow-threshold Continuous-wave Raman

Silicon Laser Using a Photonic Crystal High-Q Nanocavity, Yasushi Takahashi^{1,2}, Yoshitaka Inui³,

Takashi Asano³, Susumu Noda³; ¹Osaka Prefecture

University, Japan; ²Japan Science and Technology

Agency, Japan; ³Kyoto University, Japan. We report

a unique design of a Raman silicon laser using a

photonic crystal high-Q nanocavity without the

reverse-biased p-i-n diode, which leads to the

continuous-wave lasing operation with ultralow

Multi-color visible light generation by self-

frequency doubling in photonic crystal nano-cavity quantum dot lasers, Yasutomo Ota¹, Katsuyuki Watanabe¹, Satoshi Iwamoto^{1,2}, Yasuhiko Arakawa^{1,2}; ¹Nanoquine, University of Tokyo,

Japan; ²IIS, University of Tokyo, Japan. We report

multi-color visible light generation from photonic crystal nanocavity lasers exhibiting broadband

quantum dot gain in the near infrared. The vis-

ible emission is produced though self-frequency

doubling, which efficiently occurs within the high

Low-noise microwave generation using an

on-chip Brillouin laser, Jiang Li¹, Hansuek Lee¹, Kerry J. Vahala¹; ¹California Institute of Technology,

USA. An on-chip Brillouin microwave source

is demonstrated. Phase noise of -106 dBc/Hz at

100kHz offset frequency (21.6 GHz carrier signal)

is measured. A record low white phase noise floor

for a microcavity-based source is demonstrated.

Ultrafast Optical Switching in Amorphous

Silicon Microring Resonators, Jason Pelc1, Kelley

Rivoire¹, Charles M. Santori¹, Raymond G. Beauso-leil¹; ¹Hewlett Packard Labs, USA. We demonstrate

Kerr-effect-based optical switching of amorphous

Si microring resonators with full-width-at-half-

maximum switching times of 14.8 ps at 1550 nm;

low two-photon absorption reduces the creation of free carriers which would inhibit fast switching.

Nanophotonic Devices

14:00-16:00

CTh3F.1 • 14:00

threshold power of ~1 uW.

CTh3F.2 • 14:15

O nanocavities

CTh3F.3 • 14:30

CTh3F.4 • 14:45

Executive Ballroom 210F

CLEO: Science & Innovations

14:00-15:45

CTh3G • Photonic Crystal Lasers Presider: Kent Choquette, Univ. of Illinois, Urbana-Champaign, USA

CTh3G.1 • 14:00 Tutorial

Photonic Crystal Lasers, Susumu Noda12; 1Electronic Science and Engineering, Kyoto Univ., Japan; ²Photonics and Electronics Science and Engineering Center, Kyoto Univ., Japan. I will review progresses of photonic crystal lasers, which are now recognized as an unprecedented type of lasers that can operate coherently in broad area, produce a tailored beam on demand, realize a beam steering functionality, etc.

Susumu Noda received B.S., M.S., and Ph.D. degrees from Kyoto University, Kyoto, Japan, in 1982, 1984, and 1991, respectively, all in electronics. In 2006, he has received an honorary degree from Gent University, Gent, Belgium. From 1984 to 1988, he was with the Mitsubishi Electric Corporation, and he joined Kyoto University in 1988. Currently he is a Professor with the Department of Electronic Science and Engineering and a director of Photonics and Electronics Science and Engineering Center (PESEC), Kyoto University. His research interest covers physics and applications of photonic and quantum nanostructures including photonic crystals and quantum dots. He received several awards including the IBM Science Award (2000), the Japan Society of Applied Physics Achievement Award on Quantum Electronics (2005), and OSA Joseph Fraunhofer Award/Robert M. Burley Prize (2006), IEEE Fellow (2008), IEEE Nanotechnology Pioneering Award (2009) and Leo Esaki Award (2009). From 2003 to 2005, he served as IEEE/LEOS Distinguished Lecturer. From 2007, he has served as a Chair of IEEE/Photonics Society Kansai Chapter.

210E

Executive Ballroom

14:00-16:00 CTh3H • Ultrafast Laser Sources II

Presider: Clara Saraceno, ETH Zurich, Switzerland

CTh3H.1 • 14:00

Four-Wave Optical Parametric Amplification in a Gas towards an Octave Amplification Bandwidth, Yuichiro Kida¹, Totaro Imasaka^{1,2}; ¹Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Japan; 2Division of Optoelectronics and Photonics, Kyushu University, Japan. Four-wave optical parametric amplification in a gas allows amplification of an octave-spanning supercontinuum. As a proof-of-principle experiment, amplification of a continuum in a spectral range of 520-700 nm with a gain exceeding thirty is demonstrated.

CTh3H.2 • 14:15

An Off-Axis, Single-Pass, Radial-Group-Delay Compensator Design Using an Offner Triplet for a Broadband OPCPA Laser, Seung-Whan Bahk¹, Jake Bromage¹, Jonathan D. Zuegel¹, Robert K. Jungquist1; 1University of Rochester, USA. An offaxis, single-pass, radial-group-delay compensator was designed using an Offner triplet and two negative lenses for a broadband (810~1010-nm) optical parametric amplifier laser. It reduces radial group delay from 270 fs to 0.7 fs.

CTh3H.3 • 14:30

Millijoule-Level Parametric Synthesizer Generating Two-Octave-Wide Optical Waveforms for Strong-Field Experiments, Oliver D. Mücke^{1,3} Shaobo Fang^{1,3}, Giovanni Cirmi^{1,3}, Shih-Hsuan Chia^{1,3}, Franz X. Kaertner^{2,4}, Cristian Manzoni⁵, Paolo Farinello⁵, Giulio Cerullo⁵; ¹Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Germany; ²Physics Department, University of Hamburg, Germany; 3The Hamburg Center of Ultrafast Imaging, Germany; 4Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, USA; 5IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Italy. We demonstrate a phase-stable, 3-channel parametric synthesizer generating a 2-octave-wide spectrum (0.52-2.4 μ m). After two amplification stages, the combined 125-µJ output supports 1.9-fs waveforms. The third stage of the IR degenerate OPA yields 1.7-mJ octave-spanning spectra.

CTh3H.4 • 14:45

21.4 kW peak power from a gigahertz multimode-diode-pumped solid-state laser with carrier-envelope offset frequency detection, Alexander Klenner¹, Matthias Golling¹, Ursula Keller1; 1 IQE, ETH Zurich, Switzerland. A gigahertz multimode-diode-pumped Yb-doped solid-state laser delivers 121 fs pulses at an average power of 3.33 W, resulting in 21.4 kW peak power. The carrier envelope offset frequency was detected with 30 dB S/N ratio.

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information.

Meeting Room 211D-B

CLEO: Science & Innovations

14:00-16:00

Applications II

CTh3J.1 • 14:00

the experimental data.

CTh3J.2 • 14:15

dient index lens

CTh3J.3 • 14:30

Israel

CTh3J • Fabrications and

Presider: Iila Goykhman, The

Hebrew University, Jerusalem,

Nanoimprinted Plasmonic Nanocavity Arrays,

Kevin J. Webb¹, Minghao Qi¹, Sangsik Kim¹,

Yi Xuan¹, Vladimir P. Drachev²; ¹Electrical and

Computer Engineering, Purdue University, USA;

²*Physics, University of North Texas, USA.* We demonstrate the resonant absorption of visible

light with plasmonic nanocavity arrays fabricated

by resistless nanoimprinting in metal (RNIM). The

nanocavities are efficiently excited using normally

incident light, and numerical simulations confirm

Liquid Deposition Photolithography for Pho-

tonic Device Fabrication, Adam Urness¹, Robert

McLeod¹; ¹Department of Electrical, Computer, and Energy Engineering, University of Colorado,

USA. We describe a novel fabrication method,

liquid deposition photolithography (LDP), for

the creation of polymer photonic devices. We

demonstrate LDP's ability to fabricate photonic devices by fabricating a waveguide array and gra-

Stimulated Brillouin Scattering Amplification

in Directly Written As2S3 Glass Waveguides,

Shahar Levy1, Victor Lyubin2, Matvei Klebanov2,

Jacob Scheuer³, Avi Zadok¹; ¹Faculty of Engineering, Bar-Ilan University, Israel; ²Department of Physics, Ben-Gurion University, Israel; ³Faculty of

Engineering, Tel-Aviv University, Israel. Stimulated

Brillouin scattering amplification is demonstrated

in 1 cm-long chalcogenide glass waveguides. The

waveguides are directly written using a Ti:Sapphire

laser operated at 810 nm wavelength. A Brillouin frequency shift of 7.45 GHz is observed.

Meeting Room

212A-C

14:00–16:00 CTh3l • Biosensors Presider: Michael Previte; Illumina, United States

High-throughput screening of blood samples based on structured illumination on-chip imaging, Serap A. Arpali¹, Caglar Arpali¹, Ahmet F. Coskun¹, Hsin-Hao Chiang¹, Aydogan Ozcan^{1/2}, ¹Electrical Engineering Department, University of California, Los Angeles, USA; ²California, Los Angeles, USA. We demonstrate a high-throughput fluorescent on-chip imaging platform, using structured illumination that can rapidly screen large volumes of scattering media such as undiluted blood samples (e.g., ~0.3-0.7mL) for detection of fluorescent micro-objects at low concentrations.

CTh3I.2 • 14:15

High-performance refractometric nanosensor using circular plasmonic interferometer arrays, Yongkang Gao¹, Zheming Xin¹, Beibei Zeng¹, Qiaoqiang Gan², Xuanhong Cheng³, Filbert J. Bartoli¹; ¹ECE Department, Lehigh University, USA; ²EE Department, University at Buffalo, The State University of New York, USA; ³MSE Department, Lehigh University, USA. We report novel circular plasmonic interferomers for refractometric sensing with detection limit of 8.7×10^-7 RIU using a multispectral sensing method. The efficient light suppression through destructive interference also allows low-background intensity-based detection with FOM* exceeding 140.

CTh3I.3 • 14:30

Plasmonically Enhanced Biofilm Photobioreactors, Matthew Ooms^{1,2}, David Sinton^{1,2}, ¹Mechanical & Industrial Engineering, University of Toronto, Canada; ²Centre for Sustainable Energy, University of Toronto, Canada. Au nano-particles on the bottom surface of a photobioreactor are used as scattering elements and are shown to enhanced oxygen evolution rates in cultures of cyanobacteria by increasing the light path length through the culture.

CTh3I.4 • 14:45

Bio-Inspired Plasmonic Sensors by Diatom Frustules, Fanghui Ren¹, Jeremy Campbell², Dihan Hasan¹, Xiangyu Wang¹, Greg L. Rorrer², Alan X. Wang¹, 'Electrical Engineering and Computer Science, Oregon State University, USA; 'Chemical, Biological & Environmental Engineering, Oregon State University, USA. We investigate bio-inspired plasmonic sensors based on the interactions between Ag nanoparticles and diatom biosilica. The strongly coupled optical resonances lead to 2× higher optical extinction and 4–6× improvement of sensitivity in surface-enhanced Raman scattering.

CTh3J.4 • 14:45

Correlated Optical and Electrical Detection of Single Nanoparticles on a Nanopore-Optofluidic Chip, Shuo Liu¹, Yue Zhao², Aaron Hawkins², Holger Schmidd'; 'School of Engineering, University of California, Santa Cruz, USA; ²Department of Electrical and Computer Engineering, Brigham Young University, USA. A nanopore is integrated into an optofluidic chip, enabling simultaneous optical and electrical detection of single nanoparticles. The cross correlation coefficients between the optical and electrical signals for 200nm and 500nm nanoparticles are as high as 0.9327 and 0.7435, respectively.

Meeting Room 212D-B

CLEO: Applications & Technology

14:00-15:30

ATh3K • Ultrafast Laser Design and Applications Presider: Eric Mottay; Amplitude Systemes, France

ATh3K.1 • 14:00 Invited

Laser micro-fabrication systems for consumer electronics device manufacturing, Haibin Zhang', Hisashi Matsumoto', Glenn Simenson', Qian Xu', Mark Unirath', Martin Orrick', Michael Darwin', Robert F. Hainsey'; 'Electro Scientific' dustries, Inc., USA. Laser based micro-fabrication tools have become default choices for critical processes in consumer electronics. Smart beam delivery and system design enables high quality low cost manufacturing of several key components in mobile devices.

	۰		+		۰		*		۰		+		۰	
٠		•				٠		٠		٠		٠		٠
	۰		۰		۰		۰		۰		۰		۰	
۰		۰		۰		۰		۰		۰		۰		۰
	٠		+				*		•		+			
۰		۰		۰		۰		۰		۰		۰		۰
	۰		۰		۰		٠		۰		۰		۰	
۰		۰		۰		۰		۰		۰		۰		۰
	٠		+				*		•		+			
۰		۰		۰		۰		۰		۰		۰		۰
	۰		۰		۰		٠		۰		۰		۰	
۰		۰				٠		۰		٠		٠		٠
	٠		+				*		•		+			
۰		۰		۰		۰		۰		۰		۰		۰
	۰		۰		۰		٠		۰		۰		۰	
۰		۰				٠		۰		٠		٠		٠

.

ATh3K.2 • 14:30. Free z-focus control laser processing via ultrahigh speed axial scanning, Marti Duocastella'; Craig B. Arnold'; *Mechanical and Aerospace Engineering, Princeton University, USA*. An ultrahigh speed axial scanner is used to enhance the depth of field of a laser system without sacrificing lateral resolution. This new approach eliminates the classic constraint of precise z-focus control in laser processing.

ATh3K.3 • 14:45

High Q SpiritTM Laser Systems for Industrial Micro Processing Applications, Victor Matylitsky¹, Frank Hendricks¹, Juerg Aus der Au¹; ¹*High QLaser, GmbH, Austria.* Unique advantage of solid material processing with femtosecond, lasers is high ablation-efficiency and processing accuracy. We will show aspects of HighQ SpiritTM femtosecond laser system performance and give overview of its actual applications.

	٠		+		۰		*		۰		*		۰		*	
		۰		•		•		•		•		•		•		0
	٠		٠		•		٠		•		٠		•		٠	
		۰		۰		٠		•		٠		•		۰		4
	٠		*		•		+		•		*		•		*	
٠		•		•		•		•		•		•		•		
	•				•		٠		•		•		•		•	

CLEO: 2013 • 9–14 June 2013

Marriott San Jose Salon I & II

CLEO: Science & Innovations

14:00–16:00 CTh3L • Photodetectors I 🔘

Presider: Takahiro Nakamura; PETRA, Japan

CTh3L.1 • 14:00 Tutorial

Recent Advances in Photodetectors: Ultraviolet to Mid-Wave Infrared, Joe C. Campbell'; ¹University of Virginia, USA. This talk will describe recent work on photodetectors. The discussion on avalanche photodiodes (APDs) will include novel linear-mode low-noise structures and recent advances in single photon detection. The presentation on p-i-n photodiodes will concentrate on high-speed, high-power, high-linearity and Si photonics.

Joe C. Campbell is the Lucian Carr Professor of Electrical and Computer Engineering at the University of Virginia. Professor Campbell's technical area is photodetectors. At present he is actively involved in single-photon-counting APDs, Si-based optoelectronics, high-speed low-noise avalanche photodiodes, high-power high-linearity photodiodes, ultraviolet analanche photodiodes, and solar cells. He has coauthored ten book chapters, 400 articles for refereed technical journals, and more than 350 conference presentations. Professor Campbell teaches graduate and undergraduate courses on lasers and optoelectronic components. In 2002 Professor was inducted into the National Academy of Engineering.

 $(\mathbf{\Phi})$

Marriott San Jose Salon III

CLEO: Science & Innovations

14:00–16:00 CTh3M • Fiber Parametric Amplifiers Presider: Shenping Li; Corning Incorporated, United States

CTh3M.1 • 14:00 Tutorial

Fiber Optical Parametric Amplifiers in Optical Communication, Michel E. Marhie'; 'Swansea Univ., United Kingdom. Features of parametric amplifiers desirable for optical communication (low noise figure, phase conjugation, large gain bandwidth, etc.) are presented. Recent experimental demonstrations are reviewed, and prospects for further development are discussed.

Michel E. Marhic received a Ph.D in EE from UCLA. He was on the faculty of the Department of Electrical Engineering at Northwestern University (1974-1998), and Consulting Professor in the Department of Electrical Engineering at Stanford University (1998-2006). He is currently Chair Professor at the Institute of Advanced Telecommunications, College of Engineering, Swansea University, Wales, U.K. Over the past 30 years, his research has been in several areas of applied optics, including nonlinear interactions in plasmas; optical fiber measurements; hollow infrared waveguides; holography and phase conjugation; fiber networks. Over the past 25 years, emphasis has been on optical communication systems, and on nonlinear optical interactions in fibers. He has written the first book on fiber optical parametric amplifiers, published by Cambridge University Press in 2007. He is the author or coauthor of over 330 journal and conference papers. He is a fellow of OSA

Marriott San Jose Salon IV

 (\blacklozenge)

CLEO: Applications & Technology

14:00-16:00 ATh3N • LEDs for Energy Efficiency O Presiders: Christian Wetzel; Rensselaer Polytechnic Institute, United States

ATh3N.1 • 14:00 Invited

Semipolar Faceting for InGaN-based Polychromatic LEDs, Mitsuru Funato¹, Yoichi Kawakami¹; ¹Kyöto Utiiversity, Japān. Toward the next generation solid state lighting, three-dimensional InGaN light emitting diodes (LEDs) are a new trend. Grown through a re-growth technique, they show semipolar faceting, which enables polychromatic and efficient emission. Salon V & VI tions

Marriott San Jose

14:00–16:00 ATh30 • Symposium on The Path to Sustainable Energy: Laser Driven Inertial Fusion Energy – ICF Target Design and Fabrication/Future Perspectives Kick-off Presider: J.C. Fernandez; Los Alamos National Laboratory, United States

ATh30.1 • 14:00 Invited NIF Target Fabrication, Alex Hamza'; 'Lawrence Livermore National Laboratory, USA. NIF targets are complicated assemblies, often requiring novel materials. Creating these targets requires innovative materials science and precise engineering. Components are machined to 1 micrometer tolerances and capsule surfaces are smooth to a few nanometers.

ATh3N.2 • 14:30

A Study of Mechanical Lift-Off Technology for fligh-Efficiency Vertical LEDs Using Micro-Porous GaN Template, Chia Yu Lee¹, Da-Wei Lin¹, Che-Yu Liu¹, Shih-Chieh Hsu², Hao-chung Kuo¹, Shing-Chung Wang¹, Chun-Yen Chang², ¹Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan, ²Chemical and Materials Engineering. Tamkang University, Taiwan, 'Electronics, National Chiao Tung University, Taiwan, 'The high efficiency vertical light emitting diodes (V-LEDs) using mechanical lift-off were demonstrated. The light output of V-LEDs are greatly enhanced by 100% compared with Conventional-LEDs at an operating current of 20mA.

ATh3N.3 • 14:45 Deep Ultraviolet (DUV) Light-Emitting Diodes (LEDs) to Maintain Freshness and Phytochemical Composition During Postharvest Storage, Steven Britz¹, Ignas Gaska², Igor Shturm², Yuri Bilenko², Max Shatalov², Remis Gaska², I^POod Components and Health, U.S. Dept. Agriculture, USA; ²Sensor Électronic Technology, Inc., USA. Low-irradiance, long-term UV treatment using DUV-LEDs extended the cold storage shelf life of strawberries.up to 2-fold as based on weight, moisture content, anthocyanin concentration, soluble solids, titratable acidity, visible damage, and mold growth. ATh30.2 • 14:30 Invited D Target Fabrication for NIF and Inertial Fusion

Energy, Abbas Nikroo[†]; ¹General Atomics, USA. We discuss progress in fabrication of NIF targets, including cryogenic target platforms and we will update target technology developments for IFE.

nursdav. 13 June

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 181

(

Executive Ballroom 210B

Executive Ballroom 210C

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

QTh3A • Particle Acceleration by Lasers—Continued

QTh3A.2 • 15:00

Utilization of a Few-Cycle Probe Beam to Study Relativistic Laser-Plasma Interaction, Oliver Jäckel^{1,2}, Alexander Sävert^{2,1}, Matthew Schwab^{2,1} Maria Nicolai^{2,1}, Maria Reuter^{1,2}, Jens Polz^{2,1}, M. Kaluza^{2,1}; ¹Helmholtz-Institut Jena, Germany; ²Institut of Optics and Quantum Electronics, Germany. A spectrally broadened and compressed fraction of the 30 fs JETI-pulses is utilized for imaging the laser-plasma interaction with 6 fs time resolution. In case of LWFA the direct visualization of the plasma wave became possible.

QTh3B • Thermal & Optomechanical Metamaterials—Continued

QTh3B.5 • 15:00

Epsilon-Near-Zero Subwavelength Optoelectronics: Electrically Tunable ENZ Strong Coupling, Young Chul Jun^{1,2}, John L. Reno¹, Michael B. Sinclair², Igal Brener^{1,2}; ¹Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; ²Sandia National Laboratories, USA. We demonstrate a new type of electrically tunable strong coupling between a planar metamaterial layer and an ultra-thin epsilon-near-zero layer made of a doped semiconductor. This can find novel applications in chip-scale infrared optoelectronic devices.

OTh3C • Photon Pair Sources and Entanglement—Continued

QTh3C.5 • 15:00

Effects of birefringence and detuning on entanglement generation in poled fibers: How much is too much?, Eric Y. Zhu¹, Li Qian¹, Lukas G. Helt², Marco Liscidini^{2,3}, John E. Sipe², Costantino Corbari⁴, Albert Canagasabey⁴, Morten Ibsen⁴, Peter G. Kazansky⁴; ¹*Electrical & Computer Engineering*, University of Toronto, Canada; ²Physics, University of Toronto, Canada; ³Dipartimento di Fisica "Á. Volta", University of Pavia, Italy; ⁴Opto-electronics Research Centre, University of Southampton, United Kingdom. Birefringence in poled fiber enables the direct (compensation-free) generation of broadband polarization-entangled photon pairs. However, birefringence and pump detuning also affect the entangled state, a subject we investigate in this work theoretically and experimentally.

QTh3D • Graphene Optics and **Photonics**—Continued

QTh3D.2 • 15:00

OTh3D.3 • 15:15

OTh3D.4 • 15:30

QTh3D.5 • 15:45

Dynamic zero balance of the oscillator-strength sum in graphene, Jaeseok Kim¹, Seongchu Lim², Inhee Maeng¹, Younghwan Choi¹, Taeyong Kim¹, Young Hee Lee2, Hyunyong Choi1; 1School of Electrical and Electronic Engineering, Yonsei University, Republic of Korea, ²Institute of Basic Science, Center for Integrated Nanostructure Physics, Department of Energy Science, Sungkyunkwan University, Republic of Korea. We study the relativistic zero balance of the oscillator strength sum rule in a single-layer graphene. The full energy-dependent characteristics are studied by ultrafast THz spectroscopy and optical spectroscopy.

Disordered Photonic Graphene, Julia M. Zeuner¹, Mikael C. Rechtsman², Stefan Nolte¹, Alexander

Szameit¹; ¹Institute of Applied Physics, Germany;

²Technion - Israel Institute of Technology, Israel. We experimentally demonstrate the impact of disorder

on edge states in photonic graphene and find

strong evidence that not only chirality but also the

vanishing of the density-of-states at zero-energy is

Electronic Cooling in Multilayer Epitaxial

Graphene, Momchil Mihnev^{1,2}, John Tolsma³, Charles Divin^{1,2}, Claire Berger⁴, Walt de Heer⁴, Al-

lan MacDonald³, Theodore Norris^{1,2}; ¹Department

of Electrical Engineering and Computer Science,

University of Michigan, USA; ²Center for Ultrafast

Optical Science, University of Michigan, USA; ³Department of Physics, The University of Texas at

Austin, USA; ⁴School of Physics, Georgia Institute

of Technology, USA. Using ultrafast optical-pump

terahertz-probe spectroscopy, we measure the low-temperature electronic cooling in multilaver

epitaxial graphene and develop a theory of hotcarrier equilibration based on interlayer energy

Hot-Fermi carrier multiplication in mono-

layer graphene, Soonyoung Cha¹, Seongchu Lim², Jeongmook Choi¹, Young Hee Lee², Hyunyong

Choi1; 1School of electrical and electronic engineer

transfer via screened Coulomb interactions

preserved under structural disorder.

OTh3A.3 • 15:15

Diffraction of Electron Pulses Generated in a Laser-Wakefield Accelerator at 0.5 kHz, Zhaohan He1, Alec Thomas1, Benoît Beaurepaire2, John A. Nees¹, Bixue Hou¹, V. Malka², Karl Krushelnick¹, Jérôme Faure²; ¹Center for Ultrafast Optical Sci-ence, University of Michigan, USA; ²Laboratoire d'Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, France. We demonstrate electron diffraction from a polycrystalline aluminum foil using 100 keV electron bunches from a high repetition rate laser wakefield accelerator. Our proof-of-principle experiment shows the potential of such source for ultrafast electron diffraction applications.

QTh3A.4 • 15:30

Laser Driven Neutron Generation at the Texas Petawatt, ishay pomerantz¹, Joel Blakeney¹, Gilliss Dyer¹, Lindsay Fuller¹, E. Gaul¹, Donald Gautier², Daniel Jung², Alex R Meadows¹, Rahul Shah², Chunhua Wang1, J.C. Fernandez2, Todd Ditmire1, Manuel Hegelich1; 1 Center for High Energy Density Science, The University of Texas, USA; ²Los Alamos National Laboratory, USA. A bright laser-driven neutron source was demonstrated at the Texas Petawatt laser facility. Neutron yields in excess of 109 neutrons/shot with a fairly isotropic distribution were measured.

QTh3A.5 • 15:45

Generation of Quasi-monoenergetic 2 GeV Electrons by Laser Wakefield Acceleration, Xiaoming Wang¹, Rafal Zgadzaj¹, Neil Fazel¹, Watson Henderson¹, Zhengyan Li¹, Rick Korzekwa1, Yen-Yu Chang1, Chi-Hao Pai1, Hai-En Tsai¹, Austin Yi¹, Vladimir Khudik¹, Xi Zhang¹, Hernan Quevedo¹, Gilliss Dyer¹, E. Gaul¹, Aaron Bernstein¹, Ted Borger¹, Michael Spinks¹, Mikael Martinez¹, Mikael Martinez¹, Michael Donovan¹, Gennady Shvets¹, Todd Ditmire¹, Michael C. Downer¹; ¹University of Texas at Austin, USA. We report self-injected quasi-monoenergetic (5% spread FWHM) acceleration of electrons to 2.0 ± 0.1 GeV by 0.6 PW-laser-driven wakefield acceleration in pure He plasma of density $5x10^{17}$ cm^-3. Electron bunches diverge ~0.5mrad, and contain ~60 pC.

OTh3B.6 • 15:15

Near-field cavity optomechanical probing of nanomechanics, Aaron C. Hryciw1, Behzad Khanaliloo², Marcelo Wu², Chris J. Healey², Paul Barclay^{1,2}; ¹NRC National Institute for Nanotechnology, Canada; ²Institute for Quantum Science and Technology, University of Calgary, Canada. An optical fiber taper placed in the near field of a "split-beam" photonic crystal nanobeam cavity with a physical gap at the cavity center breaks the system's vertical dielectric symmetry, enabling selective optomechanical coupling to cantilever resonances using a single optical nanocavity mode.

OTh3B.7 • 15:30

Experimental demonstration of resonant optical trapping and back-action effects in a hollow photonic crystal cavity, Nicolas De-scharmes¹, Ulagalandha Perumal Dharanipathy¹, Zhaolu Diao¹, Mario Tonin¹, Romuald Houdré¹; Laboratoire d'Optoélectronique Quantique, Ecole Polytechnique Fédérale de Lausanne, Switzerland. The first experimental demonstration of resonant optical trapping of dielectric particles in a hollow photonic crystal cavity is reported. The existence of mutual interaction between the confined field and the particle is revealed.

QTh3B.8 • 15:45

Nanostructured Transparent Conductive Oxide Films for Plasmonic Applications, Jongbum Kim¹, Yang Zhao², Gururaj V. Naik¹, Naresh K. Emani¹, Urcan Guler¹, Alexander Kildishev¹, Andrea Alu², Alexandra Boltasseva^{1,3}; ¹School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, USA; ²Department of Electrical and Computer Engineering, The University of Texas at Austin, USA; ³Department of Photonics Engineering, Technical University of Denmark, Denmark. Transparent conductive oxides (TCOs) as substitutes to metals could offer many advantages for low-loss plasmonic and metamaterial (MM) applications in the near infrared (NIR) regime.

Generation of Photon-Number States Using Repetitive Parametric DownConversion and Conditional Measurement, Boris L. Glebov¹ ¹National Inst of Standards & Technology, USA. In a Monte Carlo simulation, we feedback with conditional measurements and multiple-step SPDC process to generate number-squeezed photonic states with sub-Poissonian variance. A 12-photon state demonstrated with a success rate of 30%.

OTh3C.7 • 15:30

Entangled photon triplets, Deny Hamel¹, Krister Shalm^{1,2}, Hannes Hübel^{1,3}, Zhizhong Yan¹, Christoph Simon⁴, Kevin Resch¹, Thomas Jennewein¹; ¹Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Canada; ²National Institute of Standards and Technology, USA; 3Department of Physics, University of Stockholm, Sweden; ⁴Institute for Quantum Information Science and Department of Physics and Astronomy, University of Calgary, Canada. We demonstrate entangled photon triplets from cascaded downconversion. First, we establish the presence of tripartite energy-time entanglement using a new entanglement criterion. Then we show a new source of three photon polarization GHZ states, verifying its quality with an entanglement witness

QTh3C.8 • 15:45

Anderson Colocalization of anti-correlated **Entangled Photon Pairs in Disordered Photonic Waveguide Arrays**, Lane Martin¹, Giovanni Di Giuseppe^{1,2}, Armando Perez-Leija¹, Alexander Szameit3, Ayman F. Abouraddy1, Demetrios N. Christodoulides1, Bahaa Saleh1; 1CREOL, The College of Optics and Photonics, University of Central Florida, USA; ²School of Science and Technology, Physics Division, University of Camerino, Italy, ³Institute of Applied Physics, Friedrich-Schiller-Universität, Germany. The evolution of spatially extended, entangled, anti-correlated two photon states in photonic waveguide arrays that induce classical transverse Anderson localization is theoretically and experimentally investigated.

16:00–16:30 Coffee Break, Exhibit Halls 1 and 2

ing, Yonsei university, Republic of Korea; ²Department of physics, Sungkyunkwan university, Republic of Korea. We report observation of thresholdless carrier multiplication in a monolayer graphene, where the carrier multiplication is driven by hotcarrier thermalization process, by utilizing ultrafast optical-pump terahertz-probe spectroscopy,

73

CLEO: 2013 • 9–14 June 2013

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QTh3E • Plasmonic Nanostructures—Continued

QTh3E.2 • 15:00

Third harmonic spectroscopy of complex plasmonic Fano structures, Bernd Metzger¹, Mario Hentschel^{1,2}, Thorsten Schumacher^{1,2}, Markus Lippitz^{1,2}, Harald W. Giessen¹; ¹Universität Stuttgart, Germany: ²Max Planck Institute for Solid State Research, Germany. We perform third harmonic spectroscopy of complex plasmonic nanoantennas which exhibit EIT-like Fano resonances in their linear extinction spectrum. Strong third harmonic emission is found at the lower energy mode of the coupled plasmonic system.

QTh3E.3 • 15:15

Nonlinear Optical Properties of Plasmonic Nanoparticles: The Influence of Material, Size, Shape and Solvent, Vladimir Liberman¹, Michael Sworin¹, Richard Kingsborough¹, Kimberly Hamad¹, Albert Swiston¹, Geoffrey Geurtsen¹, Mordechai Rothschild¹; ¹Chemical Sensing and Synthetic Materials Group, Massachusetts Institute of Technology Lincoln Laboratory, USA. Suspensions of Au and Ag plasmonic nanoparticles, irradiated with 532-nm, ns-long pulses, exhibit nonlinear absorption. Laser-induced damage is suppressed by >100x when the solvent is toluene instead of water.

QTh3E.4 • 15:30

The Role of Plasmonic Current Loops in Nanosphere Extinction Spectra: Theory and Experiment, Matthew Moocarme^{1,2}, Navindra D. Singh¹, Luat Vuong^{1,2}, ¹Physics, CUNY Graduate Center, USA. We derive the linear and nonlinear changes to a sphere's refractive index addressing polarizationdependent magneto-optic effects, which manifest with plasmonic current loops. The experimentallymeasured extinction spectra are in good agreement with our corresponding analytical results.

QTh3E.5 • 15:45

Generation of ultrashort acoustic pulses in cobalt by ballistic electrons in gold, Oleksandr Kovalenko¹, Viktor Shalagatskyi¹, Thomas Pezeril¹, Vitalyi Gusev¹, Vasily V. Temnov¹, Denys Makarov², Luyang Han², Oliver Schmidt², ¹Institut des Molécules et Matériaux du Mans, CNRS, France; ²Institute for Integrative Nanosciences, IFW Dresden, Germany. Ballistic hot electrons in fs-laser-excited gold are used to generate ultrashort (2 ps long) acoustic pulses in cobalt. The exponential dependence of the acoustic amplitude on gold thickness provides the electron mean-freepath of 120 nm.

Executive Ballroom 210G

CTh3F • Nonlinear Optics

in Nanophotonic Devices-

Brillouin dynamic grating on a photonic chip,

Ravi Pant¹, Enbang Li¹, Christopher G. Poulton²,

Duk-Yong Choi³, Steve J. Madden³, Barry Luther-

Davies3, Benjamin J. Eggleton1; 1CUDOS School of

Physics, University of Sydney, Australia; ²CUDOS, University of Technology Sydney, Australia; ³CU-

DOS Laser Physics Centre, Australian National

University, Australia. We demonstrate an on-chip

dynamic grating using stimulated Brillouin scattering in a 6.5cm long chalcogenide waveguide.

The measured grating reflectivity is comparable to that measured in tens-of-meter long fiber and

Strong Stimulated Brillouin Scattering in an

On-Chip Silicon Slot Waveguide, Raphaël Van

Laer1, Dries Van Thourhout1, Roel Baets1; 1Photon

ics Research Group - Department of Information Technology, Ghent University, Belgium. We analyzed the enhancement of the forward Brillouin

gain in a silicon slot waveguide. The calculations

predict a gain of 3.6×10⁵ W⁻¹m⁻¹, which is an order

Brillouin actuation of whispering-gallery

modes on microfluidic optomechanical oscillators, Gaurav Bahl¹, Kyu Hyun Kim², Wonsuk

Lee^{2,3}, Jing Liu³, Xudong Fan³, Tal Carmon²;

Mechanical Science and Engineering, Univ of Il-

linois at Urbana-Champaign, USA; ²Electrical and

Computer Engineering, University of Michigan,

USA; ³Biomedical Engineering, University of Michi-

gan, USA. We experimentally actuate mechanical

whispering-gallery modes and wineglass modes

in ultra-high-Q microfluidic optomechanical

resonators by means of the electrostrictive Bril-

louin scattering nonlinearity.

of magnitude larger than in a silicon wire.

the On-Off ratio is ~28dB.

CTh3F.6 • 15:15

CTh3F.7 • 15:30

Continued CTh3F.5 • 15:00 Executive Ballroom 210F

CLEO: Science & Innovations

CTh3G • Photonic Crystal Lasers—Continued

CTh3G.2 • 15:00

Electrically Driven Nanobeam Photonic Crystal Laser, Kwang-Yong Jeong¹, You-Shin No¹, Ju-Hyung Kang¹, Soon-Hong Kwon², Min-Kyo Seo³, Yong-Hee Lee³, Hong-Gyu Park¹, ¹Department of Physics, Korea University, Republic of Korea; ²Department of Physics, Chung-Ang University, Republic of Korea; ³Department of Physics, KAIST, Republic of Korea; ³Department of Physics, KAIST, Republic of Korea, ¹Ve report room-temperature lasing in a photonic crystal nanobeam cavity. The electrical current pulse is injected through the central post placed underneath the nanobeam. A lasing action is observed at a wavelength of ~1470 nm with a threshold of ~ 9µA.

CTh3G.3 • 15:15

Two-dimensional Beam-steering Achieved Using Photonic-crystal Lasers, Toshiyuki Nobuoka¹, Kyoko Kitamura¹², Seita Iwahashi¹, Tsuyoshi Okino¹, Yong Liang¹, Susumu Noda¹; ¹Department of Electronic Science and Engineering, Kyoto University, Japan; ²The Hakubi Center for Advanced Research, Kyoto University, Japan. We demonstrate two-dimensional beam-direction control using photonic-crystal lasers, which promises to greatly enhance the range of possible laser-scanning applications.

CTh3G.4 • 15:30

Multi-Color Arrays of III-Nitride Photonic Crystal Nanowire Lasers on a Single Chip, Jeremy B. Wright^{1,2}, Sheng Liu¹, George T. Wang¹, Qiming Li¹, Daniel D. Koleske¹, Ping Lu¹, Huiwen Xu², Luke Lester^{2,4}, Ting S. Luk^{1,3}, Igal Brener^{1,3} Ganapathi S. Subramania^{1,4}; ¹Sandia National Laboratories, USA; ²Center for High Technology Materials, The University of New Mexico, USA; ³Center for Integrated Nanotechnology, Sandia National Laboratories, USA; 4Department of Electrical and Computer Engineering, The University of New Mexico, USA. We have demonstrated a multi-color array of photonic crystal lasers on a single chip. By lithographically defining the geometrical properties of the photonic crystals we have achieved tuning from 376-435 nm using a single epitaxial growth

CTh3H • Ultrafast Laser Sources II—Continued

CTh3H.5 • 15:00

High Energy and Average Power Femtosecond Laser for Pumping mid-IR OPAs, Pavel Malevich1, Audrius Pugzlys1, Giedrius Andriukaitis1, Tobias Flöry¹, Aart Verhoef¹, Alma Fernández¹, Skirmantas Ališauskas¹, Andrius Baltuska¹, Lihao Tan24, Chern Fei Chua3, Poh Boon Phua24; 1Photonics Institute, Vienna University of Technology, Austria; ²School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore; ³Temasek Laboratories, Nanyang Technological University, Singapore; ⁴DSO National Laborato ries, Singapore. Femtosecond Tm-fiber-pumped Ho:YAG room-temperature CPA system delivering scalable multi-mJ multi-kHz pulses with a bandwidth exceeding 12 nm and the average power of 15 W is developed. Recompressed 530-fs pulses are suitable for broadband WL generation in transparent solids.

CTh3H.6 • 15:15

Fourier Plane Optical Parametric Amplification enables simultaneous up-scaling laser pulse energy and bandwidth, Bruno E. Schmidt¹, Nicolas Thire¹, Maxime Boivin¹, Antoine Laramée¹, François Poitra¹, Guy Lebrun¹, Tsuneyuki Ozaki¹, Jean-Claude Kieffer¹, Heide Ibrahim¹, François Légaré¹; ¹Institut National de la Recherche Sci., Canada. Employing parametric amplification in the Fourier domain rather than in time domain circumvents phase mismatch and damage threshold limitations of laser amplifiers and enabled CEP stable, 1.43mJ, sub-two cycle pulses at 1.8µm

CTh3H.7 • 15:30 Invited

Coherent Synthesis of Ultra-broadband Optical Parametric Amplifiers, Cristian Manzoni¹, Shu-Wei Huang², Giovanni Cirmi³, Paolo Farinello¹, Jeffrey Moses², Sandro De Silvestri¹, Franz X. Kärtner^{2,3}, Giulio Cerullo², ¹Istituto di Fotonica e Nanotecnologie, CNR, Italy; ²Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, MIT, USA; ³Center for Free-Electron Laser Science, DESY, Germany. We report on coherent synthesis of outputs from two ultra-broadband optical parametric amplifiers; their timing is locked to sub-30-as by a balanced cross-correlator. Synthesised pulses have octavespanning (500-1000 nm) spectra and nearly single-cycle 3.8-fs duration.

For Conference News & Insights Visit blog.cleoconference.org

16:00–16:30 Coffee Break, Exhibit Halls 1 and 2

ırsday, 13 June

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 183

multi-color single chip. metrical pi have achiev single epita

CTh3F.8 • 15:45 Highly Efficient Broadly Tunable Four-Wave Mixing in AlGaAs Nanowires, Ksenia Dolgaleva¹, Peyman Sarrafi¹, Pisek Kultavewuti¹, J. Stewart Aitchison¹, Li Qian¹, Maite Volatier², Richard Ares³, Vincent Aimez², ¹Department of Electrical and Computer Engineering, University of Toronto, Canada; ²Institut Interdisciplinaire altonovation Technologique, Universite de Sherbrooke, Canada. We report what we believe to be the first experimental demonstration of four-wave mixing in AlGaAs nanowires with the efficiency -38 dB and conversion range 100 nm.

Meeting Room 211D-B

> CLEO: Science & Innovations

CTh3I • Biosensors—Continued

CTh3I.5 • 15:00

Self-growing of Plasmonic Optofluidic Network, Hui Liu', Yajian Zheng¹, Shining Zhu'; ¹Nanjing University, China. We will report a new self-assembly method to produce an plasmonic optofluidic network. Various topology structural networks are obtained in the process to mimic biological liquid channel systems.

CTh3I.6 • 15:15

Self-Assembled Nanolens Formation for Widefield Computational Imaging of Nanoparticles on a Chip, Euan McLeod^{1,2}, Onur Mudanyali^{1,2}, Wei Luo^{1,2}, Alon Greenbaum^{1,2}, Ahmet F. Coskun^{1,2}, Yves Hennequin³, Cedric P. Allier³, Aydogan Ozcan^{1,2}, ¹Electrical Engineering, University of California, Los Angeles, USA; ²Bioengineering, University of California, Los Angeles, USA; ³MINATEC, CEA-Leti, France. Individual unlabeled nanoparticles are observed within a >0.2-9 cm² field-of-view by surrounding particles with self-assembled nanolenses and imaging them with super-resolved lensfree holographic computational microscopy. Nanolens formation, topology, and impact on contrast are discussed.

CTh3I.7 • 15:30 Invited

Transparent Micro-Optrode Arrays for Simultaneous Multichannel Optical Stimulation and Electrical Recording, Joonhee Lee¹, Yoon-Kyu Song², Ilker Ozden¹, Arto Nurmikko¹, ¹School of Engineering, Brown University, USA; ²Department of Nano Science and Technology. Seoul National University, Republic of Korea. We have developed two dimensional, fully transparent, micro-optrode arrays from conductive n-ZnO single crystal semiconductors for intracortical implantation. Neural recording capability under optical stimulation was demonstrated in a transgenic mouse model.

CTh3J.5 • 15:00

High Sensitivity Fluorescence Detection with Multi-spot Excitation Using Y-splitters, Damla Ozcelik¹, Joshua W. Parks¹, Lynnell U. Zempoaltecatl², Kealyn Leake¹, Jennifer A. Black¹, Yaeji Lim², Holger Schmidt¹, Aaron Hawkins²; ¹Electrical Engineering, University of California Santa Cruz, USA; ²Brigham Young University, USA. Fluorescence detection with enhanced sensitivity is demonstrated on liquid-core waveguide chips using Y-splitters to create multiple excitation spots and applying a single signal processing step. The signal-to-noise ratio is enhanced by 200 times.

Meeting Room

212A-C

CTh3J • Fabrications and Applications II—Continued

CTh3J.6 • 15:15

Optical Spectroscopy of Excitons and Trions in Single Layer MoS2, Changjian Zhang¹, Haining Wang¹, Farhan Ran¹; ¹School of Electrical and Computer Engineering, Cornell University, USA. Our study reveals temperature dependent optical properties of excitons and trions in monolayer MoS2 using absorption and photoluminescence (PL) spectroscopy. The extremely large trion binding energy is directly extracted from our data.

CTh3J.7 • 15:30

Micro-Raman Spectroscopic Imaging of He+-Irradiation Changes in LiNbO3, Hsu-Cheng Huang', Jerry I. Dadap', Ophir Gaathon', Irving P. Herman', Richard M. Osgood', Sasha Bakhru², Hassaram Bakhru²; '*Columbia University, USA*, 'SUNY at Albany, USA. We use micro-Raman spectroscopy to image ion-induced changes in LiNbO3 during ~MeV He+-irradiation and show high modal-intensity contrast across an implantpatterned surface. Striking image changes in implant regions after annealing are demonstrated.

CTh3J.8 • 15:45

A New Scheme for Improvement of Index of Refraction Detection Limit in 2D Photonic Crystals, Hooman Akhavan¹, Wah Tung Lau², Costa Nicholaou¹, Ryan Schilling¹, Raanan Gad¹, Ofer Levi¹; ¹ECE, university of toronto, Canada. ²physics, university of toronto, Canada. We experimentally demonstrate a new 2D photonic crystal design with index of refraction detection limit of 1×10-7 [RIU]. This new type of photonic crystal opens new avenues for label-free bio-sensing applications.

Meeting Room 212D-B

CLEO: Applications & Technology

ATh3K • Ultrafast Laser Design and Applications—Continued

ATh3K.4 • 15:00

Yb fiber oscillator developed for laser-induced breakdown spectroscopy, Bai Nie¹, Greg Parker¹, Vadim V. Lozovoy¹, Marcos Dantus¹, ¹Department of Chemistry, Michigan State University, USA. A 2 MHz Yb fiber oscillator producing 320 nJ-per pulse is developed. The laser is ideal for laser-induced breakdown spectroscopy, due to a low ablation threshold and clean atomic emission spectra.

ATh3K.5 • 15:15

100 µJ, 20 W Femtosecond Fiber Laser for Precision Industrial-Micro-Machining, Michael-M. Mielke¹, Kyungbum Kim¹, Xiang Peng¹, Wangkueri Lee¹, Xinhua Gu¹, Gordon Masor¹, Sangyoun Gee¹, Mathew Hamamoto¹, Richard Lu¹, David M. Gaudiosi¹, Michael Shirk¹, Eric, Juban¹, Sri Sriniyas¹, *Raydiance Inc, UŞA.* We describe femtosecond fiber laser systems optimized for high value applications in precision industrial micromachining. Unprecedented system performance and reliability enable unique manufacturing capabilities for touch screen displays and other difficult-to-machine parts.

Marriott San Jose Salon I & II

CLEO: Science & Innovations

CTh3L • Photodetectors I— Continued

CTh3L.2 • 15:00

Uncooled Low-Bias Uni-Traveling Carrier Photodetectors, Wei Liu¹, Richard Cendejas², Hongjun Cao², Qingling Hang³, Zhenli Ji², Anguel Nikolov²; ¹PhotonIC Corporation, USA; ²APIC Corporation, USA. We demonstrate state-of-theart uncooled photodetectors for low-bias (2-4V) operation with high responsivities, high saturation currents, and broad bandwidths. High responsivity (1.09A/W), high bandwidth (39GHz) and the OIP3 (47dBm) were achieved at -3V bias.

CTh3L.3 • 15:15 D

CMOS Compatible Argon-Ion-Implanted C-Band Silicon Waveguide Photodetector, Brian Souhan¹, Richard Grote¹, Jeffrey Driscoll¹, Hassaram Bakhru², Richard M. Osgood¹; 'Columbia University, USA; ²University of Albany, USA. Extrinsic Si waveguide photodiodes created through Ar+ implantation are shown to be stable up to 350°C with 0.29 A/W internal quantum efficiency and 10 GHz frequency response. Similar Si+ implantation defects anneal out at 300°C.

CTh3L.4 • 15:30

Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9 µm, Brian Souhan¹, Christine Chen¹, Richard Grote¹, Jeffrey Driscoll¹, Noam Ophir¹, Keren Bergman¹, Richard M. Osgood¹; 'Columbia University, USA. Error-free detection at 1 Gb/s is demonstrated with a Si ion-implanted waveguide photodiode operating at 1.9 µm. The measured 0.14 A/W responsivity corresponds to a 5 dB decrease in photocurrent compared to operation at 1.55 µm.

CTh3L.5 • 15:45 D

Vertical Silicon Nanowire Photodetectors: Spectral Sensitivity via Nanowire Radius, Hyunsung Park', Yaping Dan², Kwanyong Seo¹, Young J. Yu³, Peter K. Duane³, Munib Wober³, Kenneth B. Crozier'; 'School of Engineering and Applied Sciences, Harvard University, USA; ²University of Michigan-Shanghai Jiao Tong University Joint Institute, China; ³Zena Technologies Inc., USA. We demonstrate that vertical silicon nanowires function as photodetectors whose spectral sensitivities are controlled by choice of nanowire radius. The measured external quantum efficiencies of fabricated devices are compared to electromagnetic simulations.

Thursday, 13 June

CLEO: 2013 • 9-14 June 2013

2013CLEO Thursday.indd 21

Marriott San Jose Salon III

CLEO: Science & Innovations

CTh3M • Fiber Parametric Amplifiers—Continued

CTh3M.2 • 15:00 C High power fiber optic parametric amplifier at 1 µm wavelength based on a large area high order mode, Paul Steinvurzel¹, Jeffrey Demas¹, Boyin Tai¹, Yuhao Chen¹, Siddharth Ramachandran¹; ¹Boston University, USA. We demonstrate parametric amplification at 1.064 µm with a 600 µm2 fiber mode, with 94 nm gain bandwidth, cascade products over 315 nm bandwidth, and 6 kW peak power in the Stokes and anti-Stokes lines.

CTh3M.3 • 15:15 C Comparison of Amplitude Noise of a Fiber Optical Parametric Oscillator and a Supercontinuum Source, Leily S. Kiani¹, Thompson Lu³, Jay E. Sharping¹²; ¹School of Natural Sciences, University of California Merced, USA; ¹School of Engineering, University of California Merced, USA. We show improvement in relative intensity noise (RIN) for a fiber optical parametric oscillator (FOPO) as a function of input power and of wavelength, an attractive alternative to supercontinuum (SC) for nonlinear optical microscopy.

CTh3M.4 • 15:30 Polarization and Reflectivity Effects on Fiber Optical Parametric Oscillator Output Power, Thompson Lu¹, Leily S. Kiani¹, Jay E. Sharping¹; 'University of California, Merced, USA. We report on polarization and reflectivity effects in FOPO output coupling. Polarization-based output coupling improves output power. Linear polarization and output coupling of 0.35 to 0.48 yields optimum output power with the current setup.

CTh3M.5 • 15:45 Amplification of ultrashort optical pulses in a two-pump fiber optical parametric chirped pulse amplifier, Patrick Beaure d'Augères', Emmanuel Hugonnot', Lea Stroiazzo', Alexandre Kudlinski², Arnaud Mussot², 'Centre d'Etudes Scientifiques et Techniques d'Aquitaine, Commissariat à l'Energie Atomique et aux Énergies Alternatives, France; 'PhLAM/IRCICA, Université Lille 1, France. Numerical simulations show that FOPCPA is able to amplify 50fs pulses and that saturation regime allows reducing pulse duration down to 15 fs. Preliminaries experimental results confirm that a flat and broad gain bandwidth is obtained.

Marriott San Jose Salon IV

 $(\blacklozenge$

CLEO: Applications & Technology

ATh3N • LEDs for Energy Efficiency—Continued

ATh3N.4 • 15:00 Tutorial .

UV-Nitride Semiconductor Lasers, Noble Johnson'; 'Palo Alto Research Center, USA. Nitride semiconductors offer the potential to realize a compact UV laser source. Three approaches will be described: (1) InGaN VECSEL for frequency doubling, (2) photo-pumped AlGaN lasers (to 237 nm), and (3) AlGaN laser diodes.

Dr. Noble Johnson is Research Fellow and Manager of the Optoelectronic Materials and Devices Group at the Palo Alto Research Center (a Xerox Company). He received his Ph.D. degree from Princeton University under a National Defense Graduate Fellowship and has been at PARC since 1976. He has conducted experimental research in the general area of electronic materials and devices, has published over 415 research papers in technical journals and conference proceedings, and is a co-inventor on over fifty patents. *As Manager of the Optoelectronic Materials and Devices program he has guided the activities of a world-class R&D team that has successfully developed visible and ultraviolet lasers and LEDs and which has made major contributions to the fundamental understanding of the materials and devices. Dr. Johnson is a fellow of the American Physical Society and a fellow of the Institute of Electrical and Electronics Engineers.

ATh30 • Symposium on The Path to Sustainable Energy: Laser Driven Inertial Fusion Energy – ICF Target Design and Fabrication/Future Perspectives Kick-off — Continued

Marriott San Jose

Salon V & VI

ATh30.3 • 15:00 Invited D. Hohlraum Designs for High Velocity Implosions on NIF, Nathan Meezan¹; 'Lawrence Livermore National Laboratory, USA. Experiments measuring the velocity of hohlraum-driven implosions on the National Ignition Facility (NIF) are described, including a demonstration of the required fusionfuel velocity Vfuel > 350% km/s with a 520 TW, 1.86 MJ laser pulse.

Future Perspective of ICF as Sustainable Energy Source

ATh30.4 • 15:30 Invited O HiPER, The European Approach to Inertial Fusion Energy, Laser Driver Studies, Jean-Christophe Chanteloup', ¹Centre National Recherche Scientifique, France. HiPER (High Power Jaser Energy Research) is a European project aiming at exploring laser inertial fusion. An overview of the program with its time schedule is presented while emphasis is given on the laser driver studies.

Join the conversation. Follow @cleoconf on Twitter. Use hashtag **#CLE013**.

16:00–16:30 Coffee Break, Exhibit Halls 1 and 2

()

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 185

2013CLEO Thursday.indd 22

CLEO: QELS-Fundamental Science

Executive Ballroom 210B

Executive Ballroom 210C

Executive Ballroom 210D

16:30-18:30 QTh4A • Engineering Light-**Matter Interactions**

Presider: Alexandra Boltasseva; Purdue University, United States

QTh4A.1 • 16:30 Invited Robust Interface States in Two Dimensional

Photonic Crystals with Dirac Cone Dispersions, Xueqin Huang¹, Meng Xiao¹, Che Ting Chan¹; ¹Depatment of Physics, Hong Kong University of *Science and Technology, Hong Kong.* We found that there always exist localized states in the interface created by two semi-infinite photonic crystals with parameters slightly perturbed from the Dirac-like cone condition. This robustness of such states is explored and explained

QTh4A.2 • 17:00

 $(\mathbf{\Phi})$

Metamaterial-Based Approach to Enhance Optical Gradient Forces, Vincent Ginis¹, Philippe Tassin², Costas Soukoulis², Irina Veretennicoff¹ ¹Applied Physics Research Group, Vrije Universiteit Brussel, Belgium; ²Ames Laboratory & Dept. of Phyics, Iowa State University, USA. We show how transformation optics can enhance optical forces between two optical waveguides by several orders of magnitude by altering the perceived distance between the waveguides. This transformation can be implemented using single-negative metamaterial films.

16:30-18:30 QTh4B • Nanoemitters & Lasers

and Spasers Presider: Harold Giessen, Univ. Stuttgart, Germany

QTh4B.1 • 16:30

Fiber-coupled dual-rail nanobeam lasers, Hee-Jin Lim¹, Chang-Min Lee¹, Byeong-Hyeon Ahn¹, Yong-Hee Lee^{1,2}; ¹Physics, KAIST, Republic of Korea; ²School of Nanoscience and Technology (WCU), KAIST, Republic of Korea. The one-dimensional resonant cavity is formed by contacting a curved microfiber to the dual-rail nanobeam. Experimentally we measure the spontaneous emission factor of the nanobeam laser of 0.16 and fiber-coupling efficiency of 30%.

16:30-18:30 QTh4C • Quantum Optics with **Atoms and Molecules** Presider: Leticia Tarruell; ETH Zurich, Switzerland

QTh4C.1 • 16:30 Invited

A Cold-atom Laser with <1 Intracavity Photon, James Thompson¹; ¹JILA, NIST, and Dept. of Physics, University of Colorado, USA. We will discuss a cold-atom Raman laser that operates quasi-continuously with as few as 0.2 photons on average inside the cavity. This proof-of-principle demonstration may point the way to future hybrid and ultrastable lasers

QTh4B.2 • 16:45

QTh4B.3 • 17:00

excitation study.

Spontaneous emission enhancement via guided resonance modes in GaN nanorod-array LEDs, Patrick Anderson¹, Chenxi Lin¹, Michelle Povinelli¹; ¹Ming Hsieh Department of Electrical Engineering, University of Southern California, USA. We demonstrate strong correspondence between the emission characteristics of core-shell GaN nanorod array LEDs and guided resonance modes. We identify a nanorod array which produces 26 times more total brightness than an equivalent slab.

clear picture of ultrafast charge carrier dynam-

ics, exciton-phonon interactions and frequency

upconverted lasing properties in ZnSe nanowire was established through a comprehensive pump-

fluence and temperature dependent two-photon-

QTh4C.2 • 17:00

Absolute frequency of cesium 6S-8S hyperfine transition by two-photon interfered spectrum, Chien-Ming Wu^{1,2}, Tze-Wei Liu¹, Ray-Kuang Lee², Wang-Yau Cheng¹; ¹Department of Physics, National Central University, Taiwan; ²Institute of Photonics Technologies, National Tsing-Hua University, Taiwan. We present a novel two-photon spectrum in which the transition amplitude was interfered with phase-modulated radiation. We demonstrate the application of our resolved spectrum by determining the absolute frequency of cesium 6S-8S hyperfine transitions.

16:30-18:30 QTh4D • High Field Effects and **X-rays Probes**

Presider: Alfred Leitenstorfer; Univ. of Konstanz, Germany

QTh4D.1 • 16:30

Sub-Cycle Strong-Field Induced Modification of the Optical Properties of SiO2, Elisabeth M. Bothschafter^{1,2}, Annkatrin Sommer¹, Wolfgang Schweinberger¹, Michael Jobst^{1,3}, Tobias Latka¹, Clemens Jakubeit¹, Alexander Guggenmos^{1,2} Vladislav S. Yakovlev^{1,2}, Reinhard Kienberger^{1,3} Martin Schultze^{1,2}, Ferenc Krausz^{1,2}, ¹Max-Planck-Institut für Quantenoptik, Germany; ²Fakultät für Physik, Ludwig-Maximilians-Universität, Germany; ³Physik-Depatment, Technische Universität München, Germany. Highly nonlinear, but reversible changes in the refractive index of SiO2 induced by strong near-infrared light fields are probed with wave-cycle resolved optical reflectivity and attosecond streaking characterization of the transmitted field.

QTh4D.2 • 16:45

Quantum Interference and Control of the Dynamic Franz-Keldysh Effect: Generation of THz Space-Charge Fields, Arthur L. Smirl¹, Rui Wang^{1,2}, Paul Jacobs¹, Hui Zhao²; ¹Photonics & Quantum Electronics Lab, University of Iowa, USA; ²Department of Physics and Astronomy, University of Kansas, USA. Dynamic Franz-Keldysh effects are produced and controlled in GaAs by quantum interference techniques. The ~3 THz transient plasma oscillations and the anisotropies that they cause are temporally (~100 fs) and spatially (~1 nm) resolved.

QTh4D.3 • 17:00

Carrier-envelope phase effects observed on strong-field photoemitted electrons from metallic tips, Bjoern Piglosiewicz^{1,2}, Slawa Schmidt^{1,2} Doo Jae Park^{1,2}, Jan Vogelsang^{1,2}, Petra Gross^{1,2}, Cristian Manzoni³, Paolo Farinello³, Giulio Ce-rullo³, Christoph Lienau^{1,2}, ¹*Insitut fuer Physik*, *Carl* V. Ossietzky Univ Oldenburg, Germany; ²Center of Interface Science, Carl von Ossietzky University, Germany; ³Dipartimento di Fisica, Politecnico di Milano, Italy. We report on the first observation of pronounced carrier-envelope-phase effects on strong-field photoemission of electrons from nanometric gold tips and present a new way to steer and control the motion of electrons around metallic nanoparticles.

Thursday, 13 June

۲

Ultrafast Charge Carrier Dynamics and Upconversion Lasing from ZnSe Nanowires, Guichuan Xing¹, Jingshan Luo¹, Hongxing Li¹, Bo Wu¹, xinfeng Liu¹, Cheng Hon Alfred Huan¹, Hongjin Fan¹, Tze Chien Sum¹; ¹Physics and Applied Physics, Nanyang Technological University, Singapore. A

Thank you for attending CLEO: 2013. Look for your post-conference survey via email and let us know your thoughts on the program.

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

16:30-18:30 QTh4E • Integrated Nonlinear **Photonics** Presider: Roberto Morandotti;

INRS-EMT, Canada

QTh4E.1 • 16:30

Microresonator-Based Parametric Frequency **Comb Generation Without an External Pump** Laser, Adrea R. Johnson¹, Yoshitomo Okawachi¹ Michael Lamont^{1,2}, Jacob S. Levy², Michal Lipson^{2,3} Alexander L. Gaeta^{1,3}; ¹Applied and Engineering Physics, Cornell University, USA; ²Electrical and Computer Engineering, Cornell University, USA; ³Kavli Institute, Cornell University, USA. We demonstrate frequency comb generation spanning 900 nm by utilizing a fiber-microresonator dual-cavity design. Such a scheme eliminates the need for tuning an external pump laser to the microcavity resonance.

QTh4E.2 • 16:45

Phase Noise Spectrum and Carrier Power Modeling of High Performance Optomechanical Oscillators, Alejandro Grine¹, Karen E. Grutter¹, Tristan Rocheleau¹, Niels Quack¹, Turker Beyazoglu¹, Ziwei Zheng¹, Inderjit Jutla¹, Ming C. Wu¹, Clark T. Nguyen¹; ¹*EECS, UC Berkeley, USA.* We present a model for phase noise that fits experi-mentally observed trends in our high performance optomechanical oscillators (OMO) demonstrating a phase noise of -102dBc/Hz at 1kHz offset from a 74MHz carrier.

QTh4E.3 • 17:00

Soliton mode-locking in optical microresonators, Tobias Herr¹, Victor Brasch¹, John D. Jost¹, Christine Y. Wang¹, Nikita M. Kondratiev², Michael Gorodetsky², Tobias J. Kippenberg¹; ¹Ecole Polytechnique Federale de Lausanne, Switzerland; ²M.V. Lomonosov Moscow State University, Russian Federation. We demonstrate soliton mode-locking in continuously pumped, non-linear optical MgF2 microresonators, resulting in low noise frequency comb spectra and ultra-short pulses of 200 fs duration with a repetition rate of 35.2 GHz.

Executive Ballroom 210G

16:30-18:30

CTh4F.1 • 16:30

CTh4F • Waveguides and

Laboratories, United States

Presider: Misha Sumetsky; OFS

3-D Flexible Glass Photonics, Lan Li¹, Hongtao

Lin1, Yi Zou1, Sylvain Danto2, J. David Musgraves2,

Kathleen Richardson², Juejun Hu¹; ¹Department

of Materials Science & Engineering, University of

Delaware, USA; ²College of Optics & Photonics (CREOL), University of Central Florida, USA.

We demonstrate monolithic fabrication of 3-D

photonic structures on flexible substrates. Strain-

optical coupling behavior of the flexible devices is

quantified through in-situ optical measurements and is successfully accounted for using nanome

chanical finite element analysis.

Passive Components

Executive Ballroom 210F

CLEO: Science & Innovations

16:30-18:30 CTh4G • Defect & Quantum Dot **Emitters**

Presider: Lynford Goddard, Univ. of Illinois, Urbana-Champaign, USA

CTh4G.1 • 16:30 Invited

Electrically driven single photon source at room temperature by using single NV center in diamond, Norikazu Mizuochi1; 'Osaka University, Japan. We show the realization of a stable room temperature electrically driven single-photon source based on a single NV centre in a diode structure, which is a crucial step towards elaborated quantum information devices

Executive Ballroom 210E

16:30-18:30 CTh4H • Fiber Devices & Sensors Presider: Siddharth Ramachandran; Boston University, United States

CTh4H.1 • 16:30 Invited **Optical Excitation of Metal Nanoparticles** by Optical Fiber Cladding Mode Wavelength

Combs, Jacques Albert¹, Anatoli Ianoul¹, Sean T. Barry¹, Christophe Caucheteur²; ¹Carleton University, Canada; ²Université de Mons, Belgium. The wavelengths and amplitudes of narrowband polarized cladding mode resonances in tilted fiber Bragg gratings provide high-Q probes of the anisotropic optical properties of various metal and semiconducting nanoparticle coatings and of their surroundings.

L-Shaped Resonant Microring (LRM) Filter with Integrated Thermal Tuner, Erman Timurdogan¹, Ehsan S. Hosseini¹, Gerald Leake², Douglas D. Coolbaugh², Michael R. Watts¹; ¹Research Laboratory of Electronics, Massachusetts Institute of Technology, USA; ²College of Nanoscale Science & Engineering, University at Albany, USA. A new filter, an L-Shaped Resonant Microring (LRM), is introduced in the application of a highly efficient $(3.3\mathchar`umbrack \mu W/GHz)$ thermal tuner that enables electrical contact while maintaining single-mode operation and a large 4-THz spur-free FSR.

CTh4F.3 • 17:00

CTh4F.2 • 16:45

An Integrated, Silica-Based, MEMS-Actuated, Tunable-Bandwidth Optical Filter with Low Minimum Bandwidth, Karen E. Grutter¹, Antho ny Yeh¹, Alejandro Grine¹, Ming C. Wu¹; ¹Electrical Engineering and Computer Science, University of California, Berkeley, USA. We present a MEMSactuated tunable-bandwidth filter implemented in phosphosilicate glass (PSG). Tuning range is 0.8 to 8.5GHz. Based on performance of our stand-alone PSG resonator, minimum bandwidth in PSG can be as low as 30MHz.

CTh4G.2 • 17:00

High Performance InAs/InP Ouantum Dot C-Band Coherence Frequency Comb Lasers, Zhenguo Lu¹, Jiaren Liu¹, D. Poitras¹, P. Poole¹, P. Barrios¹, Chungying Song¹, Shoude Chang¹ C. Flueraru¹, Heping Ding¹, Siegfried Janz¹; ¹Information and Communications Technologies, National Research Council Canada, Canada. We have experimentally demonstrated several InAs/ InP quantum dot C-band coherence frequency comb lasers with the frequency spacing $\hat{\text{from 10}}$ GHz up to 100 GHz with the total output power of up to 50 mW.

CTh4H.2 • 17:00

Femtosecond refractive-index tailoring of an optical fiber and phase retrieval from far-field measurements, Juha-Matti Savolainen¹, Lars Grüner-Nielsen², Poul Kristensen², Peter Balling¹; ¹Department of Physics and Astronomy, Aarhus University, Denmark; ²OFS Fitel Denmark Aps, Denmark. A refractive-index change is written inside an optical fiber close to the end face by femtosecond laser light. The induced phase change is measured by analyzing the far-field intensity profiles before and after the irradiation

Papers are available online for download. Visit www.cleoconference.org and click on the Download Digest Papers button.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 187

Meeting Room 211D-B

CLEO: Science & Innovations

16:30-18:30

University, Israel

CTh4J.1 • 16:30

in a broad range.

CTh4J.2 • 16:45

CTh4J • Photodetectors II

Presider: Avi Zadok; Bar-Ilan

Flexible Photodetector Based on Carbon

Nanotube Fibers, xuan wang¹, Sebstian Nanot¹, Xiaowei He¹, Colin Young², Dmitri Tsentalovich²,

Natnael Behabtu², Matteo Pasquali², Junichiro

Kono¹; ¹Electrical and Computer Engineering, Rice

Univeristy, USA; 2Chemical and Biomolecular Engi-

neering, Rice University, USA. We have developed a

flexible photodetector by connecting two carbon

nanotube fibers with different doping levels.

This device combines the excellent properties of

nanotube fibers with their ability to absorb light

Solution-processed Photodetectors using Nontoxic, Colloidal ZnS-AgInS2 Nanoparticles,

Erin Sanehira¹, Chang-Ching Tu^{1,2}, Lih Y. Lin¹;

¹Electrical Engineering, University of Washington,

USA; 2LumiSands, USA. Non-toxic, colloidal ZnS-

AgInS2 (ZAIS) nanoparticles (NPs) were used as the active material in a photodetector for the

first time. This demonstrates the optoelectronic

properties of ZAIS NPs, and proves its viability in

Meeting Room

212A-C

16:30–18:30 CTh4I • Thermal Challenges for High Average Power Lasers II Presider: Nicolas Forget; FASTLITE, France

CTh4I.1 • 16:30

200 J Nd:glass Laser with Pulse Repetition Rate of 0.02 Hz, Efim A. Khazanov¹, Alexey Kuzmin¹, Oleg Kulagin¹, Andrey Shaykin¹; 'Institute of Applied Physics, Russian Federation. Thermally induced distortions in Nd:glass rods 4.5cm in diameter have been measured and compensated by phase conjugate mirror and linear optics technique. Thermal loads in the rods are by factor 5 below thermal fraction limit.

CTh4I.2 • 16:45

Orthogonally Polarized Dual-Wavelength Operation of a CW Yb:KGW Laser Induced by Thermal Lensing, Haitao Zhao', Arkady Major'; ¹Department of Electrical and Computer Engineering, University of Manitoba, Canada. We report on orthogonally polarized dual-wavelength operation of a continuous-wave Yb:KGW laser. Gain equalization of the two wavelengths with the Nm- and Np-polarizations was attributed to the effect of anisotropic thermal lensing.

CTh4I.3 • 17:00

Pulse Energy Increase by Emission Cross-Section Control in Passively Q-switched Nd:YVO4/ Cr4+;YAG Laser, Arvydas Kausas¹, Takunori Tairai; ¹*Laser Research Center, Institute for Molecular Science, Japan.* Emission cross-section dependence on temperature was observed experimentally in passively Q-switched Nd:YVO4/Cr4+:YAG laser. Heating the crystal, Q-switch pulse energy increase and duration decrease was observed at 100 Hz and 1 kHz QCW pump

other optoelectronic devices.

CTh4J.3 • 17:00

Room Temperature and High Responsivity Short Wavelength II-VI Quantum Well Infrared Photodetector, Arvind Pawan Ravikumar¹, Guopeng Chen², Kuaile Zhao², Yue Tian¹, Paul R. Prucnal¹, Maria C. Tamargo³, Claire F. Gmachl¹, Aidong Shen², 'Electrical Engineering, Princeton University, USA; 'Electrical Engineering, The City College of New York, USA, 'Schemistry, The City College of New York, USA, 'Chemistry, The City The dark-current limited detectivity at 80 K was measured to be 2x10^9 cm√Hz/W.

Meeting Room 212D-B

CLEO: Applications & Technology

16:30-18:30

ATh4K • Advanced Sensing & Metrology Presider: Michael Mielke , Raydiance Inc., USA

Ruyulunce Inc., OSA

ATh4K.1 • 16:30 Invited

Precision Inertial Measurements with Atoms near Absolute Zero, Philippe Bouyer¹; ¹Institut d'Optique, France. The ability to cool atoms near zero has lead to recent development of extremely precise inertial sensors, with applications from inertial navigation to underground survey. The paper presents the recent development of such commercial devices.

۰		۰		۰		۰		۰		۰		۰		۰	
	۰		۰		۰		٠		۰		۰		۰		٠
۰		٠		٠		۰		۰		۰		٠		۰	
			+		۰		+		۰		+				
			*								*				÷
		*													
			•		•		•		•		•		•		•

ATh4K,2 • 17:00

Two, Photon Laser-Assisted Device Alteration in Silicon Integrated Circuits using a 1.28-µm Femtosecond Raman-Soliton Fiber Laser, Keith Serrels¹, Dan Bodoh², Derryck Reid³, Carl Farrell³; Neel'Leslie⁴, Ted Lundquist¹, Praveen Vedagarbha¹, Kent Erington², ¹DCG System³, USA; ⁻Preescald Semiconductor, USA; ³Heriot-Watt University, United Kingdom. By inducing two-photon absorption to perturb the switching characteristics of sensitive transistors located within the active layer of a proprietary 28-nm silicon test chip, we demonstrate time-resolved nonlinear laserassisted device alteration:

CLEO: Science & Innovations

16:30–18:30 CTh4L • Novel Components and Applications ●

Presider: Yeshaiahu Fainman; Univ. of California San Diego, United States

CTh4L.1 • 16:30 D

A Timing Jitter Insensitive Logic Gate Using Tunable Gain Dynamics in an SOA and Optical Thresholding, Yue Tian¹, Mable P. Fok², Paul R. Prucnal¹; ¹Princeton University, USA; ²University of Georgia, USA. We experimentally demonstrate a reconfigurable and timing-jitter insensitive AND/NOT gate based on tunable gain dynamics in a semiconductor optical amplifier and optical thresholding. The measured jitter tolerance is up to ±50 ps or ±25 ps for the AND/NOT gate.

CTh4L.2 • 16:45 D

All-optical clock recovery for 40 Gb/s NRZ-QPSK signals using an amplified feedback DFB laser, liqiang yu', Yan Li', Dan Lu', Lingjuan Zhao', Jizhao Zang', Deming Kong', Jiaoqing Pan', Jifang Qiu', Shile Wei'; 'Key Laboratory of Semiconductor Materials Science, Institute of semiconductors, CAS, China; 'Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, China. All-optical clock recovery for 40 Gb/s NRZ-QPSK signals is demonstrated experimentally using an amplified feedback DFB laser. Low timing jitter (<370 fs) optical clock is obtained with low injection power (<6 dBm)

۲

CTh4L.3 • 17:00

Nanoscale Integrated Planar Multispectral Image Sensors, Krishna Coimbatore Balram¹, David A.B. Miller¹, '*Electrical Engineering, Stanford* University, USA. We propose and demonstrate planar multispectral image sensors with individual pixel sizes down to 2.5 µm x 575 nm, and whose resonant wavelength can be tuned by varying the width of the pixel.

CLEO: 2013 • 9–14 June 2013

Marriott San Jose Salon III

CLEO: Science & Innovations

16:30-18:30 CTh4M • Attoseconds and CEP Control Presider: Takao Fuji; National

Institutes of Natural Sciences, Japan

CTh4M.1 • 16:30 Tutorial

Attosecond molecular electron dynamics, Mark Vrakking1; 1Max Born Institute, Germany. Using attosecond light sources based on high-harmonic generation (HHG), pump-probe experiments can be performed where electron dynamics is studied on its natural timescale, providing insight into the fundamental role that electrons play in photoinduced processes. The tutorial will present first applications in molecular science.

Prof. Marc Vrakking studied physics at the Eindhoven University of Technology in the Netherlands, and completed his Phd at the University of California at Berkeley in 1992. Following postdoctoral appointments in Berkeley and at the National Research Council in Ottawa, he led a scientific group at the FOM Institute for Atomic and Molecular Physics (AMOLF) in Amsterdam until the middle of 2011. While at AMOLF, he developed a research program focusing on the use of ultrashort (femtosecond and attosecond) extreme-ultra-violet (XUV) and X-ray laser pulses for studies of time-resolved atomic and molecular dynamics. Since March 1st 2010 he is a director at the Max-Born Institut in Berlin in charge of the newly established Attosecond Science Division, and a professor at the Freie Universität Berlin. Marc Vrakking is the coordinator of the EUfunded training network ATTOFEL ("Ultrafast Dynamics using ATTOsecond and XUV Free Electron Laser Sources")

Marriott San Jose Salon IV

 (\blacklozenge)

CLEO: Applications & Technology

16:30-18:30 ATh4N • Energy from the Sun D Presiders: Christian Wetzel; Rensselaer Polytechnic Institute, United States

ATh4N.1 • 16:30 Invited 🕩 Pushing Solar Cell Efficiencies Even Higher, Rebecca Jones-Albertus¹; ¹Solar Junction, USA. Multijunction solar cells stack individual solar cells to more efficiently convert sunlight into electricity. With our high quality, lattice-matched material, Solar Junction has set new world records for solar cell efficiency, most recently at 44.0%.

Marriott San Jose Salon V & VI

16:30-18:30 ATh40 • Symposium on The Path to Sustainable Energy: **Laser Driven Inertial Fusion** Energy - Future Perspective of ICF as Sustainable Energy Source **D** Presider: Constantin Haefner; Lawrence Livermore National Laboratory, United States

ATh40.1 • 16:30 Invited Prospects and Time Frame for Inertial Fusion Energy, Robert Byer¹; ¹Applied Physics, Stanford University, USA. I report on the recently released National Academy study on Inertial Fusion Energy and on the recent progress toward demonstration of inertial fusion in the laboratory, a prerequisite for the development of IFE.

ATh4N.2 • 17:00 Dual Use of One-Dimensional, Long-Pitch Metallic Gratings for Polarization-Diverse Light Absorption Enhancement in Organic Photovoltaic Structures, Rabin Dhakal¹, Yifen Liu¹, Vikram Dalal¹, Jaeyoun Kim¹; ¹Department of Electrical and Computer, Engineering, Iowa, State University, USA. We report an organic PV structure that can trap incident light in all polarization states in 1D, longpitch (>1000 nm) gratings. Experiment showed optical enhancements in all polarization states and translate into 15~25% increase in efficiency.

ATh40.2 • 17:00 Invited Design of the LIFE Power Plant: Laser Inertial Fusion Energy, Mike Dunne¹; ¹Lawrence Liver-more National Laboratory, USA. The Laser Inertial Fusion Energy approach to generating gigawatt levels of electrical power will be discussed. Integrated requirements and design solutions for the laser source (384 beams, each delivering 5.7kJ at 351nm, 15 Hz) will be presented.

μ

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 189

(

Executive Ballroom 210B

and Spasers—Continued

Executive Ballroom 210C

Executive Ballroom 210D

CLEO: QELS-Fundamental Science

QTh4A • Engineering Light-Matter Interactions—Continued

QTh4A.3 • 17:15

QTh4A.4 • 17:30

polarization states of light.

OTh4A.5 • 17:45

have been studied.

 $(\mathbf{\Phi})$

Experimental Demonstration of Birefrigent

Transformation Optics Devices, Vera Smoly

aninova¹, Kurt Ermer¹, Alex Piazza¹, David Schaefer¹, Igor Smolyaninov²; ¹Towson University,

USA; ²ECE, University of Maryland, USA. We have

studied wavelength and polarization dependent

performance of waveguide based birefrigent trans-

formation optics devices, which perform useful and different functions for mutually orthogonal

Experimental Demonstration of a Broadband

Array of Invisibility Cloaks in the Visible

Frequency Range, Vera Smolyaninova1, Kurt

Ermer¹, Igor Smolyaninov²; ¹Towson University,

USA; ²ECE, University of Maryland, USA. We

report experimental realization of an array of

broadband invisibility cloaks, which operates in

the visible frequency range. Wavelength and an-

gular dependencies of the cloak array performance

Forces in Random Electromagnetic Fields, Kyle M. Douglass¹, Sergey Sukhov¹, Aristide Dogariu¹; ¹University of Central Florida, CREOL, USA. We explore the nature of forces induced by random electromagnetic fields on microscopic polarizable matter. Particle-field coupling is considered for a single and multiple interacting particles. We also discuss new experiments for controlling disordered systems.

QTh4B.4 • 17:15

QTh4B.5 • 17:30

OTh4B.6 • 17:45

used instead of silver films.

Unidirectional lasing with symmetry broken

core-shell nanoparticle, Urcan Guler¹, Xiangeng

Meng¹, Vladimir M. Shalaev¹, Alexander Kildi-shev¹; ¹School of Electrical & Computer Engineering

and Birck Nanotechnology Center, Purdue Univer-

sity, USA. We propose a plasmonic laser with uni-

directional power outflow based on a symmetry

broken core-shell nanoparticle. A detailed study

of the emission mechanism of the sub-wavelength,

Quest for low-threshold stimulated emission of

surface plasmons polaritons, Thejaswi Tumkur¹,

John K. Kitur¹, Mikhail A. Noginov¹; ¹Norfolk

State University, USA. The stimulated emission

threshold of SPPs can be reduced by an order of magnitude if the operation range is changed from

visible to near-IR and metamaterial substrates are

directional light source is provided.

Coherence-Enhanced Surface Plasmon Polariton Propagation Length, Pankaj K. Jha¹, Xiaobo Yin^{1,2}, Xiang Zhang^{1,2}; ¹Mechanical Engineering, University of California, USA; ²Materials Science Division, Lawrence Berkeley National Laboratory, USA. We theoretically demonstrate, an order of magnitude enhancement in propagation length of SPPs (visible wavelength) along a metalphaseonium interface via quantum coherence. Such coherence effects hold promise for quantum control in the field of nanophotonics.

QTh4B • Nanoemitters & Lasers QTh4C • Quantum Optics with Atoms and Molecules-Continued

QTh4C.3 • 17:15

Discriminating between the Autler-Townes Splitting and the Electromagnetically-Induced Transparency Models : a Tool for Probing the Medium Properties, Lambert GINER¹, Lucile Veissier¹, Benjamin M. Sparkes², Alexandra Sheremet^{1,3}, Adrien Nicolas¹, Oxana S. Mishina⁴, Michael Scherman^{1,5}, Sidney Burks¹, Itay Shomroni6, Dmitriy V. Kupriyanov3, Ping Koy Lam2, Elisabeth Giacobino¹, Julien Laurat¹; ¹Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure, CNRS, France; ²Centre for Quantum Computation and Communication Technology, Australian National University, Australia; ³Department of Theoretical Physics, State Polytechnic University, Russian Federation; ⁴Universität des Saarlandes, Theoretische Physik, Germany; ⁵ONERA, The French Aerospace Lab, France; ⁶Chemical Physics Department, Faculty of Chemistry, Weizmann Institute of Science, Israel. We investigated a method that allows for objectively discerning between the Autler-Townes splitting and the electromagnetically-induced transparency models. We demonstrated the suitability of the test and additionally show its sensitivity to the medium properties.

QTh4C.4 • 17:30

Rydberg Spectroscopy in Hollow-Core Photonic Crystal Fiber, Georg Epple^{1,2}, Kathrin Kleinbach², Tijmen G. Euser¹, Robert Löw², Philip Russell¹; ¹Max Planck Institute for the Science of Light, Germany; ²University of Stuttgart, 5th Institute of Physics, Germany. We present the first roomtemperature results on a three-photon excitation of Rydberg states in cesium atoms placed inside a kagomé-style hollow-core photonic crystal fiber.

OTh4C.5 • 17:45

Optical Interfacing a Single Molecule with Sodium Vapor, Petr Siyushev¹, Guilherme Stein¹, Joerg Wrachtrup^{1,2}, Ilja Gerhardt²; ¹3. Physikalisches Institut, University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE), Pfaffenwaldring 57, Stuttgart, D-70569, Germany, Germany; ²Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany, Germany. A single molecule-based single photon source on the sodium D-lines transitions is presented. We achieve 6x105 detected cps and a line-width of 30MHz. This exhibits the first integration of single molecules research and atomic spectroscopy

QTh4D • High Field Effects and X-rays Probes—Continued

QTh4D.4 • 17:15

Ultrafast Electron Transfer in an Amino Acid Induced by Attosecond Pulses, Louise Belshaw¹, Francesca Calegari², Martin Duffy¹, Andrea Trabattoni², Fabio Frassetto³, Luca Poletto³, Mauro Nisoli², Jason Greenwood¹; ¹Queen's University Belfast, United Kingdom; ²Physics, Politecnico di Milano, CNR-IFN, Italy; 3CNR-IFN, Italy. We investigated the ultrafast charge-migration in the amino-acid phenylalanine. By measuring the yield of a doubly-charged ion vs. delay between a 1.5-fs XUV pulse and a 6-fs pulse, a 30-fs charge migration process was measured.

QTh4D.5 • 17:30 Invited

Optical-field-induced current in dielectrics, Tim Paasch-Colberg¹, Agustin Schiffrin², Nicholas Karpowicz¹, Vadym Apalkov³, Daniel Gerster⁴, Sascha Mühlbrandt^{1,4}, Michael Korbman¹, Joachim Reichert⁴, Martin Schultze^{1.5}, Simon Holzner¹, Johannes V. Barth⁴, Reinhard Kienberger^{1,4}, Ralph Ernstorfer⁶, Vladislav S. Yakovlev^{1,5}, Mark Stockman³, Ferenc Krausz^{1,5}; ¹Max-Planck-Institut fur Quantenoptik, Germany; ²University of British Columbia, Canada; ³Georgia State University, USA; ⁴Technische Universität München, Germany; ⁵Ludwig-Maximilians-Universität, Germany; ⁶Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany. The conductivity of a dielectric is reversibly increased by several orders of magnitude on a femtosecond timescale by exploiting the instantaneous electric field of intense few-cycle near-infrared laser pulses leading to measurable ultrafast electric currents.

Thursday, 13 June

2013CLEO Thursday.indd 27

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QTh4E • Integrated Nonlinear Photonics—Continued

QTh4E.4 • 17:15

Broad-bandwidth Near-IR Parametric Amplification in Amorphous Silicon Waveguides, Ke-Yao Wang¹, Amy C. Foster¹; 'Electrical and Computer Engineering, Johns Hopkins University, USA. We report broad-bandwidth optical parametric amplification using a 6-mm-long hydrogenated amorphous silicon (a-Si:H) waveguide. Amplification is obtained over more than 55 THz (~440 nm) centered at telecommunication wavelengths.

Executive Ballroom 210G

CTh4F • Waveguides and

Silicon-on-Nitride Optical Waveguides for Mid-

and Near-Infrared Integrated Photonics, Saeed

Khan^{1,2}, Jeff Chiles¹, Jichi Ma¹, Sasan Fathpour^{1,2};

¹CREOL, The College of Optics and Photonics,

University of Central Florida, USA; ²Department

of Electrical Engineering and Computer Science, University of Central Florida, USA. Silicon-on-

nitride waveguides are demonstrated at mid- and

near-infrared wavelengths. The fabrication is

based on bonding silicon to silicon-on-insulator

dies coated with low-stress silicon nitride. At 3.39 μm wavelength, the measured propagation

Passive Components-

Continued

loss is ~5 dB/cm

CTh4F.4 • 17:15

Executive Ballroom 210F

CLEO: Science & Innovations

CTh4G • Defect & Quantum Dot Emitters—Continued

CTh4G.3 • 17:15

 (\blacklozenge)

Wavelength Selection and Temperature Tuning in Dual-A QD lasers, Peter M. Smowton¹, Sam Shutts¹, Andrey Krysa³, ¹Cardiff University, United Kingdom; ²Sheffield University, United Kingdom. Electrically injected dual wavelength lasers are demonstrated with wavelength separation as large as 66nm with temperature tuning of the difference wavelength at 0.11nm / K (61GHz / K)

Executive Ballroom 210E

CTh4H • Fiber Devices &

Sensors—Continued

CTh4H.3 • 17:15

Fabrication of a micro-ridge long-period fiber grating inscribed on a photonic crystal fiber, Myung-Jun Shin¹, Oh-Jang Kwon¹, Young-Geun Han¹; 'Hanyang University, Republic of Korea. Micro-ridge long-period fiber grating (MRLPFG) inscribed on a photonic crystal fiber was proposed and experimentally demonstrated. Transmission characteristics of the PCF-based MRLPFG with variations in strain and temperature were measured.

QTh4E.5 • 17:30

 $(\mathbf{\Phi})$

Nonlinear optical effects of ultrahigh-Q wavelength-sized silicon disk cavities immersed in superfluid helium, Xiankai Sun¹, Xufeng Zhang¹, Carsten Schuck¹, Hong X. Tang¹; '*Iale University*, USA. Wavelength-sized silicon disk cavities in superfluid helium exhibit blue-shifted bistability near the λ-point when subject to high optical input power. At lower temperature, we observe symmetric lineshapes and obtain a large intracavity photon number of 40,000.

QTh4E.6 • 17:45

Non-Instantaneous Optical Nonlinearities in a-Si:H Nanowire Waveguides, Vincent R. Pagan¹², Jeremiah J. Wathen¹³, Ke-Yao Wang⁵, Amy C. Foster⁵, Thomas E. Murphy^{2,4}, ¹Laboratory for Physical Sciences, USA, ²Department of Electrical and Computer Engineering, University of Maryland, USA; ³Department of Physics, University of Maryland, USA; ⁴Institute for Research in Electronics and Applied Physics, University of Maryland, USA; ⁵Department of Electrical and Computer Engineering, Johns Hopkins University, USA. We report measurements of the non-instantaneous nonlinear response of hydrogenated amorphous silicon nanowire waveguides at telecommunications wavelengths. We compare the results to those obtained with similar crystalline silicon nanowires CTh4F.5 • 17:30 Mid-infrared Microphotonics Using Air-clad

Silicon Pedestal Structures, Pao T. Lin¹, Vivek Singh¹, Yan Cai¹, Lionel Kimerling¹, Anu Agarwal¹; *Massachusetts Institute of Technology, USA*. Towards Mid-infrared silicon microphotonic circuits, we demonstrate broadband on-chip silicon structures including straight, bent waveguides, and beam splitters, utilizing a novel air-clad pedestal configuration. Transmission loss of 2.7 dB/cm is obtained at λ =3.7 um.

CTh4F.6 • 17:45

Chalcogenide glass waveguides for the Midinfrared, Barry Luther-Davies¹, Pan Ma¹, Steve J. Madden¹, Duk-Yong Choi', Zhiyong Yang¹, Rongping Wang¹; *ICUDOS*, Australian National University, Australia. We report low loss air clad Ge11.5As24Se64.5 chalcogenide glass rib waveguides fabricated on MgF2 crystal substrates for applications as optical sensors. Losses as low as 0.5dB/cm in the 4.7-5.4µm band have been obtained.

CTh4G.4 • 17:30

Self-stabilization of mode-locked quantum-dot lasers by time-delayed opto-electronic feedback, Lukas Drzewietzki¹, Stefan Breuer¹, Wolfgang Elsässer¹; 'Technische Universität Darmstadt, Germany. A novel stabilization scheme for passively mode-locked lasers is demonstrated. By electrical absorber-modulation via the time-delayed laser output, a significant broadband reduction of phase noise is achieved. A comparison with all-optical feedback stabilization is given.

CTh4G.5 • 17:45

Expanded Operational Range in Quantum Dot Passively Mode-Locked Lasers with Low Unsaturated Absorption, Jesse Mee^{1,2}, Ravi Raghunathan², David Murrell², Mark Crowley³, Luke Lester²; *Air Force Research Labs*, USA; ²University of New Mexico, USA; ³BinOptics Corp, USA. A previously unreported correlation is presented between reduced values of unsaturated absorption at the laser gain peak and low measured timebandwidth-product (TBP) values of optical pulses emitted from monolithic quantum dot passively mode-locked lasers.

CTh4H.4 • 17:30

Fabrication of Highly Birefringent H-shaped Microfiber, Min-Seok Yoon', Myung-Jun Shin', Young-Geun Han'; 'Hanyang University, Republic of Korea. A novel fabrication technique of Hshaped highly birefringent (Hi-Bi) microfiber is proposed. The birefringence of fabricated H-shaped microfiber was improved by a factor of 20 higher than that of a conventional birefringent fiber.

CTh4H.5 • 17:45

Differential pulse-width pair BOTDA using simultaneous frequency domain interrogation, Asher Voskoboinik', Zhiyong Zhang', Ahmed Almaiman', Alan E. Willner', Moshe Tur'; 'Ming Hsieh Department of Electrical Engineering, USC, USA; 'School of Engineering, Tel Aviv University, Israel. A modified differential double pulse Brillouin sensing technique is demonstrated where both the wide and somewhat narrower pulses are launched simultaneously, rather than sequentially, using different frequency carriers.

Meeting Room 211D-B

CLEO: Science & Innovations

CTh4I • Thermal Challenges for High Average Power Lasers II— Continued

CTh4I.4 • 17:15

Thermally Induced Beam Distortions in Sesquioxide Class m3 Ceramics, Anton G. Vyatkin¹, Efim A. Khazanov¹; ¹Institute of Applied Physics of the Russian Academy of Sciences, Russian Federation. Theory of thermally induced polarization and phase beam distortions in laser ceramics was improved and extended to the case of class 23 and m3 cubic crystals.

CTh4I.5 • 17:30

Discussions on the pump absorption efficiency under hot-band pumping of NdtYAG, Yoichi Sato¹, Takunori Taira¹; ¹Institute for Molecular Science, Japan. Reduction of absorption coefficient due to heat-up in hot-band pumped Nd:YAG was studied, and it was much smaller than cold-band pumping. In addition, the necessity of correction in the traditional model for line-bandwidth became clear.

CTh4I.6 • 17:45

High Average Power, Kilowatt Bursts of 6 ps Pulses, Bozhidar Oreshkov¹, Veselin Aleksandrov¹, Hristo Iliev¹, Anton Trifonov¹, Ivan Buchvarov¹, ¹*Physics Departament, Sofia University, Bulgaria.* We report generation of bursts of ps pulses at 0.5-kHz with variable macro-pulse duration (10-µs-100-µs), scalable energy and average power using MOPA architecture of diode pumped Nd-laser.

CTh4J.4 • 17:15

Continued

Manipulating the optical properties of vertically-aligned silicon nanowires for photovoltaic applications, Yung-Jr Hung', San-Liang Lee', Hong-Jhang Syu², Ching-Fuh Lin², 'Department of Electro-Optical Engineering and Graduate Institute of Electro-Optical Engineering, National Taiwan Univ of Science & Tech, Taiwan, 'Department of Electronic Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taiwan. Optical engineering of vertically-aligned silicon nanowires (SiNWs) by modifying their surface morphology and composition can reduce the surface reflectivity and sub-bandgap absorption, leading to improved performance in SiNW-based solar cell.

Meeting Room

212A-C

CTh4J • Photodetectors II—

CTh4J.5 • 17:30

Investigation of CuZn Point Defect on the Photovaltaic Performance of the RF-Sputtered Cu2ZnSnSe4-Based Thin Film Solar Cell, Shou-Yi Kuo¹, DAN HUA HSIEH², Jui-Fu Yang¹³, Fang-I Lai³, Hao-chung Kuo²; ¹*Electronic Engineering*, *Chang Gung University, Taiwan; ²Electro-Optical Engineering, National Chiao Tung University, Taiwan; ³Photonics Engineering, Yuan-Ze University, Taiwan. A 4.4 % RF-sputtered Cu2ZnSnSe4 thin film solar cell was studied by transmittance electron microscopy (TEM) and photoluminescence (PL). The result reveals non-uniform elemental distribution and large potential fluctuation mainly induced by CuZn defect.*

CTh4J.6 • 17:45

Silicon Pyramids for Plasmonic Enhanced Schottly Photodetectors, Boris Desiatov¹, Ilya Goykhman¹, Noa Mazurski¹, Joseph Shappir¹, Uriel Levy¹; 'Hebrew University of Jerusalem, Israel. We demonstrate the design, fabrication and characterization of plasmonic enhanced free space Schottky detector for telecom wavelength. Unique fabrication technique, simulation and measurement results will be presented and discussed.

For Conference News & Insights Visit blog.cleoconference.org

Meeting Room 212D-B

CLEO: Applications & Technology

ATh4K • Advanced Sensing & . Metrology—Continued

· · · · · · ·

ATh4K.3 • 17:15

A Tunable Add-Drop Filter Based on Active Microsphere Resonator, Faraz Monifi¹, Sahin K. Ozdemir¹, Lan Yang¹; 'Electrical and System Engineering, Washington' University in St. Louis; USA: We have fabricated an Add-Drop filter using an Erbium-Ytterbium co-doped microsphere resonator side-coupled to two tapered fibers. By optically pumping this active resonator below its lasing threshold, we have demonstrated bandwidth reduction, drop-efficiency increase and crosstalk

sup	pre	2881	on	•		۰		•		۰		0		0		
	۰		٠		0		۰		۰		٠		۰		٠	
۰		۰		۰		۰		٠		۰		۰		٠		
	۰		*		٠		*		۰		*		۰		٠	
۰		۰		٠		۰		۰		۰		٠		٠		
	۰		٠		۰		۰		۰		٠		۰		٠	
		۰		۰		۰		٠		۰		۰		•		

ATh4K.4 • 17:30 High-accuracy Thermal Exp

High-accuracy Thermal Expansion Measurement by Laser Beam Diffraction off a Patterned Surface, Alain Hachel, Son Tran Vinhl; 'Universite de Moncton, Canada. Laser beam diffraction.on a-patterned surface is investigated theoretically and experimentally as a powerful tool to measure thermal expansion in various materials. 'Coefficients as' small as 10E-8 on small samples can be measured for temperature rises of only fens of degrees Celsius.'

ATh4K.5 • 17:45

Wavelength-beät integrated micro Michelson fiber interferences for real-time moving direction determination, Nan-Kuang Chen^{1,2}, Kuan-Yi Lu¹, YUNG-HSIANG CHANG¹, 'Electro-Optical Engineering, NATIONAL UNITED UNIVER-SITY, Taiwan; 'Optoelectronics Research Center, NATIONAL UNITED UNIVERSITY, Taiwan. We demonstrate integrated micro Michelson interferometer with a spheted-end hollow-core fiber as sensing head. This simple device with costeffective low-coherent lightsources can be used to determine the real-time moving direction based on core, cladding mode interferences,

Marriott San Jose Salon I & II

CLEO: Science & Innovations

CTh4L • Novel Components and Applications—Continued

CTh4L.4 • 17:15 Miniature Bragg Reflector Waveguide Beam Deflector for Full C-band Wavelength Demultiplexing with Low Polarization Dependence and High Resolution, Xiaodong Gu¹, Kensuke Nakamura¹, Akihiro Matsutani², Funio Koyama¹; ¹Photonics Integration System Research Center, Pe⁴I Lab., Tokyo Institute of Technology, Japan. ²Semiconductor and MEMS Processing Center, Technical Department, Tokyo Institute of Technology, Japan. A Bragg reflector waveguide beam deflector with large angular dispersion was demonstrated for full C-band wavelength demultiplexing. Low polarization-dependence and potential in large channel-count were shown in compact devices with an effective length of 100µm.

CTh4L.5 • 17:30

Creation of Vortex Beam based on Integrated Ring-shape Bragg Reflector Waveguide, Shota Mochizuki¹, Xiaodong Gu¹, Akihiro Matsutani¹, Fumio Koyama¹; ¹*Tokyo Institute of Technology, Japan.* We demonstrate the creation of a vortex beam by using GaAs-based ring-shape Bragg reflector waveguide functioning as an angular diffraction element. A tunable ring-far field patterns can be clearly shown with wavelength tuning.

CTh4L.6 • 17:45

Wavelength Selective 3D Topology Optimized Photonic Crystal Devices, Lars H. Frandsen¹, Yuriy Elesin², Ole Sigmund², Jakob S. Jensen², Kresten Yvind¹; ¹Photonics Engineering, DTU Fotonik, Technical University of Denmark, Denmark; ²Mechanics Engineering, DTU Mekanik, Technical University of Denmark, Denmark. A compact photonic crystal drop filter has been designed using 3D topology optimization and fabricated in silicon-on-insulator material. Measurements and modeling are in excellent agreement showing a low-loss ~11nm 3dB bandwidth of the filter.

192

Thursday, 13 June

CLEO: 2013 • 9–14 June 2013

۲

Marriott San Jose Salon III

CLEO: Science & Innovations

CTh4M • Attoseconds and CEP Control—Continued

CTh4M.2 • 17:30 C Acoustic frequency combs for unconditionally stable long-term carrier-envelope phase stabilization, Bastian Borchers', Mark Mero¹, Gunter Steinmeyer'; '*Max Born Institute, Germany.* A novel scheme for low-jitter feed-forward stabilization of the carrier-envelope phase of stabilized lasers is presented, which is virtually immune against slow drift effects and beam pointing variation.

CTh4M.3 • 17:45

Acousto-optic Fastscan Delay for Ultrafast Photonics with sub-20-Attosecond Precision and Scan Rates exceeding 30 kHz, Olaf Schubert¹, Max Eisele¹, Vincent Crozatier², Nicolas Forget², Daniel Kaplan², Rupert Huber¹; ¹Department of Physics, University of Regensburg, Germany; ²Fastlite, France. We demonstrate a fastscan-delay with a precision of 20 as and scan rates exceeding 30 kHz. The fiber-compatible device is based on an acousto-optic programmable dispersive filter and is ideally suited for pump-probe experiments.

Marriott	San	Jose
Salo	on IV	,

 $(\blacklozenge$

CLEO: Applications & Technology

ATh4N • Energy from the Sun—Continued

Path to Sustainable Energy: Laser Driven Inertial Fusion Energy – Future Perspective of ICF as Sustainable Energy Source—Continued

ATh4N.3 • 17:15 Low Temperature a-SiGe:H Near-IR Sensor and Photovoltaic Devices for Flexible Multi-functional Panel, Ming-Hsuan Kao²¹, Chang-Hong Shen¹, Jia-Min Shieh^{1,2}, Pei-Chen Yu², Hao-chung Kuo², Ching, Ting Lee², Fu-Liang Yang¹, 'National Nano Device Laboratories, Taiwan; ²Institute of Electro-Optical Engineering, Institute of National Chiao Tung University, Taiwan; ²Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Taiwan. High Near-IR response photo-diode (0.1A/W@800nm) and high efficiency a-Si/a-SiGe tandem solar cell (8.38%) were demonstrated using high-density plasma-fabricated a-SiGe:H technology. The 1400C a-SiGe:H technology are suitable for flexible solar self-powered multi-functional panel.

ATh4N.4 • 17:30 Invited InGaN-Based Solar Cells and High-Performance Broadband Optical Coatings for Ultrahigh Efficiency Hybrid Multijunction Device Designs, Robert M. Farrell¹, Daniel J. Friedman², Nathan Young¹, Emmett Perl³, Nihal Singh¹, Jordan Lang¹, Carl Neufeld3, Michael Iza1, Samantha Cruz1, Stacia Keller3, William E. McMahon2, Shuji Nakamura^{1,3}, Steven P. DenBaars^{1,3}, Umesh K. Mishra³, John E. Bowers^{1,3}, James S. Speck¹; ¹Materials Department, University of California, USA; ²National Renewable Energy Laboratory, USA; ³Department of Electrical and Computer Engineering, University of California, USA. Efficiencies exceeding 40% have already been achieved with GaAs-based multijunction (MJ) solar cells. In this talk, we will discuss the unique advantages and challenges of fabricating hybrid InGaN-GaAs MJ cells for ultrahigh efficiency device designs.

ATh40.3 • 17:30 Invited C Laser Fusion Experimental Reactor LIFT Baed on Fast Ignition and the Issue; Takayoshi Norimatsu'; Yasuji Kozaki', Hiroshi Shiraga', Hisanori Fujita', Kunihiko Okano'; Hiroshi Azech', members of Design Committee for Laser Fusion Experimental Reactor', 'Institute of Laser Engineering, Osaka University, Japan, We organized a design committee for the laser fusion experimental reactor to show the feasibility to construct it, with existing materials and improved technologies. The issue includes the coupling efficiency and target injection.

Join the conversation. Follow @cleoconf on Twitter. Use hashtag **#CLE013**. ()

(

Marriott San Jose Salon V & VI

ATh40 • Symposium on The

Executive Ballroom 210A	Executive Ballroom 210B	Executive Ballroom 210C	Executive Ballroom 210D
	CLEO: QELS-Fund	amental Science	
QTh4A • Engineering Light- Matter Interactions—Continued	QTh4B • Nanoemitters & Lasers and Spasers—Continued	QTh4C • Quantum Optics with Atoms and Molecules— Continued	QTh4D • High Field Effects and X-rays Probes—Continued
QTh4A.6 • 18:00 Transformed Cladding Waveguides: Confining Light with All-Dielectric Metamaterials , Saman ahani ¹ , Zubin Jacob ¹ ; ¹ University of Alberta, USA. Contrary to popular assumption, we show that III-dielectric metamaterials e>1 µ=1 can be used o strongly confine light. This leads to a new class of lossless waveguides capable of dense photonic ntegration.	QTh4B.7 • 18:00 SPASER versus SPED, Jacob Khurgin', Gregory Sun ² ; ¹ Johns Hopkins Univ., USA; ² University of Massachusetts Boston, USA. We develop a theoreti- cal model to obtain the input-output characteris- tics of the single mode coherent emitter of surface plasmons (SPASER) and compare it to the prospect of surface plasmon emitting diodes (SPEDs).	QTh4C.6 • 18:00 Trapped Atoms in One-Dimensional Photonic Crystals, Sean Meenehan ¹ , Chen-Lung Hung ¹ , Justin D. Cohen ¹ , Richard Norte ¹ , Akihisa Goban ¹ , Su-Peng Yu ¹ , Jonathan Hood ¹ , Darrick E. Chang ² , Oskar Painter ¹ , Jeff Kimble ¹ ; ¹ California Instittute of Technology, USA; ² Institut de Ciencies Fotoniques, Spain. We present one-dimensional photonic crys- tal waveguides which can stably trap neutral atoms and achieve single-atom reflectivities of more than 0.9, as well as experimental progress towards fabrication and optical testing of such structures.	QTh4D.6 • 18:00 Reconstructing ultrafast acoustic pulses using time-resolved x-ray diffraction, Yuan Gao ¹ , Aaron Loether ¹ , Barry C. Walker ¹ , Zhiyuan Chen ¹ , Zachary Bond ¹ , Matthew F. DeCamp ¹ , 'University of Delaware, USA. Time-resolved x-ray diffraction is utilized to visualize laser generated transient strain formation from nanometer-scaled laser-excited gold films into crystalline substrates. We directly invert the time-domain signals to reconstruct the spatio-temporal shape of the transient strain.
QTh4A.7 • 18:15 [Trapping light by minicking gravitational lens- ng, Hui Liu ¹ , Chong Sheng ¹ , Yi Wang ¹ , Shining Vhu ¹ , Genov A. Dentcho ² ; <i>Nanjing University,</i> Jina; 'College of Engineering and Science, Loui- iana Tech University, USA. We propose a distorted optical waveguide around a microsphere to mimic urved spacetimes caused by the "gravitational ields". Gravitational lensing effects analogues are xperimentally demonstrated and this can be used o prospective light harvesting.	QTh4B.8 • 18:15 Investigation of surface plasmon amplifica- tion in finite-width gold stripline based on Nd:YOQ4 crystal, Thanh Phong Vo ^{1,2} , Alizera Maleki ^{1,2} , James E. Downes ³ , David W. Coutts ^{1,2} , Judith M. Dawes ^{1,2} ; ¹ Centre for Ultrahigh band- width Devices for Optical Systems (CUDOS), Macquarie University, Australia; ² MQ Photonics, Department of Physics and Astronomy, Macquarie University, Australia. We report the strong surface plasmon amplification of the finite-width gold micro-stripline on Nd:YUO4 crystal substrate at 1064nm. The low-loss plasmonic 2D waveguide may be advantageous for potential applications in standard optoelectronics devices.	QTh4C.7 • 18:15 A multi-state interferometer on an atom chip, Jo- vana Petrovic ^{1,2} , Ivan Herrera ¹ , Pietro Lombardi ^{1,3} , Florian Schaefer ¹ , Francesco S. Cataliotti ^{1,3} , ¹ Vinca Institute of Nuclear Sciences, Serbia; ¹ Laboratory for Nonlinear Spectroscopy - LENS, Italy; ³ Diparti- mento di Fisica e Astronomia, Universita di Firenze, Italy. We introduce a multi-state interferometer on an atom chip with an enhanced resolution and nearly perfect fringe visibility. We demonstrate its application as a sensor of the state-dependent interaction of atoms with circularly polarized light.	QTh4D.7 • 18:15 Sub-picosecond, table-top x-ray absorption spectroscopy using superconducting micro- calorimeters, Luis Miaja Avila', Kevin Silverman', Doug Bennett', Chris Cromer', Marla Dowell', Joe Fowler', William Doriese ¹ , Galen o'Neil', Dan Swetz', Jens Uhlig', Joel Ullom', Zin Yoon', Ralph Jimenez', Robert E. Marvel'3, Richard F. Haglund', Villy Sundstrom', 'NIST, USA; 'ILA, USA; 'Vanderbilt University, USA; 'Lund University, Sweden. We present time-resolved X-ray absorp- tion measurements of vanadium dioxide using ionizations radiation generated by a femtosecond pulsed laser source in combination with supercon- ducting microcalorimeters capable of measuring energies of individual radiation quanta.
	18:30–20:00 Dinne	r Break (on your own)	

194

۲

2013CLEO Thursday.indd 31

۲

NOTES

Executive Ballroom 210H

CLEO: QELS-Fundamental Science

QTh4E • Integrated Nonlinear Photonics—Continued

QTh4E.7 • 18:00

Formation and control of Turing patterns from interacting polaritons in coupled semiconductor microcavities, Vincenzo Ardizzone1, P. Lewandowski², Yuen Chi Tse³, Nai-Hang Kwong4,5, Samuel Luk3, Andreas Lucke2, Marco Abbarchi^{1,5}, Jacqueline Bloch⁶, Aristide Lemaitre⁶, P.T. Leung^{3,4}, Philippe Roussignol¹, Rolf Binder^{5,7} Jérôme Tignon¹, Stefan Schumacher^{2,5}; ¹Laboratoire Pierre Aigrain, Ecole Normale Supérieure, France; ²Physics Department, Center for Optoelectronics and Photonics Paderborn, Germany; ³Department of Physics, The Chinese University of Hong Kong, China; 4Center of Optical Sciences, The Chinese University of Hong Kong, China; ⁵College of Optical Sciences, University of Arizona, USA; ⁶Laboratoire de Photonique et de Nanostructures, CNRS, France; ⁷Department of Physics, University of Arizona, USA. We report on the formation of hexagonal polariton patterns in double semiconductor microcavities operating in the OPO regime. We experimentally and theoretically demonstrate both the formation and the optical control of these patterns.

QTh4E.8 • 18:15

Freestanding lithium niobate photonic crystal cavities for nonlinear optics applications, Séverine Diziain', Reinhard Geiss', Matthias Zilk', Frank Schrempel', Ernst-Bernhard Kley', Andreas Tünnermann', Thomas Pertsch', *'Institute* of Applied Physics, Friedrich-Schiller-Universität Jena, Germany. We demonstrate second harmonic generation with a continuous wave source in L3 photonic crystal cavities drilled in self-suspended lithium niobate membranes. The fabricated structures exhibit quality factors of around 500.

Executive Ballroom 210G

CTh4F • Waveguides and

Colorless Grating Couplers Realized by Inter-

leaving Dispersion Engineered Subwavelength

Structures, Xiaochuan Xu¹, Harish Subbaraman²,

David Kwong¹, John L. Covey¹, Amir Hosseini²,

Ray T. Chen¹; ¹University of Texas at Austin, USA; ²Omega Optics, Inc., USA. A wideband grating cou-

pler based on interleaving dispersion engineered

subwavelength structures has been proposed and

experimentally demonstrated. The fabricated

device shows a coupling efficiency of 5.1dB and a

Passive Components-

Continued CTh4F.7 • 18:00 Executive Ballroom 210F

CLEO: Science & Innovations

CTh4G • Defect & Quantum Dot Emitters—Continued

CTh4G.6 • 18:00

Extremely wide lasing bandwidth from InAs/ InP quantum-dash ridge-waveguide laser near 1.6 µm, Mohammed Zahed M. Khan¹, Tien K. Ng¹, Chi-Sen Lee², Pallab K. Bhattacharya², Boon S. Ooi¹, ¹Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Saudi Arabia; ²Electrical Engineering and Computer Science, University of Michigan, USA. We demonstrate an ultra-broad lasing bandwidth (-3dB) of > 50 nm utilizing InAs/InGaAIAs/InP quantum-dash ridge-waveguide laser using chirped AlGaInAs barrier layer thickness. Our device exhibits a recorded bandwidth and significant improvement of laser characteristics

Executive Ballroom 210E

CTh4H • Fiber Devices & Sensors—Continued

CTh4H.6 • 18:00

Dynamic Wavelength Switching in a Fiber Grating Cavity, Zhangwei Yu^{1,2}, Patrik Rugeland^{1,2}, Irina V. Kabakova², Pierre-Yves Fonjallaz², Oleksandr Tarasenko², Martijn De Sterke³, Walter Margulis^{1,2}, ¹Applied Physics, Royal Institute of Technology, Sweden; ²Fiber Optics, Acreo Swedish ICT AB, Sweden; ³University of Sydney, Australia. Dynamic wavelength switching of a phase-shifted fiber grating cavity with electrical pulses is studied experimentally and numerically. Simulations accurately describe observations. The effect of acoustic oscillations and fiber Bragg grating cavity refilling explains the results.

CTh4F.8 • 18:15

1dB bandwidth of 70 nm.

Integrated Bragg Gratings in Spiral Waveguides, Xu Wang¹, Han Yun¹, Lukas Chrostowski¹; ¹Electrical and Computer Engineering, University of British Columbia, Canada. We demonstrate a compact Bragg grating in a silicon-on-insulator spiral waveguide. A 3.12 mm long grating with a bandwidth of 0.27 nm has been experimentally realized within an area of 141 µm×146 µm.

CTh4G.7 • 18:15

High Performance, Spatially Coherent, Multicolor Distributed Feedback Lasers in Optically Pumped Colloidal Quantum Dots, Kwangdong Roh', Cuong H. Dang', Joonhee Lee', Sungmo Ahn', Heonsu Jeon', Craig Breen', Jonathan S. Steckel', Seth Coe-Sullivan', Arto Nurmikko'; 'Brown University, USA; 'Seoul National University, Republic of Korea; ³QD Vision Inc., USA. Novel distributed feedback lasers were created in densely packed colloidal quantum dot single exciton gain media. The optically pumped lasers demonstrated internal efficiency of 28%, spatially coherent beams, average power of 400 μW

CTh4H.7 • 18:15

High Speed Wavelength Switching Using Saw-Tooth Pulse Generated by Optical Pulse Synthesizer, Ken Kashiwagi¹, Azusa Hasegawa¹, Takashi Kurokawa¹; ¹*Tokyo Univ of Agriculture and Technology, Japan.* Bit-by-bit wavelength switching for 10 Gbps signal based on a cross phase modulation in a fiber was successfully demonstrated by using 10-ps-wide saw-tooth control pulse generated from an optical pulse synthesizer.

NOTES

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 195

13

Meeting Room 211D-B

CLEO: Science & Innovations

CTh4I • Thermal Challenges for High Average Power Lasers II— Continued

CTh4I.7 • 18:00

0.5W single-longitudinal mode, monolithic Nd;YVO4 microchip laser, Jaroslaw Z. Sotor¹, Grzegorz Dudzik¹, Grzegorz J. Sobon¹, Karol Krzempek¹, Krzysztof M. Abramski¹; ¹Wrocław University of Technology, Poland. We present a single frequency Nd;YVO4 microchip laser operating at 1064 nm with monolithic laser resonator containing of birefringent filter as a single mode selector. It supports stable operation with 0.5W output power with 42% efficiency.

CTh4I.8 • 18:15

Stable single-axial-mode operation of injectionseeded Q-switched Nd: YAG laser by real-time resonance tracking method, Xiaozhen Xu¹, Jean-Claude M. Diels¹; ¹University of New Mexico, USA. A real-time resonance tracking method is described and experimentally demonstrated in controlling an injection-seeded Q-switched Nd:YAG laser for stable single-axial-mode operation. Noise insensitive single axial mode with 100% recurrence is achieved with mW seeding power.

CTh4J.7 • 18:00

Continued

Broadband Responsivity of a Graphene Photodetector, Xinghan Cai^{1,2}, Ryan J. Suess^{1,4}, Andrei B. Sushkov^{1,2}, Thomas E. Murphy^{3,4}, Michael S. Fuhrer^{1,2}, H. Dennis Drew^{1,2}, ¹Physics, University of Maryland, USA; ²Center for Nanophysics & Advanced Materials, University of Maryland, USA; ³Electrical & Computer Engineering, University of Maryland, USA; ⁴Institute for Research in Electronics & Applied Physics, University of Maryland, USA, The responsivity of a monolayer graphene photodetector based on the photo-thermoelectric effect was measured at room temperature for dc, terahertz, and optical frequencies and found to be approximately 81, 188, and 18 V/W respectively.

Meeting Room

212A-C

CTh4J • Photodetectors II—

CTh4J.8 • 18:15

Characterization of APD- PIN photodiodes using InAs/InAlGaAs quantum-dot absorption layer, Toshimasa Umezawa¹, Koichi Akahane¹, Atsushi Kanno¹, Tetsuya Kawanishi¹; ¹National Institute of Information and Co, Japan. We found avalanche multiplications in InAs/InAlGaAs quantum-dot PIN photodiodes, and characterized the temperature dependence of I-V curves, the multiplication factors and the RF responses.

Meeting Room 212D-B

CLEO: Applications & Technology

ATh4K • Advanced Sensing & . Metrology—Continued

• • • • • • • • • • • • • •

ATh4K.6 • 18:00

Microfabricated Hollow core fibres for Gas Sensing using Wavelength Modulation Spectroscopy, Mohammad amanzadeh^{1,2}, Boin Sheridan², Saiied M. Aminossadati¹, Mehmet S. Kizil¹, Warwick P. Bowen², ¹School of mechanical and mining engineering. The University of Queensland, Australia; ²School of mathematics and physics, The University of Queensland, Australia. Micro-drilled hollow fibres as gas sensors are developed and calibrated using wavelength modulation spectroscopy technique. This method-has shown acceptable accuracy and sensitivity to be used in underground coal mine methane gas detection.

ATh4K.7 • 18:15

Sulfur Dioxide Detection Using CW-DFB-QCL Based Quartz-Enhanced Photoacoustic Spectroscopy, Johannes P. Waclawek¹, Rafal Lewick¹, Harald-Moser¹, Markus Brandstetter¹, Frank K. Tittel², Bernhard Lendl¹; ¹Institute of Chemical Technologies' and Analytics, Vienna University of Technology, Austria; ²Elêctrical & Computer Engineering Department, Rice University, USA. The development of a sensitive SO₂ QEPAS based sensor platform employing a 140 mW CW-DFB-QCL will be reported. A detection limit of 75 ppby (3\sigma).was achieved with a 1-sec averaging time.for the 1380.94 cm⁻¹ SO₂ absorption line;

Marriott San Jose Salon I & II

CLEO: Science & Innovations

CTh4L • Novel Components and Applications—Continued

CTh4L.7 • 18:00 Ultra-compact Optical Switch Using High Contrast Grating Hollow-core Waveguide, Weijian Yang¹, Connie Chang-Hasnain¹; ¹University of California Berkeley, USA. An ultra-compact 2x2 optical switch based on high contrast grating (HCG) hollow-core waveguide (HCW) is proposed. Simulation results show that the switching length is ~25x smaller than the conventional 2x2 multimode interference coupler.

CTh4L.8 • 18:15 Quadratic Compressed Sensing in a Waveguide

Array, Yoav Shechtman¹, Eran Small², Yoav Lahini², Mor Verbin³, Yonina C. Eldar³, Yaron Silberberg³, Mordechai Segev¹; ¹Physics, Technion Israel Institute of Technology, Israel; ²Physics, Weizmann Institute of Science, Israel; ³Electrical Engineering, Technion Israel Institute of Technology, Israel. We present a scheme for recovering the input signal launched into a waveguide array from partial measurements of its output intensity, given that the input is sparse. Possible applications include optical interconnects, and quantum tomography.

18:30–20:00 Dinner Break (on your own)

20:00–22:00 Postdeadline Paper Sessions, Marriott San Jose Salons I & II, III, IV, V & VI

NOTES

Thursday, 13

June

196

18:30–20:00 Dinner Break (on your own)

20:00–22:00 Postdeadline Paper Sessions, Marriott San Jose Salons I & II, III, IV, V & VI

NOTES

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 197

۲

(