(\blacklozenge)

 $(\mathbf{\Phi})$

08:00–10:00 CF1A • Organic Emitters and Absorbers

Uriel Levy, Hebrew University of Jerusalem, Israel, *Presider*

Room A1

CF1A.1 • 08:00 Invited

Delayed Fluorescence by Reverse Intersystem Crossing and Applications to Organic Light-Emitting Diodes, Kenichi Goushi'; ¹Kyushu University, Japan. Organic donor and acceptor interfaces give rise to a small energy gap between the singlet and triplet exciton levels (ΔEST) of generated exciplexes. We demonstrate that the small ΔEST can lead to efficient electroluminescence.

Room A2

CLEO: Science & Innovations

08:00–10:00 CF1B • Novel Application of Nonlinear Optics Shekhar Guha, US Airforce Research Lab, USA, *Presider*

CF1B.1 • 08:00

Pump-probe microscopy of pigments used in historical art, Prathyush Samineni¹, Adele deCruz¹, Tana Villafana¹, Martin C. Fischer¹, Warren S. Warren^{1,2}, ¹Chemistry, Duke University, USA; ²Radiology, Biomedical engineering, Duke University, USA. We have developed a nonlinear microscopy technique that uses sensitive modulation transfer to extract excited state dynamics with high spatial resolution. Here, we use this technique to characterize several pigments used in historical artwork.

CF1B.2 • 08:15

Three-Dimensional Mapping of Transparent Objects Using Kerr Nonlinearity Measurement, Alexandre Goy¹, Demetri Psaltis¹; ¹Ecole Polytechnique Federale de Lausanne, Switzerland. We report a technique to produce three-dimensional maps of transparent objects using the Kerr coefficient as a contrast agent. The method is based on the spatial modifications of a probe pattern focused into the medium.

Room A3

08:00–10:00 CF1C • EUV Metrology D Jason Jones, University of Arizona, *Presider*

CF1C.1 • 08:00 D

Femtosecond Enhancement Cavity EUV Source with High Energy Resolution, Matthew H. Lam¹, Arthur K. Mills¹, Egor Chasovskikh¹, David J. Jones¹; *IPhysics and Astronomy, University of British Columbia, Canada.* A table-top EUV source based on a femtosecond enhancement cavity is seeded by a 1040-nm Yb-doped fiber amplifier system with 185-fs pulses and produces >10 microwatts/ harmonic at 80 MHz out to 55 nm.

CF1C.2 • 08:15 D

Optical Coherence Tomography using broadbandwidth XUV and soft x-ray radiation, Silvio Fuchsi², Alexander Blinne¹, Christian Rödel^{1,2}, Ulf Zastrau¹, Vinzenz Hilbert¹, Martin Wünsche¹, Jana Bierbach¹, Eckhart Förster¹, Gerhard Paulus^{1,2}, ¹Institute of Optics and Quantum Electronics, University of Jena, Germany; ²Helmholtz Institute Jena, Helmholtz Institute Jena, Germany. We report on the extension of Optical Coherence Tomography using extreme ultraviolet and soft x-ray radiation and demonstrate an axial resolution of nanometers.

Room A4

CLEO: QELS-Fundamental Science

08:00–10:00 QF1D • Engineered Plasmonic

Surfaces Cameron Smith, Danmarks Tekniske Universitet, Denmark, *Presider*

QF1D.1 • 08:00

Dynamically routing surface plasmon polaritons along arbitrary trajectories, Peng Zhang^{1,2}, Sheng Wang¹, Yongmin Liu¹, Xiaobo Yin^{1,3}, Changgui Lu¹, Zhigang Chen^{2,4}, Xiang Zhang^{1,3}, ¹NSF Nanoscale Science and Engineering Center, University of California, Berkeley, USA; ²Department of Physics and Astronomy, San Francisco State University, USA; ³Materials Science Division, Lawrence Berkeley National Laboratory, USA; ⁴TEDA Applied Physics School, Nankai University, China. We show how surface plasmon polaritons can be routed along arbitrary trajectories by forming nondiffracting Airy beams on metal surfaces. The dynamic computer-based control over such plasmonic Airy beams is demonstrated in our experiment.

QF1D.2 • 08:15

Plasmonic-based techniques to generate and detect optical vortex beams, Patrice Genevet^{1,2}, Jiao Lin¹, Nanfang Yu¹, Francesco Aieta¹, Mikhail A. Kats¹, Romain Blanchard¹, Zeno Gaburro¹, Marlan O. Scully², Federico Capasso¹, ¹Harvard University-SEAS, USA; ²Texas A&M University, USA. Ultra-thin and integrated photonic devices based on optical phase discontinuities can generate optical vortices with a variety of topological charges, as well as sort out vortex beam topological charges by means of holographic gratings.

Enhanced photostability of aqueous solution of Rhodamine 6G with gold nanoparticles in lasing process by silica coating, Lin Dong¹, Fei Ye¹, Adnan Chughtai¹, Sergei Popov¹, Ari T. Friberg^{1,2}, Mamoun Muhammed¹; *IRoyal Institute* of Technology, Sweden, Sweden; ²Aalto University, Finland. Gold nanoparticles are mixed in aqueous solution of Rhodamine 6G to modify the lasing output intensity. The photostability deterioration of the gain medium by gold nanoparticles is successfully compensated by silica coating on the nanoparticles.

CF1B.3 • 08:30

Homodyne Near-Degenerate Four-Wave-Mixing Microscopy for Graphene Imaging and Biomedical Applications, Baolei Li¹, Congwen Yi³, April S. Brown³, Martin C. Fischer², Warren S. Warren²⁴, ¹Physics, Duke University, USA; ²Chemistry, Duke University, USA; ³Electrical and Computer Engineering, Duke University, USA, ⁴Biomedical Engineering, Duke University, USA, Homodyne detection of near-degenerate four-wave-mixing with a single laser pulse is used to imaging graphene in biological samples.

CF1C.3 • 08:30

Thin film characterization using third harmonic generation microscopy, Cristina Rodriguez¹, Reed Weber¹, Duy Nguyen¹, Luke A. Emmert¹, Dinesh Patel², Carmen Menoni^{2,3}, Wolfgang Rudolph¹; ¹Department of Physics and Astronomy, University of New Mexico, USA; ²Department of Electrical Engineering, Colorado State University, USA; ³Department of Chemistry, Colorado State University, USA. TH microscopy is applied to determine susceptibilities of films and image nascent, laser incubated, and laser damaged dielectric coatings with unprecedented contrast. The relative contribution of signals from film and surroundings is analyzed.

QF1D.3 • 08:30

Demonstration of a new type of two-dimensional nondiffracting surface plasmon polariton, Jiao Lin^{1,2}, Jean Dellinger³, Patrice Genevet^{1,4}, Benoit Cluze¹, Frederique de Forne¹, Marlan O. Scully⁴, Federico Capasso¹, 'Harvard University, USA; 'Šingapore Institute of Manufacturing Technology, Singapore; 'Institut Carnot de Bourgogne, France; 'Texas A&M University, USA. We introduce a new type of nondiffracting surface plasmon polaritons: the cosine-Gauss beam (CGB). We prove both theoretically and experimentally that CGB is a nondiffracting solution to the twodimensional wave equation.

Room A5

CLEO: QELS-Fundamental Science

08:00–10:00 QF1E • Quantum Optics Using Quantum Dots Ranojoy Bose, University of Maryland, USA, *Presider*

QF1E.1 • 08:00

Charge switching dynamics and optimal excitation wavelength of single NV centers in ultrapure diamond, Anton Batalov¹, Katja Beha¹, Neil Manson², Rudolf Bratschitsch¹, Alfred Leitenstorfer²; ¹Uiversity of Konstanz, Germany; ²Laser Physics Centre, Australian National University, Australia. Photoluminescence excitation spectra of single NV centers in diamond are studied and an optimal wavelength for NV- is found. The physics of bidirectional switching between NV0 and NV- charge states of the defect is elucidated.

QF1E.2 • 08:15

Engineering of radiative and non-radiative channels in colloidal nanocrystals: towards Room-temperature efficient colloidal quan-tum sources, Godefroy Leménager¹, Ferruccio Pisanello23, Luigi Martiradonna2, Luigi Carbone3, Pascal Desfonds1, Jean-Pierre Hermier5, Elisabeth Giacobino¹, Roberto Cingolani², Massimo De Vittorio^{2,4}, Alberto Bramati¹; ¹ENS, UPMC, CNRS, Laboratoire Kastler Brossel, France; ²Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Italy; ³Center for Neuroscience and Cognitive Systems @UNITN, Istituto Italiano di Tecnologia, Italy; ⁴CNR-Nano, Università del Salento, Dipartimento Ingegneria dell'innovazione, National Nanotechnology Laboratory, Italy; ⁵CNRS UMR8635, Université de Versailles, Saint-Quentin-en-Yvelines, Groupe d'étude de la Matière Condensée, France. Blinking effect and multi-excitonic emission can be independently addressed by tuning both core and shell dimension. By confocal techniques measurement, we show dot-in-rods as blinking-free sources of single photon on demand at room temperature.

QF1E.3 • 08:30

Single Quantum Dot Locked to Atomic Transition, Nika Akopian¹, R. Trotta², E. Zallo², A. Rastell², O. Schmidt², V. Zwiller³; *'Kavli Institute* of Nanoscience Delft, Netherlands; ²Institute for Integrative Nanosciences, Germany. We tune and lock the exciton emission energy of a single quantum dot to an atomic transition. The locking precision of few micro-eV can allow for single charge sensing, spectral diffusion counteraction, and energy stabilization schemes.

Room A6

CLEO: Science & Innovations

08:00–09:30 CF1F • Coherent Communications Christian Malouin, Juniper Networks Inc., USA, *Presider*

CF1F.1 • 08:00 Invited

The Age of Optical Coherent Communication, Kuang-Tsan (KT) Wu¹, Han (Henry) Sun¹, John McNicol¹, Matthew Mitchell², Vinayak Dangui², Mike VanLeeuvan³, Jeff Rahn², Steve Grubb³, Radha Nagarajan², Mehrdad Ziari², Scott Corzine², Pete Evans³, Masaki Kato³, Fred Kish², Dave Welch²; Infinera Canada, Canada; ²Infinera, USA; ³Infinera, USA. Recent emergence of coherent optical modem has solved a number of difficult problems in optical transmission, resulting in 10x increase in capacity. The latest research of superchannels further increases spectral efficiency and network flexibility.

Room A7

CLEO: QELS-Fundamental Science

08:00–10:00 QF1G • Spatial and Temporal Solitons

Matteo Lab, INRS-EMT, Canada, *Presider*

QF1G.1 • 08:00

Higher-order Modulation Instability in Optical Fibers, Miro Erkintalo^{1,2}, Kamal Hamman¹³, Bertrand Kibler³, Christophe Finot³, Nail Akhmediev⁴, John M. Dudley⁵, Goëry Genty¹; 'Tampere University of Technology, Finland; ²University of Auckland, New Zealand; 'Université de Bourgogne, France; 'The Australian National University, Australia; ⁵Université de Franche-Comté, France. We report on theoretical, numerical and experimental study of a new form of instability in a nonlinear fiber. This process of higher-order modulation instability arises from the nonlinear superposition of elementary instability dynamics.

QF1G.2 • 08:15

Plasma-induced soliton self-frequency blueshift in gas-filled hollow-core PCFs, Mohammed F. Saleh¹, Fabio Biancalana¹, Philipp Hoelzer¹, Wonkeun Chang¹, John C. Travers¹, Nicolas Joly¹, Philip S. Russell¹; ¹NPN, Max Planck Institute for the Science of Light, Germany. We present new equations describing pulse envelope propagation in a hollow-core PCF filled with an ionizable gas. We describe for the first time the recently observed plasma-induced soliton self-frequency blueshift.

CF1F.2 • 08:30

Frequency Offset Estimation in M-QAM Coherent Optical Systems Using Phase Entropy, Stefanos Dris¹, Ioannis Lazarou¹, Paraskevas Bakopoulos¹, Hercules Avramopoulos¹; 'School of Electrical and Computer Engineering, National Technical University of Athens, Greece. A novel approach for Frequency Offset Estimation in coherent optical M-QAM systems using the received symbol phase entropy is investigated. It is accurate, non-data-aided, oblivious to modulation format and requires no gain control.

QF1G.3 • 08:30

Experimental investigation of dispersionmanaged soliton interaction, Alexander Hause¹, Philipp Rohrmann¹, Fedor Mitschke¹; ¹Institut fuer Physik, Universitaet Rostock, Germany. Dispersionmanaged solitons can form stable molecules. Systematically mapping out parameter space using a flexible pulse shaper, we investigate the binding mechanism and confirm predictions. Phenomena off equilibrium are also described and explained.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 203

۲

(

May

CLEO: QELS-

Room A8

08:00-09:45

QF1H • Disordered and Random Media Ayman Abouraddy, CREOL,

USA, Presider

QF1H.1 • 08:00

Self-Imaging through a Disordered Waveguide Lattice, Robert Keil¹, Yoav Lahini², Yoav Shechtman3, Matthias Heinrich1, Rami Pugatch2, Felix Dreisow¹, Andreas Tünnermann¹, Stefan Nolte¹, Alexander Szameit¹; ¹Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Germany; ²Department of Physics of Complex Systems, The Weizmann Institute of Science, Israel; ³Physics Department and Solid State Institute, Technion, Israel. We demonstrate that the eigenmodes of a waveguide array with disorder in the coupling between adjacent guides are pairwise conjugated. Therefore, self-imaging via phase-segmentation is inherently insensitive to such an off-diagonal disorder

QF1H.2 • 08:15

Optimal Spatiotemporal Focusing Through Complex Scattering Media, Jochen Aulbach^{1,2}, Alice Bretage², Mathias Fink², Mickael Tanter², Arnaud Tourin²; ¹Center for Nanophotonics, FOM Institute AMOLF, Netherlands; ²Institut Langevin, ESPCI ParisTech, CNRS, France. We demonstrate, based on spatial and frequency resolved wave front shaping with a nonlinear feedback signal, how to achieve optimal spatiotemporal focusing through a complex scattering medium.

OF1H.3 • 08:30

Lasing in Thue-Morse structure with optimal aperiodicity, Jin-Kyu Yang^{1,2}, Heeso Noh¹, Svetlana V. Boriskina³, Michael J. Rooks¹, Glenn S. Solomon⁴, Luca Dal Negro³, Hui Cao¹; ¹Applied Physics, Yale University, USA; ²Optical Engineering, Kongju National University, Republic of Korea; ³Electrical and Computer Engineering, Boston University, USA; ⁴Joint Quantum Institute, NIST, USA. We demonstrated lasing in two-dimensional Thue-Morse structures fabricated in InAs quantum dots embedded GaAs membrane. We optimized structural aperiodicity by gradually changing the relative size of two scatters for the strongest light confinement

CF1I.3 • 08:30

Diffractive Optofluidic Imaging Flow Cytometry, Ethan Schonbrun¹, Sai Siva Gorthi¹, Diane Schaak1; 1Rowland Institute, Harvard University, USA. We integrated a diffractive lens array into a microfluidic channel array to produce a parallel flow-based cell imaging platform. Using the system, we demonstrate imaging with submicron resolution at throughputs surpassing 10,000 cells per second.

Room C1 & C2

 (\blacklozenge)

Room B2 & B3

CF1I • Optofluidics: "Lab on a

Michael Previte, Illumina, USA,

Lensfree Imaging of Dense Samples using

Holograms Recorded at Multiple Heights,

Alon Greenbaum¹, Aydogan Ozcan^{1,2}; ¹Electrical

Engineering Department, University of California,

Los Angeles, USA; ²Bioengineering Department,

University of California, Los Angeles, USA. Multi-

height phase recovery and pixel super-resolution

enable lensfree on-chip holographic imaging of

dense and confluent Papanicolaou smears over a

large field-of-view (24-30mm2) with sub-micron

Fluorescent flow-cytometry on a cell-phone,

Hongying Zhu¹, Aydogan Ozcan¹; ¹UCLA, USA.

We demonstrate fluorescent imaging flowcytometry that is integrated on a cell-phone.

The cell-phone based flow-cytometer was used

to measure the density of white-blood-cells in

blood samples, providing a decent match to the hematology analyzer.

08:00-10:00

CF1I.1 • 08:00 D

Chip"

Presider

resolution.

CF1I.2 • 08:15 D

CLEO: Science & Innovations

08:00-10:00 CF1J • Photovoltaics Fundamentals and Concepts **D** Mikael Syväjärvi, Linköpings Universitet, Sweden, Presider

CF1J.1 • 08:00 Tutorial

Tutorial on Solar Energy, Ryne Raffaelle1; 1Rochester Institute of Technology, USA. The solar industry has grown at an astonishingly high rate over the past decade. This growth has been both in what one could consider the "traditional" areas such as flat panel crystalline silicon arrays, as well as in "new" technologies such as thin film CdTe arrays on glass. We will review some of the major discoveries of the past and trace how the industry came to be where it is today. We will also provide an overview of some of the latest discoveries in the field and what are the current hot areas of interest. Finally, we will discuss what these current trends industry may hold for the future, both technically and from a business perspective for this very rap-idly developing field.

Dr. Ryne P. Raffaelle is the Vice President for Research and Associate Provost at Rochester Institute of Technology (RIT). Prior to his current position, he served as the Director of the National Center for Photovoltaics at the National Renewable Energy Lab of the U.S. Department of Energy, from 2009 through 2011. Before joining NREL, Dr. Raffaelle was the Academic Director for the Golisano Institute for Sustainability at RIT. He is also the Emeritus Director of the NanoPower Research Laboratory, a laboratory which he founded at RIT in 2001. He currently holds appointments as a Professor of Physics, Imaging Science, Microsystems Engineering, and Sustainability. As a professor, he has been responsible for more than \$20 million in research grants in photovoltaics, batteries, and nanomaterials research. His career includes working as a visiting scientist at the NASA-Glenn Research Center; the NASA Lewis Research Center; and at Oak Ridge National Laboratory. He was a Professor of Physics and Space Sciences at the Florida Institute of Technology from 1992-1999. Dr. Raffaelle has authored or co-authored over 200 refereed publications and books. He is the Managing Editor of Progress in Photovoltaics published by Wiley Interscience. He is currently serving on the organizing committee for the IEEE Photovoltaics Specialists Conference, is a member of the AIAA Technical Committee on Aerospace Power, and is a member of the IEC/IEEE Joint Proj-ect Team (JPT) 62659 (IEEE 1784). He has a Ph.D. in Physics from University of Missouri-Rolla, and Bachelor of Science and Master of Science degrees in Physics from Southern Illinois University

08:00-10:00 CF1K • Short Wavelength Quantum Cascade Lasers **D** Alexey Belyanin, Texas A&M,

Room C3 & C4

USA, Presider

CF1K.1 • 08:00 D

Single-Frequency kHz-Linewidth 2-µm GaSb-Based Semiconductor Disk Lasers With Multiple-Watt Output Power, Sebastian Kaspar¹, Marcel Rattunde¹, Tino Töpper¹, Christian Manz¹, Klaus Köhler¹, Joachim Wagner¹; ¹Fraunhofer-Institute for Applied Solid States Physics, Germany. A 1-W output power single-frequency 2.05-µm semiconductor disk laser with a linewidth of 20 kHz (60 kHz) by Pound-Drever-Hall wavelength stabilization (without active wavelength stabilization) is demonstrated.

CF1K.2 • 08:15 D

External cavity tuning of broadband quantum cascade saser active region designs around 3.3 μm and 8 μm, Sabine S. Riedi¹, Alfredo Bismuto¹, Andreas Hugi¹, Stéphane Blaser¹, Mattias Beck¹, Jerome Faist1; 1Physics, QOE, IQE, ETH Zurich, Switzerland. Broadband-Quantum-Cascade-Lasers around 3.3 μm and 8 μm regions were tuned over 277 wavenumbers and 445 wavenumbers respectively using an external-cavity set-up. The devices were HR and AR coated and operated in pulsed mode.

CF1K.3 • 08:30 Invited

Improved Interband Cascade Lasers for $\lambda = 3-5.6$ μm, Chadwick L. Canedy¹, Chulsoo Kim¹, Charles Merritt¹, William W. Bewley¹, Joshua Abell¹, Igor Vurgaftman¹, Jerry R. Meyer¹, Mijin Kim²; ¹Code 5613, Naval Research Laboratory, USA; ²Sotera Defense Solutions, USA. The cw operating temperature of ICLs emitting at 3.9, 4.7 and 5.6 µm is extended to 107°C, 60°C, and 48°C, respectively. The threshold powers range from several tens to several hundred mW at 25°C.

Fundamental Science

Fridav, 11

 $(\mathbf{\Phi})$

204

CLEO: 2012 • 6–11 May 2012

Marriott San Jose Salon III

CLEO: Science & Innovations

08:00–10:00 CF1L • High Harmonic and Diffractive Imaging

Charles Durfee, Colorado School of Mines, USA, *Presider*

CF1L.1 • 08:00

Scaling of High Harmonic Generation with Visible Driver Wavelengths, Chien-Jen Lai¹, Giovanni Cirmi^{1,2}, Eduardo Granados^{1,3}, Shu-Wei Huang¹, Phillip D. Keathley¹, Alexander Sell¹, Kyung-Han Hong¹, Jeffrey Moses¹, Franz X. Kaertner^{1,2}, ¹*MIT*, USA; ²CFEL, DESY and Univ of Hamburg, Germany; ³Basque Foundation for Science, Spain. The wavelength scaling of high harmonic generation efficiency and cutoff is studied with different visible driver wavelengths from a tunable optical parametric amplifier. A lambda-5.9 scaling relation for the efficiency is measured.

CF1L.2 • 08:15

Unified Microscopic-Macroscopic Picture of High Harmonic Generation from the VUV to the keV X-ray Region, Tenio Popmintchev¹, Dimitar Popmintchev¹, Ming-Chang Chen¹, Jonathas P. Siqueira², Carlos Hernandez-Garcia³, Jose A. Perez-Hernandez⁴, Luis Plaja³, Andreas Becker¹, Agnieszka Jaron-Becker¹, Skirmantas Alisauskas⁵, Giedrius Andriukaitis⁵, Audrius Pugzlys⁵, Andrius Baltuska⁵, Margaret M. Murnane¹ Henry C. Kapteyn1; IJILA, University of Colorado at Boulder, USA; ²Instituto de Física de São Carlos, Universidade de São Paulo, Brazil;3Grupo de Investigación en Óptica Extrema, Universidad de Sala manca, Spain; ⁴Centro de Láseres Pulsados, CLPU, Spain; ⁵Photonics Institute, Vienna University of *Technology, Austria.* We present a unified picture of phase matching of high harmonic upconversion spanning the electromagnetic spectrum from the VUV to keV, combining both microscopic and macroscopic physics. We validate this picture with experiment and theory.

CF1L.3 • 08:30

Intense vacuum-ultraviolet single-order harmonic pulse by a deep-ultraviolet driving laser, Shunsuke Adachi^{1,2}, Takuya Horio^{1,3}, Toshinori Suzuki^{1,3}, ¹Kyoto University, Japan; ³Japan Science and Technology Agency, PRESTO, Japan; ³Advanced Science Institute, RIKEN, Japan. A 90-nm singleorder harmonic pulse with a 100-nJ pulse energy was realized by the frequency-tripling of 35-fs Ti:Sa third harmonic in a krypton gas cell. 08:00-10:00

CF1M • Photonic Crystals I Jean-Michel Gerard, CEA/INAC/ SP2M, France, *Presider*

CF1M.1 • 08:00 Invited

Cavity QED with Anderson-Localized Cavities in Disordered Photonic Crystals, Peter Lodahl, P. David Garcia'; '*Niels Bohr Institute, University of Copenhaguen, Denmark.* We review recent experiments on the use of disordered photonic crystals for enhancing light-matter interaction. Coupling single quantum dots to Anderson-localized modes enables cavity quantum electrodynamics with random cavity modes.

08:00-10:00

CF1N • **Ultrafast Fiber Lasers** Shinji Yamashita, University of Tokyo, Japan, *Presider*

Marriott San Jose

Salon IV

CF1N.1 • 08:00

Picosecond pulses from an FDML laser, Christoph M. Eigenwillig¹, Sebastian Todor², Wolfgang Wieser¹, Benjamin Biedermann¹, Thomas Klein¹, Christian Jirauschek², Robert Huber¹; ¹Chair of BioMolecular Optics, Ludwig-Maximilians-University München, Germany: ²Institute for Nanoelectronics, Technische Universität München, Germany. We present a comparison between theory and experiment for the generation of short pulses from FDML lasers. The theory predicts that in the future bandwidth limited pulse might be possible.

CF1N.2 • 08:15

Pulse Repetition Rate Control of Asynchronous Mode-Locked Fiber Lasers without Changing the Cavity Length, Siao-Shan Jyu¹; ¹Photonics, National Chiao Tung University, Taiwan. A new method for fine-controlling the mode-locked laser repetition rate without changing the cavity length is proposed and demonstrated on a 10GHz asynchronous mode-locked Er-fiber soliton laser through the EO modulation strength adjustment.

CF1M.2 • 08:30

Off-resonant Coupling Between a Single Quantum Dot and a Nanobeam Photonic Crystal Cavity, Armand Rundquist¹, Jelena Vuckovic¹, Arka Majumdar¹; ¹E. L. Ginzton Laboratory, Stanford University, USA. We demonstrate off-resonant coupling between a single quantum dot and a nanobeam photonic crystal cavity, under resonant excitation of the dot or the cavity. We confirm that this is an incoherent phonon-mediated process.

CF1N.3 • 08:30 Invited

Modeling and Power Scaling of Carbon-Nanotube Mode-Locked Fiber Lasers, Norihiko Nishizawa¹; 'Electrical Engineering and Computer Science, Nagoya University, Japan. Dynamics of Er-doped ultrshort pulse fiber laser with carbon nanotube were investigated both experimentally and numerically. The highest output power of 114 mW and pulse energy of 3.5 nJ were achieved by optimization of cavity.

۲

 $(\mathbf{\Phi})$

Room A3

Table-top Time-resolved Extreme Ultraviolet Nano-holography Scheme, Erik B. Malm¹, Chris-

topher G. Brown¹, Przemyslaw W. Wachulak²,

Jorge Rocca1, Carmen Menoni1, Mario Mar-

coni¹; ¹Electrical Engineering, Colorado State University, USA; ²Institute of Optoelectronics, Military

University of Technology, Poland. We describe the

implementation of a time-resolved high resolution

Fourier holographic imaging system. Spatial reso-

lution below 100 nm and temporal resolution of 1 ns may be achieved utilizing a compact table-top

CF1C.5 • 09:00 Invited

Toward a Nuclear Optical Clock, Corey Camp

bell1; 'Georgia Tech, USA. The extension of

coherent state manipulation and precision

laser spectroscopy and metrology from atomic to

nuclear states would be a tremendous advance in

fundamental physics research. The 7.6 eV isomeric

transition in the 229Th nucleus is currently the

sole candidate for such an extension.

CF1C • EUV Metrology—

Continued

CF1C.4 • 08:45 D

extreme ultraviolet laser.

Room A1

CF1A • Organic Emitters and Absorbers—Continued

CF1A.3 • 08:45

 $\mathbf{Nd^{4*}}$ -TFA:HPDA Polymeric Microchip Laser, Hiroaki Yoshioka1, Wataru Iwasaki2, Yukihiko Yamashita2, Nobuo Miyadera2, Kei Yasui3, Daisuke Maeda3, Yuji Oki1; IGraduate School of Information Science and Electrical Engineering, Kyushu University, Japan; 2Hitachi Chemical Co., Ltd., Japan; 3Nissan Chemical Industries, Ltd., Japan. We demonstrated a Nd3+ complex doped solid-state polymer laser. The laser threshold was reduced to 334 μ J with a new solid-state host matrix and a short laser cavity. Its low threshold enables LD pumping operation.

CF1A.4 • 09:00

Z-scan Measurements of the Excited State Absorption Cross Sections of a Benzothiazolylfluorenylethynl-Substituted Terpyridyl Platinum(II) Complex, Timothy M. Pritchett¹, Wenfang Sun², Bingguang Zhang², Yunjing Li², Joy E. Haley³, ¹U.S. Army Research Laboratory, USA; ²Department of Chemistry and Biochemistry, North Dakota State University, USA; ³Materials and Manufacturing Directorate, Air Force Research Laboratory, USA. Using Z scans employing 4.1-ns and 21-ps pulses, values of 4.0 × 10-17 cm2 and 4.2 × 10-17 cm2 were obtained for the singlet and triplet excited-state absorption cross sections of a novel terpyridyl platinum(II) chloride complex at 532 nm.

CF1A.5 • 09:15

 $(\mathbf{\Phi})$

Nonlinear Optical Characterization of Chromophore-functionalized POSS Nanoparticles in a Polymeric Host, David J. McGee³, Johannes Schleusener², Yuta Saito³, Padma Gopalan³, 'Physics, The College of New Jersey, USA; 'Physics, Beuth University of Applied Sciences, Germany; 'Materials Science and Engineering, University of Wisconsin-Madison, USA. Chromophore-functionalized polyhedral oligomeric silsesquioxane (POSS) was blended with a polycarbonate host and spin cast into films with < 1.5 dB/cm loss at 1550 nm. The films were poled to a stable d33 of 35 pm/V.

CF1A.6 • 09:30

Highly Linear Electro-optic Polymer Based Traveling Wave MMI-fed Directional Coupler Modulator, Xingyu Zhang', Beomsuk Lee', Che-yun Lin', Alan Wang², Amir Hosseini³, Ray T. Chen'; ¹Microelectronics Research Center, Electrical and Computer Engineering Department, University of Texas at Austin, USA; ²School of Electrical Engineering & Computer Science, Oregon State University, USA; ³Omega Optics, Inc., USA. We demonstrate an EO polymer based travelingwave MMI-fed directional-coupler modulator. High-speed and linear operation is demonstrated with bandwidth-length product of 125GHz*cm, the 3-dB electrical bandwidth of 10GHz, and the SFDR of 110±3dB/HzZ/3.

CLEO: 2012 • 6–11 May 2012

& Innovations

CF1B • Novel Application of Nonlinear Optics—Continued

Room A2

CLEO: Science

CF1B.4 • 08:45

Fiber Optical Parametric Frequency Conversion: Alignment and Maintenance Free All-fiber Laser Concept for CARS Microscopy, Martin Baumgartl¹, Mario Chemnitz¹, Cesar Jauregui¹, Thomas Gottschall¹, Tobias Meyer², Benjamin Dietzek², Jürgen Popp², Jens Limpert¹, Andreas Tünnermann¹; ¹Institute of Applied Physics, Friedrich-Schiller-Universität, Germany; ²Institut für Photonische Technologien e.V., Germany. We present the development of a parametric all-fiber laser source for CARS microscopy. Since the pump and Stokes wavelengths are generated by four-wave-mixing, both pulses are emitted from a single fiber end with intrinsic synchronization.

CF1B.5 • 09:00

Balanced-detection Raman induced Kerr effect microscopy, Vikas Kumar¹, Michele Casella¹, Egle Molotokaite¹, Philipp Kukura², Cristian Manzoni¹, Dario Polli¹, Marco Marangoni¹, Giulio Cerullo¹, ¹Physics, Politecnico di Milano, Italy; ²Oxford University, United Kingdom. We introduce balanced-detection Raman-induced Kerr effect microscopy as a new powerful coherent Raman imaging technique, combining background-free detection with the absence of non-resonant background and linear dependence on sample concentration.

CF1B.6 • 09:15

CF1B.7 • 09:30

Frequency-doubled Supercontinuum for Scanning White-light Interferometry, Piotr Ryczkowski', Goëry Genty¹, Anton Nolvi², Ivan Kassamakov², Edward Haeggström²; ¹Tampere University of Technology, Finland; ²University of Helsinki, Finland. We present a compact, broadband source with tunable repetition rate working in the visible/near-infrared for scanning white-light interferometry. Three-dimensional characterization of MEMS with 7 micron axial resolution is demonstrated.

. . .

Impact of Phase-Sensitive-Amplifier's Mode Structure on Amplified Image Quality, Muthiah Annamalai¹, Michael Vasilyev¹, Prem Kumar², 'Electrical Engineering, University of Texas at Arlington, USA; 'EECS, Northwestern University, USA. We study phase-sensitive image pre-amplification versus pumping conditions and number of signal modes. We see image improvement by pre-amplification, and high-spatialfrequency enhancement for "higher-order-pump," "nonzero-wavevector-mismatch" cases.

CF1C.6 • 09:30 D

Doppler-Free Two-Photon Direct Frequency Comb Spectroscopy With Coherent Control, Itan Barmes¹, Stefan Witte¹, Kjeld Eikema¹; 'LaserLab, Vrije Universiteit, Netherlands. We demonstrate a method to eliminate Doppler effects in femtosecond pulse excitation using coherent control. This enables high-precision direct frequency comb spectroscopy using significantly simplified setups and is compatible with XUV applications.

Room A4

CLEO: QELS-Fundamental Science

QF1D • Engineered Plasmonic Surfaces—Continued

QF1D.4 • 08:45

Steering Surface Plasmons on Metal Surface, Tao Li¹, Lin Li², Shining Zhu²; ¹College of Engineering and Applied Sciences, Nanjing University, China; ³School of Physics, Nanjing University, China. We proposed a new approach to modulate the beam phase of propagating surface Plasmon polariton (SPP) wave by in-plane diffractions, so as to steer SPP beam property. SPP Airy beams and broadband focusing were realized.

QF1D.5 • 09:00

Frequency Selective Vertical Nanoplasmonic Interconnects, Michael Nielsen¹, Abdul Y. Elezzabi¹; 'Electrical and Computer Engineering, University of Alberta, Canada. A nanoscale silicon plasmonic device was examined for vertical integration of nanoplasmonic circuits through vertically coupled ring resonators. Devices with planar footprints as small as 1.00µm2 were examined for frequency selective signal tansfer.

QF1D.6 • 09:15

Experimental demonstration of bosonic quantum interference of single surface plasmon polaritons, Go Fuji^{1,2}, Akito Fujikake¹, Naoto Namekata¹, Daiji Fukuda², Shuichiro Inoue'; ¹Institute of Quantum Science, Nihon University, Japan; ²National Institute of Advanced Industrial Science and Technology, Japan. We have demonstrated the quantum interference with single surface plasmon polaritons (SSPPs) excited via single-photons. The result indicates the bunching of two SSPPs, which is the evidence that the quantum interference of SSPPs is bosonic.

QF1D.7 • 09:30

Transmission enhancement with the array of faced folded metallic rods embedded in a metallic slit, Taerin Chung¹, Yongjun Lim¹, Seung-Yeol Lee¹, Byoungho Lee¹, 'Seoul National University, Republic of Korea. We propose that the array of plasmonic faced folded rods (FFR) enhances transmission of light in a narrow metallic slit. The functionality is shown by the use of optical microscopy which provides far-field intensity images.

CLEO: QELS-Fundamental Science

QF1E • Quantum Optics Using Quantum Dots—Continued

QF1E.4 • 08:45

Enhanced Probing of Fermion Interaction by Weak Value Amplification, Alex Hayat¹, Amir Feizpour¹, Aephraim Steinberg¹, ¹University of Toronto, Canada. We propose a scheme for weakvalue amplification of probing a single-fermion interaction, and demonstrate it theoretically on quantum dot electron spins by mapping the state including energy and spin into a photon.

Room A6

CLEO: Science & Innovations

CF1F • Coherent Communications—Continued

CF1F.3 • 08:45

Frequency Offset Estimation in a Polarization-Multiplexed Coherent OFDM system stressed by chromatic dispersion and PMD, Julie Karaki¹, Erwan Pincemin¹, Yves Jaouën², Raphaël Le Bidan³; ¹CORE/TPN, France Telecom, Orange Labs, France; ²Telecom ParisTech, Institut Telecom, France; ³Telecom Bretagne, Institut Telecom, France. We propose here a simple method to estimate carrier frequency offset (CFO) in a polarization-multiplexed coherent OFDM (CO-OFDM) system.

Room A7

CLEO: QELS-Fundamental Science

QF1G • Spatial and Temporal Solitons—Continued

QF1G.4 • 08:45

Raman-free Soliton Self Frequency Shift in Photonic Crystal Waveguides, Pierre Colman¹, Sylvain Combrié¹, Stefano Trillo², Alfredo De Rossi¹; ¹Thales Research & Technology, France; ²Universita di Ferrara, Italy. Cherenkov radiation and Soliton Self Frequency Shift are reported in (1.5mm-long) Photonic Crystal waveguides. The picosecond and picojoule pulses used here and the absence of Raman-induced frequency shift are peculiar of this new nonlinear material.

QF1E.5 • 09:00

Elastic and Inelastic Light Scattering from a Quantum Dot, Kumarasiri Konthasinghe¹, J. Walker¹, M. Peiris¹, C.k. Shih², Y. Yu³, M. Li³, J. He³, H. Ni³, Z. Niu³, Andreas Muller¹; ¹Physics, University of South Florida, USA; ²University of Texas at Austin, USA; ³Chinese Academy of Sciences, China. We spectrally resolve the light scattered by a single InAs semiconductor quantum dot and analyze the relative contribution of elastic and inelastic scattering processes.

CF1F.4 • 09:00

Coherent Matched Detection with Multi-Input-Multi-Output Equalization for Demultiplexing/ Demodulation of Orthogonally Time/Frequency Domain Multiplexed Signal, Takahide Sakamoto²¹; 'Natl Inst Info & Commetn Tech, Japan; ²UC Davis, USA. We investigate optical coherent matched detection with MIMO equalization implemented. Coherent mismatching between signal and local combs is mitigated, demultiplexing ultrafast and high-spectral-efficiency OTFDM signals with improved orthogonality.

QF1G.5 • 09:00

Three-dimensional spatial solitons in CS2, Edilson L. Falcao-Filho¹, Cid B. de Araujo¹, Georges Boudebs², Herve Leblond², Vladimir Skarka², ¹Departamento de Fisica, Universidade Federal de Pernambuco, Brazil, ²Laboratoire de Photoniques d'Angers, Université d'Angers, France. Three-dimensional spatial solitons excited by near-infrared femtosecond pulses in CS2 are demonstrated. The propagation of such stable solitons is allowed due to the presence of the fifth-order nonlinearity which prevented the catastrophic collapse.

QF1E.6 • 09:15

 $(\mathbf{\Phi})$

Resonant biexciton quantum-dot cavity coupling and its potential for a fast 1.55-µmtelecom-band single photon source, Muhammad Danang Birowosuto¹, Hisashi Sumikura¹, Shinji Matsuo², Hideaki Taniyama¹, Peter van Veldhoven³, Richard Nötzel^{3,4}, Masaya Notomi¹; ¹NTT Basic Research Laboratories, NTT Corporation, Japan; ²NTT Photonics Laboratories, NTT Corporation, Japan: ³COBRA Research Institute, Eindhoven University of Technology, Netherlands; 4Institute for Systems based on Optoelectronics and Microtechnology, Technical University of Madrid, Spain. We report a fast and Purcell-enhanced single photon source at 1.55 µm from a biexciton of a single quantum dot coupled with a photonic crystal nanocavity. Purcell enhancement of five times is demonstrated.

QF1E.7 • 09:30

Bright single photon emission from a quantum dot in a circular dielectric grating, Serkan Ates¹², Luca Sapienza¹, Marcelo Davanco^{1,2}, Antonio Badolato³, Kartik Srinivasan¹; 'Center for Nanoscale Science and Technology, National Institute of Standards and Technology, USA; ²Maryland NanoCenter, University of Maryland, USA; ³Department of Physics and Astronomy, University of Rochester, USA. We demonstrate a single photon source based on a single quantum dot in a circular grating microcavity and measure a collection efficiency of 10%. Tradeoffs between suppressed multi-photon probability and Purcell enhancement are investigated.

CF1F.5 • 09:15

A Novel Double-Sided Multiband Direct-Detection Optical OFDM System with Single Laser Source, Kai-Ming Feng¹, Jhih-Heng Yan¹, Yuan-Wei Chang², Fu-Lien Cheng², ¹Institute of Photonics Technologies, National Tsing Hua University, Taiwan; ²Institute of Communications Engineering, National Tsing Hua University, Taiwan. We proposed and experimentally demonstrated a double-sided multiband DDO-OFDM system requiring only half of the total signal bandwidth in the receiver. The experimental results match the simulations well for all the signal bands.

QF1G.6 • 09:15

Nonlinear Spectral Symmetry Breaking of Light Bullets in Waveguide Arrays, Falk Eilenberger¹, Stefano Minardi¹, Alexander Szameit¹, Ulrich Röpke², Jens Kobelke², Kay Schuster², Hartmut Bartelt², Stefan Nolte¹, Andreas Tuennermann¹, Thomas Pertsch¹; ¹Institute of Applied Physics, Friedrich-Schiller-Universität, Abbe Center of Photonics, Germany; ²Institute of Photonic Technology, Germany, We investigate the wavelength dependence of the diffraction on Light Bullets. This dependence gives rise to spatiotemporal coupling and spatiotemporally modified spectra. This nonlinear spectral reshaping is measured and analyzed.

QF1G.7 • 09:30

Incoherent Embedded Solitons, Maxim Kozlov¹, Oren Cohen¹; ¹Physics, Technion, Israel. We show that a partially coherent beam can be self-trapped into an incoherent soliton with all its coherent components embedded in the continuum. Incoherent embedded solitons display distinctive power spectrum and coherence properties.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 207

Room A8 Room B2 & B3 **Room C1 & C2** Room C3 & C4 May **CLEO: QELS-CLEO: Science** Fridav. 11 **Fundamental Science** & Innovations **OF1H** • Disordered and Random CF1I • Optofluidics: "Lab on a CF11 • Photovoltaics CF1K • Short Wavelength Media—Continued Chip"—Continued Fundamentals and Concepts-Quantum Cascade Lasers— Continued Continued QF1H.4 • 08:45 CF1I.4 • 08:45 D Focusing through disordered media inside Digital Petri Dish for On-chip Cell Monitoring, a laser cavity, Micha Nixon¹, Ori Katz¹, Eran Small¹, Asher Friesem¹, Yaron Silberberg¹, Nir Guoan Zheng¹, Seung Ah Lee¹, Xiaoze Ou¹, Changhuei Yang¹; ¹Electrical Engineering, Caltech, USA. Davidson1; 1 Weizmann Institute of Science, Israel. A We report a digital Petri dish platform for on-chip new concept for focusing light through a randomly cell monitoring. We demonstrate the ability to disordered media is demonstrated. Results show how by placing the randomly scattering media directly into a laser cavity tight focusing is acimage confluent cell cultures with 6 mm × 4 mm filed-of-view and ~0.7 µm resolution by using the proposed platform. complished in less than 600ns

 (\blacklozenge)

QF1H.5 • 09:00

Ultra-compact High-resolution On-chip Spectrometer Based on Random Nanostructures, Brandon Redding¹, Jing Ma², Hui Cao¹, ¹Applied Physics, Yale University, USA; ²Agiltron, Inc, USA. We design and fabricate an on-chip spectrometer based on random arrays of scatterers. Multiple scattering of light increases the effective optical pathlength, allowing us to dramatically reduce the device size without sacrificing spectral resolution.

OF1H.6 • 09:15

 $(\mathbf{\Phi})$

Observation of super-ballistic transport in hybrid ordered/disordered photonic lattices, Simon Stützer¹, Tsampikos Kottos², Andreas Tünnermann¹, Stefan Nolte¹, Demetrios N. Christodoulides³, Alexander Szameit¹; ¹Institute of Applied Physics, Friedrich-Schiller-Universität, Germany; ²Department of Physics, Wesleyan University, USA; ³College of optics and Photonics, University of Central Florida, USA. We observe superballistic transport in optical lattices where a finite disordered region embed- ded into a periodic structure acts as a light source of constant flux, boosting the spread of a wavepacket.

QF1H.7 • 09:30

Random laser in totally disordered 2D GaAs/Al-GaAs heterostructures, Antoine Monmayrant^{3,4}, Olivier Gauthier-Lafaye^{3,4}, Sophie Bonnefont^{3,4}, Shivakiran Bhaktha², Christian Vanneste², Nicolas Bachelard¹, Patrick Sebbah¹, Françoise Lozes-Dupuy^{3,4}, ¹Institut Langevin, ESPCI Paristech, France;²LPMC, CNRS, France; ³LAAS, CNRS, France; ⁴UPS, INSA, Université Toulouse, France. We demonstrate random lasing emission in Al-GaAs suspended membrane randomly perforated with subwavelength circular holes. Spectrallyresolved imaging of the lasing emission allows identifying lasing modes in the diffusive regime. **CF11.5 • 09:00 Tutorial C Chip-scale Microscopy Imaging,** Guoan Zheng¹ and Changhuei Yang¹, '*Caltech, USA.* We will discuss the design strategies and recent developments of chip-scale microscopy approaches, including digital in-line holography, optofluidic microscopy

Guoan Zheng received his B.S. degree from Zhejiang University, China in 2007 and his M.S. degree from California Institute of Technology in 2008, all in electrical engineering. Currently, he is a PhD student in the Biophotonics Lab at Caltech. His expertise is in biomedical optics and micro/nano technologies, and has over 18 peer-reviewed publications and 6 patents. In his PhD career, he developed many innovative tools for biological imaging, including the digital Petri dish, subpixel optofluidic microscope and plasmonic darkfield aperture. His current research interest is to use computational optical sensing and imaging methods to develop cost-effective high-throughput microscopy modalities. He was the recipient of Lemelson-MIT Caltech student prize in 2011 for his contribution on cost-effective microscopy solutions

CF1J.2 • 09:00 D

CIGS solar cell integrated with high mobility microcrystalline Si TFTs on 30X40 cm2 glass panels for self powered electronics, Chang-Hong Shen', Jia-Min Shieh¹², Tsung-Ta Wu¹, Jung Y. Huang', Che-Hsuan Huang', Yu-Hsiang Huang', Tien-Chang Lu², Bau-Tong Dai¹, Chenming Hu³, Fu-Liang Yang'; *¹National Nano Device Laboratories*, *Taiwan*, ²Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan, ³Dept. of Electrical Eng. and Computer Science, University of California, USA. For the first time, we report a self-powered TFT panel (30X40cm2) by integration of sputtering/non-toxic Se vapor selenization CIGS solar cell (conversion efficiency of 8%) and high electron-mobility (172 cm2/V-s) micro-crystalline (uc)-Si TFTs.

CF1J.3 • 09:15

Ultrafast Pump-probe Spectroscopy of Carrier Relaxation Dynamics in Cu(In,Ga)Se2 Thin Films, Shih-Chen Chen¹, Yu-Kuang Liao, Hsueh-Ju Chen1, Hao-Chung Kuo2, Kaung-Hsiung Wu¹, Takayoshi Kobayashi¹; ¹Department of Electrophysics, National Chiao Tung University, Taiwan; ²Department of Photonic & Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan; 3Compound Semiconductor Solar Cell Department, Next Generation Solar Cell Division, Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Taiwan. Ultrafast pump-probe spectroscopy of Cu(In,Ga)Se2 thin films was performed. We have found the non-radiative recombination dominated at room temperature. It could correlate to efficiency of Cu(In,Ga)Se2-based solar cells.

CF1J.4 • 09:30 D

Accurate measurement of the external quantum efficiency of multi-junction solar cells, Jing-Jing Li¹, Yong-Hang Zhang¹; *Arizona State University, USA*. A pulsed voltage bias method is used to accurately measure the external quantum efficiency (EQE) of multi-junction solar cells by controlling the electrical and optical coupling between subcells.

CF1K.4 • 09:00 D

Continuous-Wave Operation of Type-I GaSbbased Narrow Ridge Waveguide Lasers near 3254nm, James Gupta¹, Pedro J. Barrios¹, Andrew Bezinger¹, Philip Waldron¹; ¹National Research Council of Canada, Canada. Narrow ridge waveguide (5um) laser diodes were fabricated using type-I InGaAsSb/AlInGaAsSb quantum well active regions on GaSb. The devices operate in continuous-wave mode near 3254nm with a total light output of 7.4mW at 20°C (uncoated facets).

CF1K.5 • 09:15 D

62 mW Output Power, Room-Temperature Operation, CW Interband Cascade Laser, Geunmin Ryu¹, Jeyran Amirloo¹, Simarjeet Saini², Fred Towner³, Mario Dagenais¹; ¹Electrical and Computer Engineering, University of Maryland, USA; ²Department of Electrical and Computer Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Canada; ³Maxion Technologies, Inc., USA. We report an output power of 62mW in an interband cascade laser operated cw at room-temperature (T = 20°C), with an internal loss of 4.9cm-1, and a threshold current density as low as 320A/cm2.

CF1K.6 • 09:30

3190 - 3275 nm tuneable, Room temperature, external cavity InAs/AISb Quantum Cascade Laser, Tomasz Kruczek¹, Edik Rafailov¹, Ksenia A. Fedorova¹, Alexei Baranov², Roland Teissier², 'School of Engineering, Physics and Mathematics, University of Dundee, United Kingdom; ²Institut d'Électronique du Sud, CNRS / Université Montpellier 2, France. We demonstrated a room temperature, tuneable, external cavity Quantum Cascade Laser for the use in compact spectroscopic gas sensing system. Wavelength tuning of 85nm between 3190nm and 3275nm was achieved at room temperature.

 (\blacklozenge)

Marriott San Jose	Marriott San Jose	Marriott San Jose
Salon I & II	Salon III	Salon IV
	CLEO: Science & Innovations	
CF1L • High Harmonic and	CF1M • Photonic Crystals I—	CF1N • Ultrafast Fiber Lasers—
Diffractive Imaging—Continued	Continued	Continued

CF1L.4 • 08:45

Coherent Diffraction Imaging with an Apertured Illumination Support, Bosheng Zhang¹ Dennis Gardner¹, Leigh S. Martin¹, Matthew E Seaberg1, Daniel E. Adams1, Margaret M. Murnane¹, Henry C. Kapteyn¹; ¹Physics department, JILA, University of Colorado at Boulder, USA. We demonstrate coherent diffraction imaging (CDI) using the projected image of an aperture as a support. This method is strikingly simple and allows CDI imaging of non-isolated objects in transmission and reflection.

CF1L.5 • 09:00

Complete spatio-temporal characterization of collimated high-power femtosecond lasers, Valentin Gallet¹, Fabien Quéré¹; ¹Physique haute intensité, CEA, France. To obtain complete spatio-temporal characterizations of high-power femtosecond lasers, we apply SEA TAPDOLE to collimated beams. We show how to correct phase fluctuations in the fiber interferometer, which is essential in this configuration

CF1M.4 • 09:00 Ultrafast Direct Modulation of a Single-Mode Photonic Crystal Nanocavity Light-Emitting Diode, Gary Shambat¹, Bryan Ellis¹, Arka Majumdar¹, Jan Petykiewicz¹, Marie Mayer², Tomas Sarmiento¹, James Harris¹, Eugene Haller², Jelena Vuckovic1; 1Stanford University, USA; 2Berkeley, USA. We demonstrate an electrically driven single mode photonic crystal cavity LED with record speed of operation (10 GHz) and 0.25 fJ/ bit energy consumption, the lowest of any optical transmitter to date.

Efficient Lasing with Nanocrystal Quantum Dots Using Purcell Effect to Overcome Auger

Recombination, Shilpi Gupta¹, Edo Waks¹; ¹Elec-

trical and Computer Engineering, University of

Maryland College Park, USA. We theoretically investigate the use of small mode-volume cavity

in overcoming Auger recombination in NQDs by

Purcell enhancement, and show lasing with high

output efficiency (>0.75) and high spontaneous

emission coupling factor (>0.9).

CF1N.4 • 09:00

Double-wall carbon nanotube O-switched and mode-locked two-micron fiber lasers, Fengqiu Wang¹, Zhe Jiang¹, Tawfique Hasan¹, Zhipei Sun¹, Daniel Popa¹, Felice Torrisi¹, Wonbae Cho¹, Emmanuel Flahaut^{2,3}, Andrea C. Ferrari¹; ¹Engineer-ing Department, Cambridge University, United Kingdom; ²Institut Carnot Cirimat, Úniversité de Toulouse; UPS, INP, France; ³Institut Carnot Cirimat, CNRS, France. We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively.

CF1L.6 • 09:15

Generalized Multishearing Interferometry for the Complete Multidimensional Characterization of Optical Beams and Ultrashort Pulses, Adam S. Wyatt¹, Jens Biegert², Ian A. Walmsley1; 1Departmet of Physics, Clarendon Laboratory, United Kingdom; 2Insitut de Ciencies Fotoniques, Spain. We demonstrate increased accuracy and precision in the reconstruction of the multidimensional phase of electromagnetic fields based on multiple spectral shearing interferometry measurements made with shears of an arbitrary magnitude.

CF1M.5 • 09:15

CE1M 3 • 08:45

Effects of Non-Lasing Band in 2D Photonic Crystal Lasers, Kazuvoshi Hirose^{1,2}, Yoshitaka Kurosaka^{1,2}, Akiyoshi Watanabe¹, Takahiro Sugiyama1, Susumu Noda2; 1Central Research Laboratory, Hamamatsu Photonics K. K., Japan; ²Department of Electronic Science and Engineering, Kyoto University, Japan. We investigate the effects of a non-lasing band in photonic-crystal lasers. We found that the non-lasing band may scatter the laser beam despite wavenumber mismatch. which leads to the generation of weak dual-veined beam patterns.

CF1N.5 • 09:15

Stretched-Pulse Mode-locking using a Mechanically Exfoliated Graphene Saturable Absorber, Amos Martinez1, Shinji Yamashita1; 1 The University of Tokyo, Japan. We demonstrate stretchedpulse modelocking using a saturable absorber fabricated by mechanical exfoliation of graphene. Such saturable absorber offers advantages such as ease of fabrication and robustness to optical damage under high intensities.

CF1L.7 • 09:30

Fresnel-regime coherent diffractive imaging with with a 13 nm high harmonic source, Richard L. Sandberg¹, Dennis Gardner², Matthew E. Seaberg², Daniel E. Adams², Henry C. Kapteyn², Margaret M. Murnane², John L. Barber³; ¹Center for Integrated Nanotechnology, Materials Physics and Applications Division, Los Alamos National Laboratory, USA; ²Department of Physics and JILA, University of Colorado at Boulder and NIST, USA; ³Theoretical Division, Los Alamos National Laboratory, USA. Coherent x-ray diffractive imaging (CXDI) is a powerful technique for wavelength-limited, ultrafast images. We present a novel analysis and demonstration of Fresnelregime (near field) CXDI with a tabletop 13 nm high harmonic generation source.

CF1M.6 • 09:30

Lasing action from organic two-dimensional planar photonic crystal microcavity, Francois Gourdon¹, Mahmoud Chakaroun¹, Nathalie Fabre¹, Sophie Bouchoule², Alexis Fischer¹, Alejandro Giacometti², Azzedine Boudrioua¹, Gregory Barbillon¹, Jeanne Solard¹; ¹Laboratoire de Physique des Lasers, France;²Laboratoire de Photonique et Nanostructures 6 LPN / CNRS, France. Lasing in organic 2D photonic crystal microcavity is investigated under optical pumping of Alq3:DCJTB as a gain medium. The resonant mode of the microcavity was measured at 662 nm with a threshold of 0.6 nJ/pulse.

CF1N.6 • 09:30

High Energy Amplifier Similariton Laser Based on Integrated Chirally-coupled Core Fiber, Simon Lefrancois1, Chi-Hung Liu2, Thomas S. Sosnowski², Almantas Galvanauskas³, Frank W. Wise¹; ¹Applied Physics, Cornell University, USA; ²Arbor Photonics Inc., USA; ³Electrical Engineering and Computer Science, University of Michigan, USA. We present an amplifier similariton laser based on chirally-coupled core fiber. Chirped pulse energies up to 60 nJ are obtained with compressed durations below 90 fs. We demonstrate an integrated pump-signal combiner for chirally-coupled fibers

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 209

۲

 $(\mathbf{\Phi})$

Room A1 Room A2 Room A3 **CLEO: Science** & Innovations CF1C • EUV Metrology-**CF1A** • Organic Emitters and CF1B • Novel Application of Absorbers—Continued **Nonlinear Optics—Continued** Continued CF1B.8 • 09:45 CF1A.7 • 09:45 CF1C.7 • 09:45 D Watt-Level, Tunable, Fiber-Laser-Pumped Excitonic energy transfer dynamics in hybrid Experimental Validation of a Simple Approxiorganic/inorganic nanocomposites at high

۲

loading levels, Burak Guzelturk¹, Pedro Ludwig Hernandez Martinez¹, Donus Tuncel², Hilmi Volkan Demir^{1,3}; ¹Electrical and Electronics En-gineering, Bilkent University, Turkey; ²Chemistry, Bilkent University, Turkey; ³School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore. Temperature dependent exciton migration in the hybrid nanocomposites of conjugated polymers chemically integrated with quantum dots is studied at high loading levels. The underlying interplay between the exciton transfer and diffusion is revealed.

Friday, 11 May

()

Picosecond Parametric Source For The Near-Infrared, Suddapalli Chaitanya Kumar¹, Ossi Kimmelma¹, Majid Ebrahim-Zadeh^{1,2}; ¹Nonlinear Optics-Optical Parametric Oscillators, ICFO-The Institute of Photonic Sciences, Spain; ²Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain. We demonstrate a tunable picosecond source providing up to 3.5 W over 752-860 nm, with a power stability of 1.6% rms over 14 hours using intracavity frequency-doubling in opticalparametric-oscillator synchronously pumped by a Yb-fiber laser.

mate Relation Between Laser Frequency Noise and Linewidth, Nikola Bucalovic1, Vladimir Dolgovskiy¹, Christian Schori¹, Pierre Thomann¹, Gianni Di Domenico¹, Stéphane Schilt¹; ¹LTF, University of Neuchâtel, Switzerland. We present an experimental validation of a simple geometrical approximation of the laser linewidth calculated from its frequency noise spectrum, agreeing within the experimental uncertainty with the actual value over a wide range of linewidths.

Room A4

CLEO: QELS-**Fundamental Science**

QF1D • Engineered Plasmonic Surfaces—Continued

OF1D.8 • 09:45

Plasmonic Antenna-Array for 2D Sub-Diffraction Focusing Beyond the Optical Near-Field, Yan Wang¹, Amr S. Helmy¹, George V. Eleftheriades¹; ¹The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada. We propose an optical probe configuration capable of 2D sub-diffraction imaging at a large working distance at visible frequencies. The structure consists of a planar antenna-array that facilitates super-focusing due to "radiationless interference".

	NOTES		
	NULES		

10:00–10:30 Coffee Break, Concourse Level

۲

CLEO: 2012 • 6–11 May 2012

Room A7 Room A6 Room A5 **CLEO: QELS-CLEO: QELS-CLEO: Science Fundamental Science Fundamental Science** & Innovations QF1E • Quantum Optics Using CF1F • Coherent QF1G • Spatial and Temporal **Quantum Dots—Continued Communications—Continued** Solitons—Continued OF1E.8 • 09:45 OF1G.8 • 09:45 Planar Waveguide Architecture for the Imple-Nonlinear matching of Solitons - Continued mentation of a Network of Optically Controlled redshift between silica and soft-glass fibers, Quantum Dot Spin Qubits, Isaac J. Luxmoore¹, Christian Agger¹, Simon T. Sørensen¹, Carsten L. Nicholas A. Wasley¹, Andrew J. Ramsay¹, Arthur C. Thijssen², Ruth Oulton², Maxime Hugues³, Sachin Kasture⁴, Achanta V. Gopal⁴, Mark Fox¹, Thomsen², Søren R. Keiding³, Ole Bang¹; ¹DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Denmark; ²NKT Maurice S. Skolnick1; 1Physics and Astronomy, Photonics, Denmark;3Department of Chemistry, Univeristy of Sheffield, United Kingdom; ²H.H. Wills Aarhus University, Denmark. We present an Physics Laboratory, University of Bristol, United Kingdom; ³CRHEA-CNRS, France; ⁴Tata Institute of analysis of nonlinear coupling between fibers. We introduce the nonlinear coupling coefficient Fundamental Research, India. We propose a device and investigate solitons coupling from one fiber architecture for an in-plane network of optically into another. We will also present simulated connected quantum dots. Each dot resides at the intersection of two orthogonal waveguides which supercontinuum from concatenated fiber systems. transmit the full polarization of an emitted photon to another node.

۲

10:00–10:30 Coffee Break, Concourse Level

NOTES
 NOTES

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 211

۲

۲

Friday, 11 May

۲

Room C1 & C2

CLEO: Science & Innovations

CF1J • Photovoltaics Fundamentals and Concepts— Continued

CF1J.5 • 09:45 D

Angle Selective Transparent-Photovoltaics using Anodized-Alumina, Nanditha Dissanayake', Brian Roberls', Pei-Cheng Ku'; 'Electrican Engineering and Computer Science, University of Michigan, USA. Alumina reflector shows angle selective scattering overcoming transparency vs photocurrent tradeoff in transparent photovoltaics. High scattering is obtained at 45 degree incidence giving high photocurrent maintaining transparency.

CF1K • Short Wavelength Quantum Cascade Lasers— Continued

Room C3 & C4

CF1K.7 • 09:45 D

Widely Tunable Optically Pumped Mid-IR DFB Laser, Xiang He¹, Steven Benoit¹, S. R. Brueck¹, Ron Kasp¹; 'CHTM, University of New Mexico, USA; ²Directed Energy Directorate, Air Force Research Laboratory, USA. A new method has been developed to fabricate chirped grating for type-II optically pumped tunable DFB lasers with a reduced longitudinal variation. Over 80 nm of continuous tuning has been achieved around 3.1 micrometers.

NOTES	

10:00–10:30 Coffee Break, Concourse Level

212

CLEO: 2012 • 6-11 May 2012

Marriott San Jose	Marriott San Jose	Marriott San Jose
Salon I & II	Salon III	Salon IV
	CLEO: Science & Innovations	
CF1L • High Harmonic and	CF1M • Photonic Crystals I—	CF1N • Ultrafast Fiber Lasers—
Diffractive Imaging—Continued	Continued	Continued
CF1L.8 • 09:45 Tabletop Reflection Mode Coherent Diffractive Imaging of Periodic Nano-Structures with 100 nm Resolution, Matthew D. Seaberg', Daniel E. Adams', Bosheng Zhang', Margaret M. Murnane', Henry C. Kapteyn'; 'Physics and JILA, University of Colorado, USA. We report the first reflection-mode coherent diffraction imaging using a tabletop short wavelength light source. A novel imaging scheme can probe metalic nano-pillar arrays with ~100 nm resolution.	CF1M.7 • 09:45 Increased Detectivity and Operation Tem- perature in Photonic Crystal Slab Quantum Well Photodetectors, Stefan Kalchmair ¹ , Ro- man Gansch ¹ , Elvis Mujagic ¹ , Sang II Ahn ¹ , Peter Reininger ¹ , Gregor Lasser ² , Aaron Maxwell Andrews ¹ , Hermann Detz ¹ , Tobias Zederbauer ¹ , Werner Schrenk ¹ , Gottfried Strasser ¹ ; Institute for Solid State Electronics, Vienna University of Tech- nology, Austria; ¹ Institute of Telecommunications, Vienna University of Technology, Austria. Detec- tivity enhancement up to 20 times is achieved by fabricating a quantum well infrared photodetector as a photonic crystal slab. This enhancement is the combined effect of increased responsivity and	CF1N.7 • 09:45 High Peak Power Pulse Generation Using Mach-Zehnder-Modulator-Based Flat Comb Generator Combined with Chirped Pulse Amplifier, Isao Morohashi ¹ , Masahiro Oikawa ² Yasuaki Tamura ² , Shusei Aoki ² , Takahide Saka- moto ¹ , Tetsuya Kawanishi ¹ , Iwao Hosako ¹ ; ¹ Na- tional Institute of Information and Communicatinos Technology, Japan; ² Optohub Co., Ltd., Japan. We demonstrated generation of ultrashort optica pulses with a peak power of 2.5 kW by combin- ing a Mach-Zehnder-modulator-based flat comb generator with a chirped pulse amplifier.

noise current reduction.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 213

Friday, 11 May

۲

()

Friday, 11 May

10:30–12:30 CF2A • Light Trapping & Resonators Zetian Mi, McGill University,

Room A1

Canada, Presider

CF2A.1 • 10:30 Invited Trapping the Light Fantastic, Diederik Wiersma¹, Kevin Vynck¹, Matteo Burresi¹, Francesco Riboli¹; ¹European Lab for Nonlinear Spectroscopy (LENS), University of Florence, and CNR-INO Complex Photonics Group, Italy. We will discuss the possibilities offered by disorder in photonics to create extremely efficient, and simple to realize, traps for light waves for solar energy applications

and innovative lighting.

CF2A.2 • 11:00

 $(\mathbf{\Phi})$

Rainbow-colored photonic bandgap structure fabricated by holographic lithography, Ke Liu¹, Huina Xu¹, Haifeng Hu¹, Qiaoqiang Gan¹, Alexander Cartwright¹; 'Electrical Engineering, University at Buffalo, The State University at New York, USA. We report a holographic photopolymerization technique to fabricate a polymeric photonic bandgap structure whose period varies gradually along the length of the structure, leading to a unique rainbow-colored reflection image in the same viewing angle.

CF2A.3 • 11:15

Chalcogenide Glass Photonics: Non-volatile, Bi-directional, All-optical Switching in Phasechange Metamaterials, Behrad Gholipour¹, Jianfa Zhang¹, Feras Al-Saab¹, Kevin F. MacDonald¹, Brian E. Hayden², Dan W. Hewak¹, Nikolay I. Zheludev¹; ¹Optoelectronics Research Centre, University of Southampton, United Kingdom; ¹School of Chemistry, University of Southampton, United Kingdom. Non-volatile, bi-directional, all-optical switching in a phase-change metamaterial delivers high-contrast transmission and reflection modulation at visible and infrared wavelengths in device structures only ~1/8 of a wavelength thick.

CF2B.3 • 11:00

Dual-Wavelength, Interferometrically Coupled Continuous-Wave Optical Parametric Oscillators, Kavita Devi¹, Venkata Ramaiah-Badarla¹, Suddapalli Chaitanya Kumar¹, Adolfo Esteban-Martin¹, Majid Ebrahim-Zadeh^{1/2}, ¹*ICFO-Institut de Ciencies Fotoniques, Spain*, ¹*Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain.* We report a novel architecture for cw OPOs based on antiresonant ring interferometric cavity coupling, providing two pairs of signal/idler waves with independent tuning and arbitrarily close wavelength separation.

CF2B.4 • 11:15

Milli-joule level 2µm vortex pulses from an optical vortex pumped optical parametric oscillator, Taximaiti Yusufu', Yu Tokizane^{1,2}, Sachio Miyagi', Masaki Yamada', Katsuhiko Miyamoto', Takashige Omatsu^{1,2}, 'Chiba University, Japan; 'CREST, Japan. We demonstrate high energy 2 µm optical vortex pulse production from an optical vortex pumped hemispherical optical parametric oscillator. Maximum 2 µm optical vortex pulse energy of 2.1 mJ was achieved.

 (\blacklozenge)

Room A2

CLEO: Science

& Innovations

CF2B • Optical Parametric

Valdas Pasiskevicius, KTH,

Interferometrically Output-Coupled Contin-

uous-Wave Optical Parametric Oscillator, Ka-

vita Devi¹, Suddapalli Chaitanya Kumar¹, Adolfo

Esteban-Martin¹, Majid Ebrahim-Zadeh^{1,2}; ¹ICFO-

Institut de Ciencies Fotoniques, Spain; ²Institucio

Catalana de Recerca i Estudis Avancats (ICREA),

Spain. We demonstrate successful use of anti-

resonant ring interferometer for optimum output

coupling in a continuous-wave singly-resonant

OPO, providing 2.28 W of signal, together with

Fiber laser pumped, microsecond, single fre-

quency, nested cavities OPO for spectroscopy in

the 3.0 - 3.5 μm range, Jessica Barrientos-Barria¹, Jean-Baptiste Dherbecourt¹, Myriam Raybaut¹,

Jean-Michel Melkonian¹, Antoine Godard¹,

Michel Lefebvre1; 1ONERA, France. We report a

mid-infrared optical source based on a microsec-

ond, fiber laser pumped, nested cavities, optical

parametric oscillator. Power, frequency tuning,

frequency purity are studied and compared to the

specifications for spectroscopy.

2.95 W of idler, for 23.2 W of pump power.

10:30-12:30

Oscillators

CF2B.1 • 10:30

CF2B.2 • 10:45

Sweden, Presider

10:30–12:30 CF2C • Optical Combs and Spectroscopic Applications Chad Hoyt, Bethel University, USA, Presider

CF2C.1 • 10:30 D

Frequency Comb Synthesizer Tunable from 3 to 10 µm, Axel Ruchl', Alessio Gambetta', Ingmar Hartl³, Martin E. Fermann³, Kjeld Eikema¹, Marco Marangoni²; ¹Vrije Universiteit Amsterdam, Netherlands; ²Politecnico di Milano, Italy; ³IMRA America Inc., USA. We demonstrate a mid-infrared frequency comb of unprecedented tunability covering the entire 3-10 µm fingerprint region. The comb is based on a Raman shifted Yb:fiber laser and difference frequency generation.

CF2C.2 • 10:45 C

Broadband Intracavity Molecular Spectroscopy with a Degenerate Mid-IR OPO, Magnus W. Haakestad²¹, Nick C. Leindecker², Alireza Marandi², Jie Jiang³, Ingmar Hartl³, Martin E. Fermann³, Konstantin Vodopyanov²; ¹*FFI* (*Norwegian Defence Research Establishment)*, *Norway*; ²*E.L. Ginzton Laboratory, Stanford University, USA*; ³*IMRA America, Inc., USA*. Spectroscopic detection of water, isotopic CO2, and methane is performed inside the cavity of a degenerate OPO pumped by an ultrafast Er- or Tm-fiber laser, in the corresponding spectral ranges of 2.7-3.7 and 3.1-5.8 µm.

New determination of the fine structure constant and test of the quantum electrodynamics, Rym Bouchendira¹, Pierre Cladé¹, Saïda Guellati-Khélifa¹, François Nez¹, François Biraben¹, 'Laboratoire Kastler Brossel, France. We report a new value of the fine structure constant with a relative uncertainity of 6.6×10–10. This result is deduced from the h/m ratio measurement on Rb atoms.

Room A4

CLEO: QELS-Fundamental Science

10:30-12:30

QF2D • Plasmonic Gratings and Photonic Crystals Martin Husnik, Karlsruhe Institute of Technology, Germany, *Presider*

QF2D.1 • 10:30

Light Transmission Through Circular Metallic Grating Under Broadband Radial and Azimuthal Polarizations Illumination, Gilad Lerman¹, Meir Grajower¹, Avner Yanai¹, Uriel Levy¹; 'Applied physics, Hebrew university of Jerusalem, Israel. We study light transmission through circular metallic grating under radial/azimuthal polarization illumination and observe strong polarization illumination and observe strong polarization selectivity and a resonance behavior making it attractive for applications relying on radial polarization.

QF2D.2 • 10:45

2D metallic photonic quasicrystals, Christina Bauer¹, Georg Kobiela¹, Harald Giessen¹; ¹4th Physics Institute, University of Stuttgart, Germany. We present experiments as well as theoretical modelling for 2D metallic photonic quasicrystals. We measured the angle- and polarization-dependent optical properties, confirming our model based on spatial Fourier-transformation and dispersion.

QF2D.3 • 11:00

Multiply Resonant Photonic Crystal Cavities for Nonlinear Frequency Conversion, Sonia Buckley¹, Jelena Vuckovic¹, Kelley Rivoire¹; ¹Center for Nanoscale Science and Technology, Stanford University, USA. We describe a photonic crystal nanocavity with multiple spatially overlapping resonances. We show characterization of structures with two resonances nearly degenerate in frequency and demonstrate structures with resonances separated by up to 592 nm.

QF2D.4 • 11:15

Strong coupling between single quantum dot and localized mode in photonic crystal waveguide, Jie Gao¹, Sylvain Combrié², Baolai L. Liang³, Gaelle Lehoucq², Diana L. Huffaker³, Alfredo De Rossi², Chee Wei Wong¹; ¹Columbia University, USA; ²Thales Research and Technology, France; ³University of California at Los Angeles, USA. Strong coupling between single QD and PhC localized mode is observed and theoretical modeling is performed. The results show the great potential of slow-light waveguide for enhanced light-matter interaction and quantum information processing.

CLEO: QELS-Fundamental Science 10:30-12:30 10:30-12:30 10:30-12:30 QF2E • Cold Atom QF2F • Integrated Quantum **QF2G** • Nonlinear Optical **Devices** Jakob Reichel, Laboratore Kastler Processes Brossel, France, Presider Andrew White, University of Queensland, Australia, Presider QF2E.1 • 10:30 QF2F.1 • 10:30 QF2G.1 • 10:30 Optical collisions in a metastable neon MOT, A Reconfigurable Photonic Chip for Generating, Manipulating and Measuring Entanglement and Mixture, Peter Shadbolt¹, Maria Rodas Verde¹, Rohan Glover¹, James Clavert¹, Dane E. Laban¹, Robert T. Sang¹; ¹Centre for Quantum Dynamics, Griffith University, Australia. We present results for Alberto Peruzzo¹, Alberto Politi¹, Anthony Laing¹ controlled optical collisions of cold neon atoms in Mirko Lobino¹, Jonathan Matthews¹, Mark G. the (3s)3P2 metastable state trapped in a magneto-optical trap (MOT). Thompson¹, Jeremy L. O'Brien¹; ¹CQP, University of Bristol, United Kingdom. We demonstrate a reconfigurable quantum photonic circuit with eight phase shifters. We use this device to generate and characterise maximally entangled two-qubit states, violate Bell inequalities, and generate singlephoton mixed states. OF2E.2 • 10:45 OF2F.2 • 10:45 OF2G.2 • 10:45 Monolithically-integrated polarization-en-Phase conjugation based on backward differ-Spin-squeezing of a large-spin system via QND measurement, Robert J. Sewell¹, Marco Kos-chorreck^{1,2}, Mario Napolitano¹, Brice Dobust^{1,3}, tangled photon pair source on a silicon-onence-frequency generation: a novel scheme, Yujie J. Ding¹; ¹Electrical & Computer Engineering, Lehigh University, USA. We show that backward insulator photonic circuit, Hanna Le Jeannic^{1,2} Naeimeh Behbood¹, Morgan W. Mitchell¹; ¹ICFO -Nobuyuki Matsuda¹, Hiroki Takesue¹, Hiroshi Fukuda3, Tai Tsuchizawa3, Toshifumi Wata-Institut de Ciències Fotòniques, Spain; ²Physics, Unidifference-frequency generation can be exploited versity of Cambridge, United Kingdom;3Laboratoire nabe³, Koji Yamada³, Sei-ichi Itabashi³, Yasuhiro to achieve phase conjugation in a second-order Tokura¹; ¹NTT Basic Research Laboratories, Ja-Mate riaux et Phe nomenes Quantiques, Universite nonlinear medium. Our calculation shows that Paris Diderot et CNRS, France. We demonstrate pan; ²ESPCI ParisTech, France; ³NTT Microsystem a reflectivity of close to 100% is achievable from Integration Laboratories, Japan. We present a spin squeezing and entanglement in a large-spin a 1 mW laser polarization-entangled photon pair source fully system. We make projection-noise-limited QND measurements of laser-cooled rubidium atoms integrated on a silicon photonic circuit. Using two in the f=1 groundstate, generating -2.6dB of silicon wire waveguides connected with a silicon metrologically-relevant squeezing. polarization rotator, we demonstrate a generation of polarization-entangled photons.

 (\blacklozenge)

Room A6

OF2E.3 • 11:00

 $(\mathbf{\Phi})$

Highly stable remote clock comparisons via 920 km optical fiber for precision spectroscopy of atomic hydrogen, Katharina Predehl Christian G. Parthey¹, Arthur Matveev¹, Axel Beyer¹, Stefan Droste¹, Janis Alnis¹, Nikolai Kolachevsky¹, Randolf Pohl¹, Ronald Holzwarth¹ Thomas Udem1, Theodor Hänsch1, Harald Schnatz², Gesine Grosche², Burghard Lipphardt², Stefan Weyers2; 1Max-Planck-Institute of Quantum Optics, Germany; ²PTB, Germany. We reference high-precision spectroscopy on atomic hydrogen measured with an uncertainty of 4×10-15 to a remote Cs-fountain clock using a 920 km actively noise-compensated fiber link.

QF2E.4 • 11:15

Atom Interferometry via Raman Chirped Adiabatic Passage, Krish Kotru^{1,2}, David L. Butts^{1,2}, Joseph M. Kinast¹, David M. Johnson¹, Brian P. Timmons¹, Antonije M. Radojevic¹, Richard E. Stoner¹; ¹The C. S. Draper Laboratory, Inc., USA; ²Aeronautics and Astronautics, Massachusetts Institute of Technology, USA. Practical atom interferometric sensors may benefit from robust atom optics based on Raman chirped adiabatic passage (RCAP). We demonstrate coherent transfer and interference using RCAP, and discuss expected enhancement of interferometer stability.

OF2F.3 • 11:00

Observation of Anderson co-localization of spatially entangled photon pairs, Armando Perez-Leija¹, Giovanni Di Giuseppe¹, Lane Martin1, Robert Keil2, Alexander Szameit2, Ayman F. Abouraddy¹, Demetrios N. Christodoulides¹, Bahaa E.A. Saleh¹; ¹The college of Optics and Pho-tonics, CREOL, USA;²Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Germany. We report the first observation of Anderson colocalization of spatially entangled photon pairs propagating through random optical waveguide lattices with controllable off-diagonal disorder.

QF2F.4 • 11:15

Generating polarization entangled photons onchip using concurrent type-I and type-0 processes, Dongpeng Kang¹, Amr S. Helmy¹; ¹University of Toronto, Canada. A novel technique to generate polarization entangled photons using concurrent type-I and type-0 processes in a monolithic chip is discussed. Perfect entanglement is achievable through appropriate epi-structure design

OF2G.3 • 11:00 Optimization of the 3D non-paraxial illumi-

nation volume for multiphoton florescence microscopy, Jonathan Nemirovsky¹, Ido Kaminer¹, Mordechai Segev1; 1Physics Department, Technion, Israel. We present a new approach for optimizing a 3D non-paraxial volume for multiphoton florescence microscopy. Our optimized solutions demonstrate volume reduction of up to 6.5, compared to the best current design for three-photon microscopy.

QF2G.4 • 11:15

Single Shot Two Dimensional Spectroscopy of Photo-bleachable Molecules, Andrey Sha lit¹, Iddo Pinkas², Alexander Brandis³, Yehiam Prior¹; ¹Chemical Physics Department, Weizmann Institute of Science, Israel; 2Department of Chemical Research Support, Weizmann Institute of Science, Israel;³Department of Plant Sciences, Weizmann Institute of Science, Israel. Vibrational spectra of highly photo-bleachable molecules are measured, and ground- and excited-state dynamics is observed by single shot four wave mixing enabled using a novel geometrical mapping of the delay times in the beams

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 215

CLEO2012 Friday.indd 14

Lucia Caspani, INRS-EMT, Canada, Presider

Two-dimensional infrared imaging by frequency upconversion at few-photon level, Kun Huang Xiaorong Gu¹, Haifeng Pan¹, E. Wu¹, Heping Zeng¹; ¹State Key Laboratory of Precision Spectroscopy, East China Normal University, China. We demonstrated few-photon-level infrared imaging at 1040 nm by coincidence frequency upconversion with a high conversion efficiency of 31%. The full imaging was implemented without any scanning devices, thus gaining in simplicity and speed.

Room A5

Room A7

 (\blacklozenge)

Room A8

CLEO: QELS-Fundamental Science

10:30-12:30 QF2H • Periodic Materials Phenomena

Meir Orenstein, Technion Israel Institute of Technology, Israel, Presider

QF2H.1 • 10:30 Invited

Strain-induced Band Gap and Effective Magnetic Field in Photonic Crystals, Mikael C. Rechtsman¹, Alexander Szameit², Mordechai Se $gev^{\scriptscriptstyle 1}; {}^{\scriptscriptstyle 1}\!Solid\,State\,Institute,\,Technion\,\text{-}\,Israel\,Institute}$ of Technology, Israel; ²Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Germany. We show that a certain inhomogeneous strain induces an effective magnetic field in photonic crystals that have Dirac points. The magnetic field induces highly degenerate Landau levels and band gaps in between them.

QF2H.2 • 11:00

Near-field observations of self-collimation in photonic crystal superlattices, Pin-Chun Hsieh¹, Chung-Jen Chung², Serdar Kocaman¹, Claudiu Biris³, Ming Lu⁴, Nicolae Panoiu³, Chee Wei Wong1; 1Mechanical Engineering, Columbia University, USA; ²Center for Micro/Nano Science and Technology, National Chen Kung University, Taiwan; ³Photonics Group, Department of Elec-tronic and Electrical Engineering, University College London, United Kingdom; 4Center for Functional Nanomaterials, Brookhaven National Laboratory, USA. We present experimental observations of self-collimation effect in photonic crystal superlattices consisting of photonics crystal region and homogeneous media

QF2H.3 • 11:15

Fundamental limitations to gain enhancement in slow-light photonic structures, Jure Grgic Johan Raunkjær Ott¹, Fengwen Wang², Ole Sigmund², Antti-Pekka Jauho³, Jesper Mørk¹, N. Asger Mortensen¹; ¹Department of Photonics Engineering, DTU Fotonik, Denmark; 2Department of Mechanical Engineering, Solid Mechanics, DTU Mekanik, Denmark; ³Department of Micro- and Nanotechnology, DTU Nanotech, Denmark. We present a non-perturbative analysis of light-matter interaction in active photonic crystal waveguides in the slow-light regime. Inclusion of gain is shown to modify the underlying dispersion law, thereby degrading the slow-light enhancement.

Room B2 & B3

Michael Dennis, Johns Hopkins

Wavelength Shifting of a 21.4-Gbaud 16-QAM Signal using Highly Nonlinear Silica Fiber, R. M.

Jopson¹, A. H. Gnauck¹, Evgeny Myslivets², Bill P.P.

Kuo², M. Dinu², P. J. Winzer¹, Nikola Alic², Stojan

Radic2; 1Bell Labs, Alcatel-Lucent, USA; 2UCSD,

USA. Longitudinal stress reduces the stimulated-

Brillouin-scattering threshold in a silica-fiber

parametric amplifier, allowing ditherless pumping.

This enables phase conjugation of a 21.4-Gbaud

Spread-Spectrum Chromatic Dispersion

Monitoring Technique for Flexible Bandwidth Channels, Xinran R. Cai¹, David J. Geisler¹, Roberto Proietti¹, Yawei Yin¹, Ryan P. Scott¹, S.

J. Ben Yoo¹; ¹Dept. of Electrical and Computer

Engineering, UC Davis, USA. We exploit an in-

band, 50-MHz supervisory channel for chromatic

dispersion monitoring of variable-bandwidth flexpaths. Results show monitoring optimization

tradeoffs and dispersion measurements for a

400-GHz flexpath with up to 100-km link lengths.

All-Optical Switching for Dynamic Wavelength

Routing of 100G Pol-Mux QPSK data, Claudio

Porzi¹, Gianluca Meloni¹, Marco Secondini¹, Luca Poti², Giampiero Contestabile¹, Antonella

Bogoni²; ¹Scuola Superiore Sant'Anna, Italy; ²CNIT,

Italy. Simultaneous wavelength conversion and

channel drop operation for 112 Gb/s polarization-

multiplexed OPSK signals is demonstrated by

using a single SOA-MZI controlled by an optical

gate signal. After coherent detection, low OSNR

Tunable Complex-Weight All-Optical IIR Filter

Design based on Conversion/Dispersion Delays,

Mohammad Reza Chitgarha¹, Salman Khaleghi¹, Omer F. Yilmaz¹, Moshe Tur², Michael W. Haney³,

Alan Willner¹; ¹University of Southern California,

USA; ²Tel Aviv University, Israel; ³University of

Delaware, USA. We propose and study the design

of a tunable optical infinite-impulse-response filter based on conversion/dispersion delays. Design

guidelines are presented to alleviate the effects of

the inherent system propagation delay.

16-QAM signal with less than 0.6-dB penalty.

10:30-12:15

Processing **D**

CF2I.1 • 10:30 D

CF2I.2 • 10:45 D

CF2I.3 • 11:00 D

penalty is measured.

CF2I.4 • 11:15 D

CF2I • Optical Signal

University, USA, Presider

Room C1 & C2

CLEO: Science & Innovations

10:30-12:30 **CF2J** • Next-Generation Photovoltaics I Meredith Reed, US Army Research Laboratory, USA, Presider

CF2J.1 • 10:30 D

The Opto-Electronics which Broke the Efficiency Record in Solar Cells, Eli Yablonovitch^{1,2}, Owen D. Miller^{1,2}; ¹Material Sciences Division, Lawrence Berkeley National Laboratory, USA; ²Electrical Engineering & Comp. Sciences Dept., University of California, Berkeley, USA. As solar cells exceed 25% efficiency, photon management becomes far more important than electronic properties. Surprisingly, maximizing external fluorescence increases efficiency, the key behind the recent single-junction efficiency record of 28.4%.

CF2J.2 • 10:45 D

Inverse Design of a Nano-Scale Surface Texture for Light Trapping, Owen D. Miller^{1,2}, Vidya Ganapati^{1,2}, Eli Yablonovitch^{1,2}; ¹Material Sciences Division, Lawrence Berkeley National Laboratory, USA; ²Electrical Engineering & Comp. Sciences Dept., University of California, Berkeley, USA. We introduce computational inverse design to optimize nano-scale surface textures for light trapping. The approach yields a structure with a 40.8 absorption enhancement factor, the highest reported for a high-index material in the full-wave domain.

CF2J.3 • 11:00 D Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics, Chenxi Lin¹, Ningfeng Huang¹, Michelle L. Povinelli¹; ¹University of Southern California, USA. We study the effect of aperiodicity on silicon nanorod anti-reflection structures. Numerical results reveal that randomness is beneficial for small

Limiting Efficiencies of Tandem Solar Cells for

III-V Nanowire Arrays on Silicon Substrates, Ningfeng Huang^{1,2}, Chenxi Lin^{1,2}, Michelle L. Povinelli^{1,2}; ¹Ming Hsieh Department of Electrical

Engineering, University of Southern California,

USA; ²Center for Energy Nanoscience, University

of Southern California, USA. We use electromag-

netic simulations and detailed balance analysis

to calculate limiting efficiencies of tandem solar

cells consisting of III-V nanowires on silicon. We

optimize the nanowire structural parameters and

provide general design guidelines.

CF2J.4 • 11:15 C

nanorod sizes. A guided random walk algorithm is used to obtain optimized aperiodic structures.

Room C3 & C4

10:30-12:30 CF2K • Quantum Cascade Laser Design & Characterization **D** Claire Gmachl, Princeton, USA,

Presider

CF2K.1 • 10:30 D

Comparison Study of the Influence of Taller Electron Exit Barriers on the Device Performance for Ultra-strong Coupling Quantum Cascade Laser Designs, Peter Q. Liu¹, Pierre Bouzi¹, Yamac Dikmelik^{1,2}, Nyan L. Aung¹, Xiaojun Wang³, Jen-Yu Fan³, Claire Gmachl¹; ¹Princeton University, USA; ²Department of Electrical and Computer Engineering, Johns Hopkins University, USA; 3AdTech Optics, USA. Two different ultrastrong coupling Quantum Cascade laser designs and their modified versions with two taller electron exit barriers are compared experimentally to study the influence of such taller electron exit barriers on the device performance.

CF2K.2 • 10:45 D

Novel injector schemes for Mid-Infrared-Quantum-Cascade-lasers, toward the genetic optimization of the laser design, Alfredo Bismuto¹; ¹*Physics, ETHZ, Switzerland.* Using a novel transport model based on density matrix, a new injector design for Mid-IR quantum-cascade-lasers is presented that improves laser performance. Results on automatized optimization of laser design using genetic algorithms are also shown.

CF2K.3 • 11:00 D

Tapered Active-Region Quantum Cascade Lasers for Virtual Suppression of Carrier-Leakage **Currents,** Jeremy D. Kirch¹, Chun-Chieh Chang¹, Jae C. Shin¹, Luke J. Mawst¹, Dan Botez¹, Tom Earles²; ¹ECE, University of Wisconsin-Madison, USA; ²Intraband, LLC, ÚSÁ. A quantum-cascade laser design for effectively suppressing carrier leakage is demonstrated. The characteristic temperatures for threshold and slope efficiency, T0 and T1, reach values of 231 K and 797 K over the 20-60oC range

CF2K.4 • 11:15 🖸

Time-resolved spectral characterization of a pulsed external-cavity quantum cascade laser, Jean-Michel Melkonian¹, Johan Petit¹, Myriam Raybaut¹, Antoine Godard¹, Michel Lefebvre1; 1Onera, France. The time-resolved spectrum of a pulsed external-cavity QCL is obtained thanks to sum-frequency mixing with nanosecond pump pulses with a variable delay. Frequency chirps and mode hops spanning over 30 GHz are observed.

 $(\mathbf{\Phi})$

216

CLEO: 2012 • 6–11 May 2012

Marriott San Jose Salon I & II Salon III **CLEO: Science** & Innovations 10:30-12:30 CF2M • Plasmonics and Light-Matter Interactions Vasily Astratov, University of North Carolina at Charlotte, USA, Presider CF2M.1 • 10:30 Plasmonic Photoconductive Terahertz Emit**ters Based on Nanoscale Gratings,** Christopher W. Berry¹, Mona Jarrahi¹; ¹Electrical Engineering and Computer Science, University of Michigan, USA. A photoconductive terahertz emitter based on a long-carrier lifetime semiconductor is demonstrated experimentally. Plasmonic grating

 (\blacklozenge)

lifetime substrate.

CF2M.2 • 10:45 Direct SNOM of quadrupolar plasmon mode selectively excited on gold nanowire in PCF, Patrick S. Uebel¹, Markus A. Schmidt¹, Howard W. Lee1, Philip S. Russell1; 1Russell Division, Max Planck Institute for the Science of Light, Germany. The near-field profile of a quadrupolar plasmon mode, guided on a gold nanowire incorporated in a PCF, is imaged using SNOM. The mode is excited by phase-matched coupling from an adjacent glass core.

electrodes enable ultrafast, high quantum effi-

ciency operation, without need for a short-carrier

CF2M.3 • 11:00

Leak-free Focusing of Propagating Surface Plasmon Waves Using Non-symmetric Double Nanorings, Beibei Zeng¹, Yongkang Gao¹, Filbert J. Bartoli¹; ¹Electrical and Computer Engineering Department, Lehigh University, USA. Leak-free focusing is proposed using nonsymmtric double nanorings. A single focal spot could be obtained at the geometric center through the constructive interference of two anti-propagating SP waves by breaking the geometrical symmetry.

CF2M.4 • 11:15

New Electro-Optic Switch Using Symmetric Five-Layer Plasmonic Waveguide with Light-Coupling Slot-Antennas, Josuke Ozaki1, Hiroshi Murata1, Junichi Takahara2, Yasuyuki Okamura1; 1Systems Innovation, Graduate School of Engineering Science, Osaka University, Japan; ²Applied Physics, Graduate School of Engineering, Osaka University, Japan. New electro-optic switches composed of Au/LiNbO3 coupled structures with slot-antenna arrays are proposed. Utilizing selective coupling to the SPP even mode by antennas and its control by electro-optic effects, new plasmonic switches are obtainable

CF2N.4 • 11:15

External-Cavity Cr4+:YAG Double-Clad Crystal Fiber Laser, Dong-Yo Jheng1, Chien-Chih Lai1, Kuang-Yu Hsu1, Yen-Sheng Lin1, Ying-Jie Chen1, Sheng-Lung Huang^{1,2}; ¹Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taiwan; ²Department of Electrical Engineering, National Taiwan University, Taiwan An external-cavity and laser-diode-pumped Cr4+:YAG double-clad crystal fiber laser was demonstrated with a threshold pump power of 69 mW It was polarized with a 30:1 extinction ratio, and no any polarization-controlled element was used.

10:30-12:30 **CF2N** • High Power Fiber Lasers and Beam Combining John Minelly, Coherent Inc., USA, Presider

Marriott San Jose

Salon IV

CF2N.1 • 10:30

Phase-Locking and Coherent Power Combining of Linearly Chirped Optical Waves, Naresh Satyan¹, Arseny Vasilyev¹, George Rakuljic², Jeffrey O. White3, Amnon Yariv1; 1Department of Applied Physics and Materials Science, California Institute of Technology, USA; ²Telaris Inc., USA; ³Army Research Laboratory, USA. Rapidly chirped optical waves reduce SBS in fiber amplifiers, enabling higher output powers. This work demonstrates homodyne and heterodyne phase-locking, and coherent combining, of linearly chirped optical waves using acoustooptic frequency shifters.

CF2N.2 • 10:45

Coherent Beam Combination of Fiber Laser Arrays via Multiplexed Volume Bragg Gratings, Chunte A. Lu¹, Angel Flores¹, Erik Bochove¹, William Roach¹, Vadim Smirnov², Leonid Glebov^{3,2}; ¹Air Force Research Laboratory, USA; ²OptiGrate Corp, USA; ³CREOL/UCF, USA. We report the first experimental demonstration of active coherently combining of fiber laser arrays with multiplexed volume Bragg gratings up to 70W combined output power with diffraction limited beam quality achieved at 82% combining efficiency.

CF2N.3 • 11:00

Clad-Pumped YDFLs Operating in the 1150-1200 nm Range, Vladislav V. Dvoyrin¹, Oleg I. Medvedkov², Irina T. Sorokina¹; ¹Department of Physics Faculty of Natural Sciences and Technology Norwegian University of Science and Technology (NTNU), Norway; ²Fiber Optics Research Center, Russian Academy of Sciences, Russian Federation. We demonstrate clad-pumped YDFLs operating at the 1147, 1160 and 1180 nm wavelengths at 35, 21 and 10.5 W of output power, respectively; operation at 1200 nm was realized for the first time.

Marriott San Jose

10:30-12:00 CF2L • Ultrafast Devices Presider TBD

CF2L.1 • 10:30

Ultrafast switching of hard X-rays, Peter Gaal¹ André Bojahr¹, Marc Herzog¹, Yevgen Gold-shteyn², Roman Shayduk², Wolfram Leitenberger¹ Hengameh Navirian2, Dimitry Khakhulin3, Michael Wulff3, Matias Bargheer1,2; 1Institute for Physics and Astronomy, University of Pots-dam, Germany; ²Helmholtz-Zentrum Berlin für Materialien und Energie, Germany; ³European Synchrotron Radiation Facility (ESRF), France. A 100 ps synchrotron pulse of hard X-rays is shorted to few picoseconds by exploiting coherent phonon dynamics in a thin metallic SrRuO3 layer. A first pump-probe experiment with the shortened X-ray pulse is presented.

CF2L.2 • 10:45

Optical Cross Correlator in a Silicon Waveguide, Moti Fridman¹, Yoshitomo Okawachi¹, Stephane Clemmen¹, Michael Menard², Michal Lipson^{2,3}, Alexander Gaeta^{1,3}; ¹applied physics, Cornell university, USA; ²School of Electrical and Com puter Engineering, Cornell University, USA; ³Kavli Institute at Cornell for Nanoscale Science, Cornell University, USA. We present a technique for performing single-shot optical cross-correlations in a silicon waveguide and show that it can be applied to the cross correlation of two 300-fs signals.

CF2L.3 • 11:00

25-Gbps Operation of Silicon p-i-n Mach-Zehnder Optical Modulator with 100-µm-Long Phase Shifter, Takeshi Baba^{1,3}, Suguru Akiyama^{1,3}, Masahiko Imai^{1,3}, Takeshi Akagawa^{1,3}, Masashi Takahashi^{2,3}, Naoki Hirayama^{2,3}, Hiroyuki Takahashi^{1,3}, Yoshiji Noguchi^{2,3}, Hideaki Okayama^{1,3}, Tsuyoshi Horikawa^{2,3}, Tatsuya Usuki^{1,3},¹Photonics Electronics Technology Research Association, Japan; ²National Institute of Advanced Industrial Science and Technology, Japan; 3Institute for Photonics-Electronics Convergence System Technology, Japan. We developed a high-speed Mach-Zehnder modulator with the shortest phase shifter (100- μm length) reported so far. Our modulator exhibited 25-Gbps eye-openings with an extinction ratio of 4.3 dB and on-chip insertion loss of 4.7 dB.

CF2L.4 • 11:15

25-Terahertz-Bandwidth Optical Temporal Differentiator Based on a Wavelength-Selective Directional Coupler, Ming Li¹, Hoe-Seok Jeong², Tae-Jung Ahn², José Azana¹; ¹INRS-EMT, *Canada*; ²*Chosun University, Republic of Korea.* An optical temporal differentiator with a record operation bandwidth of ~25 THz is demonstrated based on a wavelength-selective directional coupler. An optical Gaussian pulse with a bandwidth of ~500 GHz is successfully differentiated.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 217

۲

 $(\mathbf{\Phi})$

May Fridav, 11

Room A1

CF2A • Light Trapping &

Resonators—Continued

Design and Fabrication of Helical Structures

via Proximity-field Nano-Patterning (PnP)

for Application as Chiral Metamaterials,

Sidhartha Gupta1, James W. Rinne1, Thomas

C. Galvin², Kevin A. Arpin¹, Daniel Dregely³,

Harald W. Giessen³, J. G. Eden², Pierre Wiltzius⁴, Paul V. Braun¹, ¹Department of Materials Science & Engineering, University of Illinois at Urbana-

Champaign, USA; ²Department of Electrical &

Computer Engineering, University of Illinois at Urbana-Champaign, USA; ³4. Physikalisches Insti-

tut, Universität Stuttgart, Germany; 4University of

California Santa Barbara, USA. We demonstrate

the use of a genetic algorithm based inverse design

technique to target and fabricate helical structures via PnP. We furthermore show their inversion into other functional materials and their application as

(LOCOS) process. We achieve an intrinsic qual-

ity factor of 525,000 in 410 µ m-circumference

CF2A.4 • 11:30

Room A2

CLEO: Science & Innovations

CF2B • Optical Parametric **Oscillators**—Continued

CF2B.5 • 11:30

Actively Mode-Locked Optical Parametric Oscillator Using Low-Frequency Phase-Modulation, Kavita Devi¹, Suddapalli Chaitanya Kumar¹, Majid Ebrahim-Zadeh^{1,2}; ¹ICFO-Institut de Ciencies Fotoniques, Spain; ²Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain. We report active mode-locking of a continuous-wave optical parametric oscillator in doubly- and singlyresonant configuration using direct low-frequency electro-optic phase-modulation, generating 533ps and 230ps pulses at 80MHz, respectively.

CF2C • Optical Combs and Spectroscopic Applications— Continued

Room A3

CF2C.4 • 11:30

 (\blacklozenge)

Spectrally flat, broadband visible-wavelength astro-comb, Guoqing Chang¹, Chih-Hao Li², Alexander Glenday², Gabor Furesz², Nick Langellier², Li-Jin Chen¹, Matthew W. Webber², Jinkang Lim¹, Hung-Wen Chen¹, David F. Phillips², Andrew Szentgyorgyi2, Ronald L. Walsworth2, Franz X. Kaertner^{1,3}; ¹EECS, MIT, USA; ²Harvard-Smithsonian Center for Astrophysics, Harvard University, USA; 3Center for Free-Electron Laser Science, DESY and University of Hamburg, Germany. We demonstrate a broadband visible-wavelength astro-comb enabled by: (1) dispersion-managed FOCR for green-to-red source-comb generation and (2) complementary chirped-mirror pairs for con-structing broadband Fabry-Perot filtering cavities.

CF2C.5 • 11:45

Conjugate Fabry-Perot cavity pair for astrocombs, Chih-Hao Li1, Guoqing Chang2, Alexander Glenday¹, David F. Phillips¹, Franz X. Kaertner^{2,3}, Ronald L. Walsworth¹; ¹Harvard University, USA; ²Massachusetts Institute of Tech-nology, USA; ³University of Hamburg, Germany. We propose a new mode-filtering scheme for astrocombs using two Fabry-Perot cavities: a "conjugate Fabry-Perot cavity pair". Simulations suggest that

Room A4

CLEO: QELS-Fundamental Science

QF2D • Plasmonic Gratings and **Photonic Crystals—Continued**

OF2D.5 • 11:30

Photonic Crystal Microcavities in Single Crystal Diamond for Color Center Coupling, Janine Riedrich-Möller¹, Laura Kipfstuhl¹, Christian Hepp¹, Sebastien Pezzagna², Jan Meijer², Martin Fischer³, Stefan Gsell³, Matthias Schreck³, Christoph Becher¹; ¹Fachrichtung 7.2 (Experimentalphysik), Universitaet des Saarlandes, Germany; ²RUBION, Ruhr-Universitaet Bochum, Germany; ³Experimentalphysik IV, Universitaet Augsburg, Germany. We fabricate photonic crystal microcavities in a single crystal diamond membrane and actively tune the cavity modes into resonance with the emission line of color centers in diamond to enhance the emission rate.

OF2D.6 • 11:45

Collimation of Raman scattering with plasmonic structures, Wenqi Zhu¹, Dongxing Wang¹, Yizhuo Chu¹, Kenneth B. Crozier¹; ¹Harvard University-SEAS, USA. We demonstrate the collimation of Raman scattering by a SERS substrate consisting of optical antennas, a metallic reflector and a 1D grating of metal strips. A ~6.1° FWHM angle perpendicular to the strips is measured.

CF2A.6 • 12:00

ring resonator.

chiral metamaterials. CF2A.5 • 11:45

Frequency Locked Micro Disk Resonator for improved Sensing resolution and overcoming perturbations in NSOM measurements, Liron Stern¹, Ilya Goykhman¹, Boris Desiatov¹, Uriel Levy¹; ¹Applied Physics, The Hebrew University of Jerusalem, Israel. We experimentally demonstrate locking of a laser frequency to a resonance line of a micro disk resonator. Achieving $1{\pm}0.1~\text{pm}$ shifting detection, the approach can be applied for sensing enhancement and perturbation immune NSOM measurements.

CF2A.7 • 12:15 Self-referencing Multimode Photonic Microresonator, Yasha Yi1; 1N-223, NYU and CUNY, USA. Here we report that a self referencing mechanism can be achieved by simultaneous excitation of both fundamental and 2nd order micro disk optical resonance modes

CF2B.7 • 12:00

CF2B.8 • 12:15

between 11 and 18 µm.

Synchronized retro-reflection-pumped femtosecond optical parametric oscillator, Adolfo Esteban-Martin¹, Venkata Ramaiah-Badarla¹, Ma-jid Ebrahim-Zadeh^{1,2}; ¹ICFO-Institut de Ciencies Fotoniques, Spain; ²Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain. We demonstrate a practical technique for pre-oscillation threshold reduction, output power enhancement, and high frequency pulse train engineering in synchrono ly-pumped optical parametric oscillators based on synchronized retro-reflected pumping.

Milliwatt-level Mid-infrared Difference Fre-

quency Generation with a Femtosecond Dual-

signal-wavelength Optical Parametric Oscilla-

tor, Robin Hegenbarth¹, Andy Steinmann¹, György Tóth², János Hebling², Harald Giessen¹; ¹4th Physics

Institute and Research Center SCOPE, University of

Stuttgart, Germany; ²Department of Experimental

Physics, University of Pécs, Hungary. We report on mid-infrared difference frequency generation

with a dual-signal-wavelength femtosecond optical

parametric oscillator. We achieved up to 1.2 mW

average power at 42 MHz at wavelengths tunable

CF2C.6 • 12:00 C

CF2C.7 • 12:15 D

Coherent dual-comb spectroscopy with frequency combs stabilized by free-running CW lasers, Naoya Kuse¹, Akira Ozawa¹, Yohei Ko-bayashi¹; ¹ISSP, University of Tokyo, Japan. We demonstrated coherent dual-comb spectroscopy with two Yb-fiber lasers phase-locked to each other by using free-running CW lasers. The relative timing/ phase jitter was strongly suppressed, resulting in comb resolution after coherent averaging.

Accurate Fiber-based Acetylene Frequency

References, Chenchen Wang¹, Nathalie V. Wheeler², Coralie F. Dutin^{2,3}, Michael Grogan², Tom Bradley^{2,3}, Brian R. Washburn¹, Fetah Bena-

bid23, Kristan L. Corwin1; 1Physics, Kansas State

University, USA; 2Physics, University of Bath, United

Kingdom; ³Xlim Research Institute, Université de

Limoges, France. An all-fiber based acetylene frequency reference is achieved with ~100 kHz

accuracy. The three-cornered hat method was used

to calibrate the stability of fiber-based frequency,

and a 2×10-12 stability at 0.1 s is obtained.

QF2D.7 • 12:00 High-Q, Low Index-Contrast Polymeric Pho-

tonic Crystal Nanobeam Cavities, Qimin Quan¹, Ian B. Burgess¹, Sindy Tang², Daniel Floyd¹, Marko Loncar¹; ¹Harvard, USA; ²Stanford University, USA. We present the realization of high-Q (Q=36000) polymeric photonic crystal nanobeam cavities made of two polymers that have an ultra-low index contrast, and demonstrate that these polymer cavities are outstanding refractive index sensors (FOM=9190).

OF2D.8 • 12:15

Polarization-independent Fano resonances in one dimensional arrays of core-shell nano spheres, Wei Liu¹, Andrey M. Miroshnichenko¹, Dragomir N. Neshev¹, Yuri S. Kivshar¹; 'Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Australia. We study light scattering by one-dimensional arrays of core-shell nanospheres and reveal the existence of polarization-independent Fano resonances due to the interference of degenerate magneto-electric Mie resonances with Wood's anomaly of the array.

12:30–13:30 Lunch Break (on your own)

CLEO2012 Friday.indd 17

۲

CE2B 6 • 11-45 High quality factor and high confinement silicon resonators using etchless process, Austin G. Griffith¹, Jaime Cardenas¹, Carl B. Poitras¹, Michal Lipson1; 1 Cornell University, USA. We demonstrate high-Q factor and high confinement silicon ring resonators fabricated by a local oxidation of silicon

Narrowed Synchronously Pumped Optical Parametric Oscillators, Cédric LaPorte¹, Jean-Baptiste Dherbecourt¹, Jean-Michel Melkonian¹, Myriam Raybaut¹, Antoine Godard¹; ¹ONERA - the French Aerospace Lab, France. Line-narrowing of a synchronously-pumped OPO using an intracavity diffraction grating leads to a fivefold increase of the resonator-length detuning tolerance. We show that this effect is due to resonant beam geometric adaptation within the cavity.

Tolerance and Tuning of Diffraction-Grating

this scheme improves astro-comb accuracy in the presence of errors from nonlinear fibers.

 $(\mathbf{\Phi})$

Room A6 **CLEO: QELS-Fundamental Science**

QF2E • Cold Atom—Continued

Room A5

QF2F • Integrated Quantum **Devices**—Continued

OF2E.5 • 11:30

Large area Sagnac interferometer based on laser-cooled atoms, Gunnar Tackmann¹, Peter Berg¹, Christian Schubert¹, Sven Abend¹, Wolfgang Ertmer1, Ernst Rasel1; 1Institut für Quantenoptik, Leibniz Universität Hannover, Germany. We present a high resolution atom interferometer gyroscope based on stimulated Raman transitions of neutral atoms. Employing three separate interaction zones allows to enlarge the signal while maintaining high compactness.

Ultra-High Compton Frequency Atomic Inter-

ferometric Gyroscope Using Collective States, Selim M. Shahriar¹, Resham Sarkar¹, May Kim¹,

Yanfei Tu1; 1Northwestern University, USA. We

show that a cluster of N atoms can be split and

recombined as a single particle, with a Compton frequency higher by a factor of N than a single

atom, making a supersensitive gyroscope.

OF2F.5 • 11:30

Electrically generated indistinguishable and entangled photon pairs, Jonas Nilsson¹, Mark Stevenson¹, Cameron L. Salter^{1,2}, Anthony J. Bennett¹, Martin B. Ward¹, Ian Farrer², David A. Ritchie², Andrew J. Shields¹; ¹Toshiba Research Europe Limited, United Kingdom; ²Cavendish Laboratory, University of Cambridge, United Kingdom. We present measurements on electrically generated photons from a quantum dot in an LED structure, showing high entanglement fidelity and two-photon interference visibility, both necessary requirements for scalable quantum communication and logic.

OF2G.6 • 11:45

were achieved.

Looking at the Spectra of the Individual Orders Produced in Multi-frequency Raman generation, Donna Strickland¹, Zheng Cui¹, Mayank Chaturvedi¹, Baolin Tian¹, Jason Ackert¹, Fraser Turner¹; ¹Physics and Astronomy, University of Waterloo, Canada. The competition between multi-frequency Raman generation and four-wave mixing is investigated by studying the spectral properties of the high-order, anti-Stokes orders.

Room A7

Tunable Giant Multi-Photon Absorption using

Seeded CdSe/CdS Nanorod Heterostructures,

Tze Chien Sum¹, Guichuan Xing¹, Cheng Hon

Alfred Huan¹, Sabyasachi Chakrabortty², Yin Thai

Chan2; ¹Division of Physics and Applied Physics,

Nanyang Technological University, Singapore; ²De-

partment of Chemistry, National University of

Singapore, Singapore. A clear strategy to enhance MPA cross-sections whilst independently tuning

the emissive wavelengths of semiconductor QDs

using seeded CdSe/CdS nanorod heterostructures

is presented. Giant σ 2-3 orders larger than QDs

OF2G • Nonlinear Optical

Processes—Continued

OF2G.5 • 11:30

QF2E.7 • 12:00

OF2F 6 • 11-45

Measurement of the system-environment coupling and its relation to dynamical decoupling, Nir Davidson¹, Ido Almog¹, Yoav Sagi¹, Goren Gordon¹, Guy Bensky¹, Gershon Kurizki¹; ¹Weizmann Institute of Science, Israel. We present a direct measurement of the bath coupling spectrum in an ensemble of trapped ultracold atoms, by applying a spectrally narrow-band control field. From the inferred spectrum we predict the performance of some dynamical decoupling sequences.

QF2E.8 • 12:15

Anomalous Diffusion and Fractional Self-Similarity of Ultra Cold Atoms in One Dimen scaling in both space and time.

QF2G.7 • 12:00

IR detection in wide-gap semiconductors using extreme nondegenerate two-photon absorption, Himansu Pattanaik¹, Dmitry Fishman¹, Scott Webster1, David Hagan1, Eric Van Stryland1; 1CREOL, College of Optics and Photonics, University of Central Florida, USA. We compare GaAs and GaN for IR detection using extremely non-degenerate two-photon absorption. While the small gap mate-rial has larger ND-2PA and hence better sensitivity to IR, unwanted background from degenerate 2PA outweighs this advantage

sion, Nir Davidson¹, Yoav Sagi¹, Ido Almog¹, Rami Pugatch1; 1 Weizmann Institute of Science, Israel. We observe spatial anomalous diffusion of ultra-cold atoms in one-dimensional dissipative optical lattices, and demonstrate its fractional self-similar

QF2G.8 • 12:15

Spectral Mirror Imaging in Ultrafast Optical Parametric Processes, Chenji Gu¹, Boaz Ilan¹, Jay E. Sharping¹; ¹Univ. of California, USA. We experimentally demonstrate and theoretically explore a spectral imaging system where two spectral sidebands produced through an optical parametric process always have reversed spectral profiles with respect to the center frequency of the pump.

and Electrically Driven Single-Photon Sources.

OF2F6 • 11-45

QF2F.7 • 12:00

QF2F.8 • 12:15

Daniel Rülke¹, Daniel M. Schaadt^{1,2}, Heinz Kalt¹ Michael Hetterich¹; ¹Institut für Angewandte Physik and DFG Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Germany; ²Institute for Energy Research and Physical Technologies, Clausthal University of Technology, Germany. Reversed pyramidal GaAs microcavities with embedded InAs quantum dots have been fabricated, in order to prove their potential for highly efficient single-photon emitters. Contacted via tiny bridges, they have been driven optically and electrically.

Photons on demand from an electrically driven

single quantum dot under pulsed excitation,

Matthias Florian¹, Paul Gartner¹, Christopher

Gies¹, Frank Jahnke¹, Christian Kessler², Fabian Hargart², W. Schulz², Matthias Reischle², Marcus

Eichfelder², Robert Rossbach², Michael Jetter²,

Peter Michler2; Institute for Theoretical Physics,

University of Bremen, Germany; ²Institut für Halble-iteroptik und Funktionelle Grenzflächen, University

of Stuttgart, Germany. For a single quantum dot under excitation with short electrical pulses the

dependence of the photon anti-bunching on pulse width and excitation strength is studied in a theory-experiment collaboration.

Continuously adjustable narrow-band her-

alded single photon source, Michael J. Foertsch^{1,2}

Josef Fuerst^{1,2}, Christoffer Wittmann^{1,2}, Dmi-try Strekalov^{1,3}, Andrea Aiello^{1,2}, Christine

Silberhorn¹, Christoph Marquardt^{1,2}, Gerd

Leuchs^{1,2}; ¹Max Planck Insitute for the Science of

Light, Germany;2Institut fuer Optik, Information

und Photonik, Germany; ³Jet Propulsion Laboratory, USA. We present the high efficient generation of

narrow-band heralded single photons, widely tunable in wavelength and bandwidth using resonator enhanced spontaneous down conversion in a crystalline whispering gallery mode resonator.

12:30–13:30 Lunch Break (on your own)

Pyramidal Microcavities for Improved Optically

(\blacklozenge)

۲

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 219

Room B2 & B3

A Linear Technique for Discrimination of Optically Coded Waveforms Using Optical

Frequency Combs, Sharad P. Bhooplapur¹, Peter

Delfyett¹; ¹College of Optics and Photonics, CREOL, University of Central Florida, USA. We have dem-

onstrated a coherent-detection architecture for an

OCDMA system using only linear optical devices

that successfully distinguishes between different

users at record-low average power levels of ~30µW.

CF2I • Optical Signal

CF2I.5 • 11:30 D

CF2I.6 • 11:45 D

Processing—Continued

Room A8

CLEO: QELS-Fundamental Science

OF2H • Periodic Materials **Phenomena**—Continued

OF2H 4 • 11:30

Integrated optical filters based on negativeindex photonic crystals, Serdar Kocaman¹, Mehmet S. Aras1, Nicolae Panoiu2, Ming Lu3, Chee Wei Wong1; 1Columbia University, USA; 2University College London, United Kingdom; ³Brookhaven National Laboratory, USA. We demonstrate chipscale flat-top filters at near-infrared wavelengths using negative index photonic crystal based Mach Zehnder interferometers. We further show that our approach can be used to design multi-level tunable filters.

OF2H.5 • 11:45

Bio-inspired tunable disorder in a 3D photonic crystal via highly controlled partial wetting and drying, Anna V. Shneidman¹, Ian B. Burgess^{2,} Mathias Kolle², Qimin Quan², Joanna Aizenberg^{2,3} Marko Loncar²; ¹Chemistry and Chemical Biology, Harvard University, USA; ²School of Engineering and Applied Sciences, Harvard University, USA; ³Wyss Institute for Biologically Inspired Engineering, Harvard University, USA. We use highly controlled partial wetting in chemically encoded 3D photonic crystals to study tunable disorder in structurally colored systems. Our experimental and FDTD analyses also guide our design of a colorimetric indicator for organic liquids.

QF2H.6 • 12:00

Observation of dispersion-free edge states in honeycomb photonic lattices, Yonatan Plotnik¹, Mikael C. Rechtsman¹, Daohong Song³, Matthias Heinrich², Alexander Szameit², Natalia Malkova³, Zhigang Chen3, Mordechai Segev1; 1Technion - Israel Institute of Technology, Israel; ²physics, Institute of Applied Physics, Friedrich-Schiller-Universität, Germany; ³San Francisco State University, USA. We present the observation of dispersion-free edge states in a honeycomb lattice. We show the existence of surface states on both zigzag and bearded edges, and display their dispersion-free nature by tilting the input beam.

QF2H.7 • 12:15

Multimode PT-symmetric optical structures, Konstantinos Makris^{1,2}, Ramy El-Ganainy³ Demetrios N. Christodoulides⁴; ¹Materials Sci-ence and Technology Department, University of Crete, Greece; ²Institute for Theoretical Physics, Vienna University of Technology, Austria; 3Physics Department, University of Toronto, Canada; *Col-lege of Optics and Photonics, University of Central Florida, USA. We examine the properties of multimoded PT-symmetric optical potentials. Multiple PT-thresholds, complex mode organization, vortices in the transverse power flow, and phase singularities, are few of the exotic characteristics of multimode PT-Optics.

CLEO: 2012 • 6–11 May 2012

12:30–13:30 Lunch Break (on your own)

Multi-output-port spectral pulse-shaping for simulating complex interferometric structures, Jochen Schroeder¹, Michaël A. Roelens², Liang B. Du³, Arthur J. Lowery³, Benjamin J. Eggle-ton¹; ¹Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australia; ²Finisar Australia, Australia;³Department of Electrical and Computer Systems Engineering, Monash University, Australia. We demonstrate a novel spectral pulse shaper based reconfigurable interferometric filter with multiple output ports. Using this device we implement a DPSK and DQPSK demodulator and an all-optical discrete Fourier transform filter.

CF2I.7 • 12:00 D

A Method of Noise Suppression Using Feed Forward Loop for Injection Seeded WDM-PON with Low Injection Power, Sang-Rok Moon1, Joon-Young Kim¹, Myeong gyun Kye¹, Chang-Hee Lee¹; ¹Electrical Engineering, Korea Advanced Insti-tute of Science and Technology, Republic of Korea. We propose a noise suppression method using a feed forward loop for injection seeded WDM-PON to enhance cost effectiveness.By using this method, the required injection power is decreased by 8 dB.

CF2J.6 • 11:45 D

THz spectroscopy.

Large Area InGaN/GaN Nanowire Solar Cells on Silicon, Hieu P. Nguyen¹, Yukun Li¹, Zetian Mi1; 1Electrical and Computer Engineering Department, McGill University, Canada. We have demonstrated, for the first time, large area InGaN/GaN nanowire solar cells on Si. An efficiency of ~0.19% is measured, which can be drastically improved by reducing the carrier localization and nonradiative surface recombination.

CLEO: Science

& Innovations

Polarization Enhanced Carrier Transport in

a p-down n-GaN/i-InGaN/p-GaN Solar Cell

Structure, Blair C. Connelly¹, Chad S. Gallinat¹,

Nathaniel T. Woodward¹, Ryan W. Enck¹, Grace

D. Metcalfe¹, Randy 'Tompkins¹, Shuai Zhou¹, Kenneth A. Jones¹, Hongen Shen¹, Michael Wraback¹; ¹U.S. Army Research Laboratory, USA.

Evidence of a strong electric field aiding carrier

collection is observed in an n-GaN/i-InGaN/p-

GaN inverted polarity solar cell structure,

detected by pump-probe electroabsorption and

CF2J • Next-Generation

CF2J.5 • 11:30 D

Photovoltaics I—Continued

CF2J.7 • 12:00 D

Charge Transport of CdS/CdSe Co-sensitized Solar Cells, Kung-Hsuan Lin¹, Yu-Ming Chang², I-Ping Liu3, Yuh-Lang Lee3; Institute of Physics, Academia Sinica, Taiwan; ²Center for Condensed Matter Physics, National Taiwan University, Taiwan; ³Chemical Engineering, National Cheng Kung University, Taiwan. CdS, CdSe sensitized solar cells were investigated with excitation-wavelengthdependent, time-resolved photoluminescence technique and charge transport model. This approach is helpful to design semiconductor-sensitized and other types of solar cells.

CF2J.8 • 12:15 D

Thin-film Organic Photovoltaics With Double Plasmonic Nanostructures: the Metal Effect, Beibei Zeng¹, Qiaoqiang Gan², Zakya H. Kafafi^{1,3}, Filbert J. Bartoli¹; ¹Electrical and Computer Engineering Department, Lehigh University, USA; ²Department of Electrical Engineering, The State University of New York at Buffalo, USA; ³Department of Electrical and Systems Engineering, University of Pennsylvania, USA. Broadband light absorption enhancement is numerically investigated for double plasmonic nanostructures in thin-film OPVs using Ag, Al, Au. A broadband, polarization-insensitive, and wide-angle absorption enhancement could be obtained.

Room C3 & C4

CF2K • Quantum Cascade Laser Design & Characterization-Continued

CF2K.5 • 11:30 D

Temperature Dependence of the Frequency Noise and Linewidth of a Mid-IR DFB Quantum Cascade Laser, Lionel Tombez1, Stéphane Schilt1, Joab Di Francesco¹, Pierre Thomann¹, Daniel Hofstetter¹; ¹Physics, Université de Neuchâtel, Switzerland. We present the frequency noise and linewidth of a quantum cascade laser measured for the first time with the same device from cryogenic to room-temperature. A strong increase of the linewidth occurs at low temperature.

CF2K.6 • 11:45

Synchrotron Microspectroscopy of Quantum Cascade Laser Devices based on Quantum Wells and Quantum Dashes, Peter Friedli^{1,2}, Valeria Liverini², Andreas Hugi², Philippe Lerch³, Jerome Faist², Hans Sigg¹, 'Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, Switzer-land; ²Institute for Quantum Electronics, ETH Zurich, Switzerland; ³Swiss Light Source, Paul Scherrer Institut, Switzerland. We apply synchrotron-based Infrared broadband (0.08 - 1eV) transmission measurements of quantum cascade laser devices based on quantum wells and quantum dashes to determine qualitative and quantitative intersubband gain and waveguide losses.

CF2K.7 • 12:00

Direct Determination of Transparency Current in Mid-Infrared Quantum Cascade Laser, Dmitry Revin¹, Randa Hassan¹, Andrey Krysa¹, Kenneth Kennedy¹, Chris Atkins¹, John Cockburn¹, Yongrui Wang², Alexey Belyanin²; ¹Department of Physics and Astronomy, The University of Sheffield, United Kingdom;²Department of Physics and Astronomy, Texas A&M University, USA. Temperature dependent transparency current values have directly been extracted from the transmission spectra for the mid infrared quantum cascade laser. This current is found to contribute more than 65% to the threshold at room temperature.

CF2K.8 • 12:15 D

Direct link of a mid-infrared quantum cascade laser to a frequency comb by optical injection, Pablo Cancio1; Simone Borri1; 1CNR-INO, Italy. A room-temperaturemid-infrared OCL is injectionlocked by a narrow-linewidth comb-linked nonlinear source. The QCL reproduces the injected radiation within [|#24#|]94%, with a frequency noise reduction of 3-4 orders of magnitude.

220

۲

Room C1 & C2

 (\blacklozenge)

 (\blacklozenge)

Marriott San Jose Salon I & II

Electrically-controlled Rapid Femtosecond

Pulse Duration Switching in an Ultrafast

Cr4+: forsterite Laser, Christine E. Crombie¹, David

A. Walsh¹, Weisheng Lu², Shiyong Zhang³, Ziyang

Zhang³, Kenneth Kennedy³, Stephane Calvez², Wilson Sibbett¹, Christian T. Brown¹; ¹SUPA

School of Physics and Astronomy, University of St

Andrews, United Kingdom; ²Institute of Photonics,

University of Strathclyde, United Kingdom; 3EPSRC

National Centre for III-V Technologies, University

of Sheffield, United Kingdom. We demonstrate fast switching between picosecond and femtosecond pulse durations from a Cr4+:forsterite laser, us ing an electrically-contacted GaInNAs SESAM whose absorption is controlled via the quantum confined Stark effect.

todetectors, Alexander Urich¹, Karl Unterrainer¹, Thomas Mueller¹, ¹Photonics Institute, Vienna Uni-

versity of Technology, Austria. In this contribution,

we present measurements of the intrinsic speed

limit of graphene photodetectors using ultrashort laser pulses. We obtain a bandwidth of 262 GHz,

showing the great potential of graphene for high-

CF2L • Ultrafast Devices—

Continued

CE2L 5 • 11:30

CF2L.6 • 11:45

speed optoelectronics.

Marriott San Jose Salon III

CLEO: Science & Innovations

CF2M • Plasmonics and Light-Matter Interactions—Continued

CF2M.5 • 11:30

Transparent Conductive Oxides for Effective Low-Refractive-Index Ohmic Contact to Nanophotonic Devices demonstrated with Fabry-Perot Lasers, Fang Ou¹, Chunhan Hseih¹, Fei Yi¹, Yingyan Huang², Seng-Tiong Ho¹, ¹EECS, Northwestern University, USA; ²OptoNet Inc, USA. We show the possibility of using transparent conductive oxide for the current injection into nanophotonic devices. An InP based coplanar electrode Fabry-Perot micro-laser utilizing indium oxide as the N-type cladding electrode is demonstrated.

CF2N • High Power Fiber Lasers and Beam Combining-Continued

Marriott San Jose

Salon IV

CF2N.5 • 11:30

Measurements of Phase Error Tolerance in Passive Coherent Beam Combining, James R. Leger¹, Chenhao Wan¹; ¹Electrical and Computer Engineering, Univ. of Minnesota, USA. The effects of phase errors on lasers coherently coupled by a passive spatially filtered cavity are experimentally measured. We show that the phases must be kept within approximately ± 0.1 radians to maintain coherence

CF2M.6 • 11:45 Intrinsic Speed Limit of Graphene-based Pho-

Widely and continuously tuneable liquid crystal lasers, Philip J. Hands¹, Damian Gardiner¹, Stephen M. Morris¹, Qasim M. Malik¹, Timothy D. Wilkinson¹, Harry J. Coles¹; ¹Department of Engineering, University of Cambridge, United Kingdom. Liquid crystal lasers offer continuously tuneable emissions across the visible and near-infrared in simple and compact architectures. Förster transfer techniques have extended the tuning range to 450-850nm, whilst utilizing a common pump source.

CF2N.6 • 11:45

Conceptual study on planar-core optical fiber for high power fiber lasers, Yasushi Fujimoto¹, Motoichiro Murakami¹, Takanori Matsumura^{1,2} Hitoshi Nakano², Tatsuhiro Sato³; ¹Institute of Laser Engineering, Osaka Univeristy, Japan; ²Faculty of science and Engineering, Kinki University, Japan,³Research and Application Laboratory, Shin-Etsu Quartz Products Co., Ltd., Japan. We present a new concept of planar-core optical fiber and show a fabricated planar-core fiber and a laser oscillation demonstration. The planar-core fiber will work as a medium of high power fiber lasers.

CF2M.7 • 12:00

Electrically-Controlled Thermal Infrared Metamaterial Devices, Young Chul Jun¹, Edward Gonzales¹, John Reno¹, Eric Shaner¹, Alon Gabbay¹, Igal Brener¹; ¹Sandia National Laboratories, USA. We demonstrate electrically-controlled thermal mid-infrared metamaterials using depletion-type semiconductor devices. This electrical tuning can find novel applications in chip-scale active infrared devices

CF2M.8 • 12:15

Transformation Optics with Planar Metamaterials: Diffraction Grating and Lens, Tapashree Roy¹, Andrey E. Nikolaenko¹, Edward T. Rogers¹, Nikolay I. Zheludev¹; ¹Optoelectronics Research Centre, University of Southampton, United Kingdom. We use the resonance properties of elemental building blocks of metamaterial array with spatially variable parameter to control the phase and intensity of light beam. Dispersive and focusing devices are reported for the first time.

CF2N.7 • 12:00

Dynamics and Origin of Mode Instabilities in High Power Fiber Laser Amplifiers, Hans-Jürgen Otto¹, Cesar Jauregui¹, Tino Eidam¹, Fabian Stutzki¹, Florian Jansen¹, Jens Limpert^{1,2}, Andreas Tünnermann^{1,3}; ¹Fiber- and Waveguide Lasers, Institute of Applied Physics, Germany; ²Helmholtz-Institute Jena, Germany; ³Fraunhofer Institute for Applied Optics and Precision Engineering, Germany. The temporal behavior of mode instabilities is investigated. These results support the thermal origin of this effect, and, in particular, the creation of a thermally-induced long period grating by the beating of two transversal modes.

CF2N.8 • 12:15

Efficient Coherent Beam Combining of Fiber Lasers Using Multiplexed Volume Bragg Gratings, Apurva Jain¹, Christine Spiegelberg², Vadim Smirnov², Leonid Glebov¹, Erik Bochove3; 1CREOL, The College of Optics and Photonics, University of Central Florida, USA; 2OptiGrate Corp., USA; ³Air Force Research Laboratory, USA. Highly efficient, stable, and scalable passive coherent beam combining of fiber lasers using multiplexed volume Bragg gratings is presented. We report combining efficiency of >90% for two channels and demonstrate channel scalability to four channels.

12:30–13:30 Lunch Break (on your own)

۲

 $(\mathbf{\Phi})$

May Fridav, 11

Room A1

Room A2

13:30-15:30

Inc., Presider

CF3B.1 • 13:30 Invited

spectral span approaches 3-6 µm.

CF3B.2 • 14:00

CF3B.3 • 14:15

Sources

CLEO: Science & Innovations

CF3B • Mid-infrared Parametric

Peter Schunemann, BAE Systems

Mid-IR Frequency Combs Based on Subharmon-ic GaAs OPO, Konstantin Vodopyanov¹; ¹Stanford

University, USA. We produce broadband frequency

combs using degenerate sync-pumped OPO

based on orientation-patterned GaAs pumped

by an ultrafast laser. With a 2050-nm Tm-fiber

femtosecond laser pump, the OPO instantaneous

Tunable Mid-Infrared Source Based on Differ-

ence Frequency Generation of a Femtosecond

Tm-fiber System in Orientation Patterned

GaAs, Christopher R. Phillips¹, Carsten Langrock¹,

Martin M. Fejer¹, Jie Jiang², Ingmar Hartl², Martin

E. Fermann², Angie Lin³, James Harris³, Michael Snure⁴, David Bliss⁴, Miao Zhu⁵; ¹*Ginzton Labora*-

tory, Stanford University, USA;²IMRA America,

Inc., USA; ³Solid State Photonics Laboratory,

Stanford University, USA; ⁴Air Force Research Labo ratory, Wright-Patterson Air Force Base, USA: ⁵Agi lent Laboratories, Agilent Technologies, USA. We demonstrate a mid-infrared source tunable from $6.7\text{-}12.7\,\mu\text{m}$ via difference frequency generation in orientation-patterned GaAs, with 1.3 mW average output power. The input pulses are generated from a femtosecond Tm-doped-fiber laser system.

Nearly 3-6µm Spectral Comb Derived from Tm

Mode-locked Laser using GaAs-based Degener-

ate OPO, Nick Leindecker¹, Alireza Marandi¹,

Robert L. Byer¹, Konstantin L. Vodopyanov¹

Jie Jiang², Ingmar Hartl², Martin E. Fermann², Peter G. Schunemann³; ¹E.L. Ginzton Laboratory,

Stanford, USA; ²IMRA America, Inc., USA;³BAE

Systems, USA. We use a degenerate OPO pumped

by an ultrafast 2050-nm Tm-fiber laser to generate

a broadband mid-infrared comb. A GaAs gain

element and dispersion management access an

~octave-wide output spectrum extending from

13:30-15:30 **CF3A** • Nonlinear Materials and Devices

Sunao Kurimura, National Institute for Material Science, Japan, Presider

CF3A.1 • 13:30

Novel 1,2,3-triazole based compounds as quadratic nonlinear optical crystals, Daniel Lumpi¹, Florian Glöcklhofer¹, Berthold Stöger², Georg A. Reider³, Christian Hametner¹, Ernst Horkel¹, Johannes Fröhlich¹; ¹Institute of Applied Synthetic Chemistry, Vienna University of Technology, Austria; ²Institute of Chemical Technologies and Analytics, Vienna University of Technology, Austria; ³Photonics Institute, Vienna University of Technology, Austria. Systematic investigations towards a novel class of quadratic NLO materials, based on the application of 1,2,3-triazole moieties, are outlined to afford organic crystals displaying SHG nonlinearities of more than 9 times the value of KDP.

CF3A.2 • 13:45

Nd3+-doped Bi2O3-B2O3-TeO2 glass for solar pumped lasers, Yuya Shimada¹, Seiki Ohara¹; 'Reseach center, Asahi Glass Co., Ltd., Japan. We have studied Nd3+-doped Bi2O3-B2O3-TeO2 glasses for solar pumped lasers, and compared with silicate glasses and YAG ceramics. Bi2O3-B2O3-TeO2 glasses show broad band and large absorption compared to YAG ceramics, and longer fluorescence lifetime.

CF3A.3 • 14:00

 $(\mathbf{\Phi})$

Energy-transfer processes in Al2O3:Er3+ waveguide amplifiers, Laura Agazzi1, Kerstin Wörhoff1, Markus Pollnau¹; ¹IOMS group, University of Twente, Netherlands. The influence of migrationaccelerated energy-transfer upconversion and fast luminescence quenching on Al2O3:Er3+ waveguide amplifiers is investigated. Results indicate that the latter has the stronger impact on the amplifier small-signal gain.

CF3A.4 • 14:15

189-nm Wavelength Generation with Borate Crystals, Chen Qu^{1,2}, Masashi Yoshimura^{1,2}, Jun Tsunoda^{1,2}, Yushi Kaneda^{1,3}, Mamoru Imade¹ Takatomo Sasaki1,2, Yusuke Mori1,2; 1Div of EEIE, Grad School of Eng, Osaka Univ, Japan; ²CREST, JST, Japan; ³College of Optical Sciences, The University of Arizona, USA. The phase-matching properties of borate crystals were investigated for vacuum ultraviolet light generation. A 189-nm output of 8.2 mW was observed with CLBO while new phase-matching property of CBO was found.

CLEO: 2012 • 6–11 May 2012

3.1 to 5.9µm.

222

۲

13:30-15:30 **CF3C** • Precision Imaging and

University, USA, Presider

CF3C.1 • 13:30 🖸

Terahertz Chirp Generation Using Frequency Stitched VCSELs for Increased LIDAR Resolution, Arseny Vasilyev¹, Naresh Satyan¹, George Rakuljic², Amnon Yariv¹; ¹Applied Physics, California Institute of Technology, USA; 2Telaris Inc., USA. We stitch the frequency chirps of two vertical-cavity surface-emitting lasers in a frequency-modulated imaging experiment at 1550nm. The effective frequency excursion is 1 THz, corresponding to a free-space axial resolution of 150 micrometers.

CF3C.2 • 13:45 D

High-resolution Ranging of a Diffuse Target at Sub-Millisecond Intervals with a Calibrated FMCW Lidar, Fabrizio R. Giorgetta¹, Esther Baumann¹, Kevin Knabe¹, Ian Coddington¹, Na-than R. Newbury¹; ¹*NIST, USA*. We demonstrate a FMCW Lidar with a frequency-calibrated laser modulated over 1 THz at ~1 kHz modulation frequency. Range to a diffuse target is measured at 0.5 ms intervals with 150 um resolution and ~1 um precision.

CF3C.3 • 14:00 💟

A MEMS Controlled Cavity Optomechanical Sensing System, Houxun Miao12, Kartik Srinivasan¹, Vladimir Aksyuk¹; ¹NIST, USA; ²University of Maryland, USA. We report an integrated MEMS sensing platform enabled by cavity optomechanics. We demonstrate 4.6 fm/Hz1/2 displacement sensitivity for sub-µW input power, tunable readout gain, and feedback damping of mechanical response by a factor of >1000.

CF3C.4 • 14:15

Demonstration of OAM Mode Distortions Monitoring using Interference-Based Phase Reconstruction, Hao Huang¹, Yongxiong Ren¹, Nisar Ahmed¹, Yan Yan¹, Yang Yue¹, Amanda Bozovich¹, Jeng-Yuan Yang¹, Alan Willner¹, Kevin Birnbaum², Baris Erkmen², John Choi², Sam Dolinar²; ¹University of Southern California, USA;²Jet Propulsion Lab, USA. We present OAM distortion monitoring by using an interferometer with 90-de-gree phase-shift for phase reconstruction without spatial scanning. Monitoring of distortion caused by misalignment and atmospheric turbulence are successfully demonstrated.

Room A4

CLEO: QELS-**Fundamental Science**

13:30-15:30

QF3D • Nano- and Near-Field Spectroscopy Mario Hentschel, University of

Stuttgart, Germany, Presider

QF3D.1 • 13:30 Invited

Infrared Nanophotonics, Rainer Hillenbrand¹; ¹CIC nanoGUNE, Spain. We show that mid-infrared light can be focused to nanoscale spots ("hot spots") by employing plasmonic antenna structures and tapered transmission lines. Applications such as nanoscale-resolved infrared pectroscopic imaging will be demonstrated.

OF3D.2 • 14:00

Thermal Near-field Optical Spectroscopy, Andrew C. Jones^{2,1}, Markus B. Raschke^{1,2}; ¹Physics, University of Colorado, USA; 2Department of Physics, University of Washington, USA. Scattering near-field microscopy with heated tips is used to characterize the spatially and spectrally distinct IR thermal near-field demonstrating for the first time the resonant enhancement of the underlying electromagnetic local density of states.

OF3D.3 • 14:15

Surface Plasmon Polariton Raman Microscopy, Chris A. Michaels¹, Hae-Wook Yoo², Hee-Tae Jung², Lee Richter¹; ¹Material Measurement Laboratory, NIST, USA; ²Chemical and Biomolecular *Engineering, KAIST, Republic of Korea.* We report surface plasmon polariton (SPP) mediated Raman microscopy on dielectric films in contact with a Ag layer at 785 nm with spatial resolution approaching the optical diffraction limit and reasonable spectral acquisition times.

۲

Room A3

Sensing **D** Brian Washburn, Kansas State

 (\blacklozenge)

 $(\mathbf{\Phi})$

Room A5

Room A6

Nobuyuki Matsuda, NTT Basic

Four-Photon Polarization-Entangled States

with Minimal Spectral and Spatial Entangle-ment, Warren Grice^{1,3}, Jason Schaake³, Travis Humble², ¹Computational Sciences and Engineer-

ing, Oak Ridge National Lab, USA; ²Computer

Science and Mathematics, Oak Ridge National

Lab, USA; ³Physics and Astronomy, University of Tennessee, USA. We present two schemes for

generating four-photon states: one for direct GHZ

state generation and another yielding an entire

class of polarization-entangled states. Both begin

with photon pairs having minimal spectral and spatial entanglement.

Quantum state tomography using photon number counting to evaluate entanglement generated

by spontaneous parametric downconversion,

Akio Yoshizawa¹, Daiii Fukuda¹, Hidemi Tsu-

chida1; 1National Institute of Advanced Industrial

Science and Technology (AIST), Japan. We analyze

polarization-entangled photon pairs using detec-

tors that can or cannot count photons to discuss

accuracy of the fidelity estimated by quantum state

tomography. The use of four photon-number-

Polarization/Time-bin basis conversion of en-

tangled photons, Jonathan Hodges¹, Stephen Pap-

pas¹, Yaakov Weinstein¹, Gerry Gilbert¹; ¹MITRE

Corp, USA. We describe a scheme for interconvert-

ing photonic entanglement between time-bin and

polarization bases. This scheme makes entangled

pairs insensitive to birefringement effects and thus

has application in fiber-based quantum memories.

resolving detectors presents best accuracy.

Research Laboratories, Japan,

13:30-15:30

Presider

QF3F.1 • 13:30

OF3F.2 • 13:45

OF3F.3 • 14:00

QF3F • Entanglement

 (\blacklozenge)

CLEO: QELS-Fundamental Science

13:30-15:00 QF3E • Quantum Optics of Atoms and Solids Sergey Polyakov, NIST, USA, Presider

QF3E.1 • 13:30

Logarithmically Diverging Two-photon Spec trum: Anomalous Scale Symmetry Breaking in Two Dimensions, Nir Davidson¹, Rami Pugatch¹, Dipankar Bhattacharyya¹, Yoav Sagi¹, Ariel Amir1; 1Weizmann Institute of Science, Israel. For small area beams, the two-photon spectra of atoms diffusing in hot buffer gas approaches a universal, logarithmically-diverging shape, connected to anomalous scale symmetry breaking of with a delta-function potential.

OF3E.2 • 13:45

Interplay of $\chi(3)$ and $\chi(3)$ processes in a doubleladder system, Paul S. Hsu^{1,2}, George R. Welch², James R. Gord³, Anil K. Patnaik^{3,4}; ¹Spectral Energies, LLC, USA; ²Physics, Texas A&M University, USA; ³Air Force Research Laboratory, USA; ⁴Physics, Wright State University, USA. The interplay of $\chi(1)$ and $\chi(3)$ processes in a double-ladder system is investigated to demonstrate controllability of cross-talk between two probes propagating through the medium.

OF3E.3 • 14:00

Generation of a macroscopic singlet state in an atomic ensemble, Naeimeh Behbood1, Mario Napolitano¹, Giorgio Colangelo¹, Brice Dobust^{1,2} Silvana Palacios A lvarez¹, Robert Sewell¹, Geza Tóth3, Morgan W. Mitchell1; 1ICFO-The Institute of Photonic Sciences, Spain; ²Univ Paris Diderot, Sorbonne Paris Cite, Laboratoire Materiaux et Phenomenes Quantiques, France; ³Theoretical Physics and History of Science, The University of the Basque Country, Spain. We report on an experiment for generating singlet states in a cold atomic ensemble. We use quantum non-demolition measurement and feedback control to produce a macroscopic spin state with total spin zero and reduced spin fluctuations.

OF3E.4 • 14:15

Enhancement of electromagnetically-induced transparency in a multilevel broadened medium, Michael Scherman¹, Oxana S. Mishina¹, Pietro Lombardi¹, Elisabeth Giacobino¹, Julien Laurat¹; ¹Laboratoire Kastler Brossel, France, We experimentally demonstrate that electromagnetically-induced transparency in a vapor of alkali-metal atoms can be strongly enhanced via a specific shaping of the atomic velocity distribution.

OF3F.4 • 14:15

Direct measurements of the non-classicality degree in photon-number correlations, Liat Dovrat¹, Michael Bakstein¹, Daniel Istrati¹, Eli Megidish¹, Assaf Halevy¹, Lior Cohen¹, Hagai S. Eisenberg¹; ¹Racah Institute of Physics, The Hebrew University of Jerusalem, Israel. Using photon-number resolving detectors, we directly measure the two-mode photon-number distribution of parametric down-conversion for different degrees of correlation. We present two quantitative measures for the degree of non-classicality.

OF3G.3 • 14:15

Triple resonant four-wave mixing: A microwatt continuous-wave laser source in the vacuum ultraviolet region at 120 nm, Daniel Kolbe1.2 Thomas Diehl^{1,2}, Andreas Koglbauer^{1,2}, Matthias Sattler^{1,2}, Matthias Stappel^{1,2}, Ruth Steinborn^{1,2}, Jochen Walz^{1,2}; ¹Institut für Physik, Johannes Gutenberg-Universität, Germany; ²Helmholtz Institut, Johannes Gutenberg-Universität, Germany. We present a vacuum ultraviolet laser source by four-wave mixing in mercury vapour based on solid-state laser systems. Maximum powers of 6 μW were achieved with an increase of four orders of magnitude in efficiency.

Generation of Terahertz Pulses by Mixing Dual-Frequency Pulses from Yb:YAG Laser, Pu Zhao¹, Srinivasa Ragam¹, Yujie J. Ding¹, Ioulia B. Zotova²; ¹Electrical & Computer Engineering, Lehigh University, USA; ²ArkLight, USA. We have demonstrated that terahertz pulses at 1.65 THz can be generated by mixing dual-frequency pulses emitted from a compact broadband Q-switched Yb:YAG laser.

OF3G.2 • 14:00

13:30-15:30 QF3G • Nonlinear Frequency **Mixing Phenomena** Yujie Ding, Lehigh University, USA, Presider

Room A7

QF3G.1 • 13:30 Invited

Photon Extrabunching in Twin Beams Beams in the Femtosecond Range Measured by Two-Photon Counting in a Semiconductor, Fabien Boitier¹, Antoine Godard¹, Nicolas Dubreuil², Philippe Delaye², Claude Fabre³, Emmanuel Rosencher^{1,4}; ¹ONERA - the French Aerospace Lab, France; ²Laboratoire Charles Fabry (Institut d'Optique, CNRS, Univ Paris-Sud, France; 3 Laboratoire Kastler Brossel, Ecole Normale Supérieure and University Pierre et Marie Curie, France; 4Physics Department, Ecole Polytechnique, France. Correlations of twin beams generated by parametric down-conversion are quantitatively determined by two-photon counting interferometery. Compared with incoherent light, photon extrabunching at the fs scale is unambiguously and precisely measured.

May Fridav, 11

CLEO: QELS-

Fundamental Science

Room A8

13:30-15:30 QF3H • Photonic Crystals II

Hui Cao, Yale University, USA, Presider

Specular amorphous photonic bandgap lattices, Spectral and photos photomic bandgap attrees, Peng Zhang¹, Peigen Ni¹, Xinyuan Qi¹², Weining Man¹, Zhigang Chen¹³, Jianke Yang⁴, Mikael Rechtsman⁵, Mordechai Segev⁵, ¹Department of Physics and Astronomy, San Francisco State Univ, USA; ²Department of Physics and Astronomy, Northwest University, China; 33TEDA Applied Physics School, Nankai Univ, China; 4 Department of Mathematics and Statistics, University of Vermont, USA; ⁵Physics Department and Solid State Institute, Israel. We show theoretically and experimentally that photonic lattices constructed from random components residing on a ring in momentum space are amorphous, yet they exhibit a bandgap, and support linear and nonlinear defect-state guidanc

QF3H.2 • 13:45

Experimental demonstration of guiding, bend-

QF3H.3 • 14:00

Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing and Scattering Pattern Analysis, Sebastien M. Popoff¹, Alexandre Aubry¹, Geoffroy Lerosey¹, Mathias Fink¹, A. Claude Boccara¹, Sylvain Gigan¹; ¹Institut Langevin - ESPCI ParisTech, France. We report on the optical measurement of the backscattering matrix in a weakly scattering medium. A decomposition of the time reversal operator allows selective and efficient focusing on individual scatterers,

OF3H.4 • 14:15

Cavities without confinement barrier in incommensurate photonic crystal superlattices, Zhiyuan Li¹, Chen Wang¹; ¹Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, China. We fabricate cavities without confinement by combining two incommensurate photonic crystal superlattice waveguides. The experiment confirms a resonant mode showing up in the pass band of waveguide and the Anderson localization within photonic bands.

Room B2 & B3

13:30-15:15

Presider

CF3I • Space Division

Multiplexing (SDM)

E. Bert Basch, Verizon

Communications Inc., USA,

CF3I.1 • 13:30 Invited

performance limits of SDM fibers.

CF31.2 • 14:00 D

CF3I.3 • 14:15 🕻

Dynamic Detector Selection for Multiple-Input

Multiple-Output (MIMO) Multimode Fiber

Links, Kumar Appaiah¹, Sagi Zisman¹, Sriram Vishwanath¹, Seth Bank¹; ¹The University of Texas

at Austin, USA. We propose a dynamic greedy

selection algorithm to reduce computational

requirements in multimode MIMO fiber links

employing a photodetector array. Simulations reveal that ${\sim}90\%$ of capacity is achievable from

LDPC-Coded Mode-Multiplexed CO-OFDM

over 1000 km of Few-Mode Fiber, Ding Zou¹,

Changyu Lin1, Ivan B. Djordjevic1; 1 Electrical and

computer engneering, University of Arizona, USA.

We demonstrate by simulations that four indepen-

dent LDPC-coded 80Gb/s QPSK OFDM signals

can be transmitted by mode-multiplexing over

1000km of few-mode fiber using coherent detection with a powerful channel estimation technique.

only a small subset of photodetectors.

Design and Modeling of Novel Fibers for Space

Division Multiplexing, John M. Fini¹; ¹OFS Labs,

USA. New fibers carrying spatially multiplexed

signals will drastically increase capacity per fiber

in long-haul communications. Fiber irregularity

and length variation will ultimately determine the

Room C1 & C2

 (\blacklozenge)

CLEO: Science & Innovations

13:30-15:30 **CF3J** • Novel Materials and Approaches for "Green" Photonics **D** Leo Schowalter, Crystal IS Inc.,

CF3J.1 • 13:30 Invited

USA, Presider

CF3J.2 • 14:00

electrochromic displays.

CF3J.3 • 14:15 D

Application of Printable ITO/PEDOT Nano-

composites as Transparent Electrodes in Op-

toelectronic Devices, Ilja Maksimenko¹, Peter

Wellmann¹, Wolfgang Peukert², Daniel Kilian², Christian Mehringer², Michael Voigt²; ¹Materials

Science and Engineering 6, University of Erlangen-

Nuremberg, Germany; ²Institute of Particle Technology, University of Erlangen-Nuremberg,

Germany. Printable transparent hybrid composites

consisting of ITO nanoparticles and conduct-

ing polymer PEDOT as matrix material were

developed and used as transparent electrodes in all-printed flexible electroluminescent lamps and

Design and Fabrication of Polymer-Fiber-based

Luminescent Solar Concentrator Fabrics,

Esmaeil-Hooman Banaei1, Avman F. Abourad-

dy1; 1CREOL, The College of Optics & Photonics,

University of Central Florida, CREOL, USA. We

present the design and fabrication of all-polymer

optical fiber luminescent solar concentrators.

Large-area, lightweight, and flexible fabrics con-

structed of such fibers are a low-cost solar-energy

alternative useful for mobile applications.

Graphene Photonics and Optoelectroncs, Andrea C. Ferrari¹; ¹Engineering Department, University of Cambridge, United Kingdom. Graphene has great potential in photonics and optoelectronics. I will review the state of the art in this emerging field of research, focussing on flexible and transparent conductors, photoluminescence, photodetectors, non-linear optics, and ultrafast lasers.

Room C3 & C4

13:30-15:30 CF3K • ICLs and QCL Waveguide Design **D** Dan Wasserman, University of

CF3K.1 • 13:30 D

Illinois, USA, Presider

Room-Temperature InAs-based Interband Cascade Lasers, Yuchao Jiang¹, Lu Li¹, Zhaobing Tian¹, Robert T. Hinkey^{1,2}, Rui Q. Yang¹, Tetsuya D. Mishima², Michael B. Santos², Matthew B. Johnson2, Kamjou Mansour3; 1School of Electrical and Computer Engineering, University of Oklahoma, USA; ²Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, USA; ³Jet Propulsion Laboratory, California Institute of Technology, USA. We report the demonstration of InAs-based interband cascade lasers at temperatures up to 315 K and 253 K operating in pulsed and continuous wave modes, respectively,

CF3K.2 • 13:45 D

near 5.3 microns.

Interband Cascade Lasers at Long Wavelengths, Lu Li¹, Zhaobing Tian¹, Yuchao Jiang¹, Hao Ye¹, Rui Q. Yang¹, Tetsuya D. Mishima¹, Michael B. Santos², Matthew B. Johnson²; ¹School of Electrical and Computer Engineering, University of Oklahoma, USA; ²Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, USA. We report the demonstration of InAs-based interband cascade lasers in a temperature range from 80 to 260 K operating in pulsed and continuous wave modes at wavelengths near 6.0, 7.4, and 10.3 microns.

CF3K.3 • 14:00 D

Wavelength Tuning of Sampled-Grating DBR Quantum Cascade Lasers, Abdou S. Diba^{1,2}, Feng Xie¹, Catherine Caneau¹, Herve LeBlanc¹, Sean Coleman¹, Chung-en Zah¹; ¹Science and Technol-ogy, Corning Inc., USA; ²Electrical Engineering, The City College of New York, USA. We characterized the performance of sampled-grating distributed Bragg reflectors (SG DBR) quantum cascade lasers (QCLs) and demonstrated a wide wavelength tuning from 4.48 to 4.69 µm (100cm-1) by injecting current into the SGDBR sections.

CF3K.4 • 14:15 🖸

Post-fabrication wavelength selection and spectral narrowing of Quantum Cascade lasers via application of a shallow distributed Bragg reflector, Arash Sadeghi¹, Peter Q. Liu¹, Claire Gmachl¹; ¹Electrical Engineering, Princeton University, USA. Application of a shallow distributed Bragg reflector ion-milled on a tenth of the laser ridge leads to spectral narrowing, a 10-fold reduc-tion in full-width-half-maximum and ~12dB side mode suppression, of Fabry-Perot type QC lasers.

QF3H.1 • 13:30

ing, and filtering of electromagnetic wave in disordered photonic band gap materials, Weining Man1, Marian Florescu2, Seyed Hashemizad1, Yingquan He¹, Brian Leung¹, Eric Williamson¹, Paul Chaikin³; ¹Physics and Astronomy, San Fran-cisco State University, USA; ²Advanced Technology Institute and Department of Physics,, University of Surrey,, United Kingdom; ³Department of Physics, New York University, USA. We report the first experimental demonstration of guiding, bend-ing, filtering, and splitting of EM wave in 2D disordered PBG materials, along arbitrarily curved paths, around sharp bends of arbitrary angles, and through Y shape junctions.

 $(\mathbf{\Phi})$

even through an aberrating layer.

224

Marriott San Jose Salon I & II

Marriott San Jose Salon III

 (\blacklozenge)

CLEO: Science & Innovations

13:30–15:30 CF3L • Ultrafast Mode-locking Dynamics

Gunter Steinmeyer, Max Born Institute, Germany, *Presider*

CF3L.1 • 13:30

Characteristics and instabilities of mode-locked quantum-dot diode lasers, Daniel J. Kane¹; ¹Mesa Photonics, USA. Passively mode-locked quantumdot diode lasers are very difficult to characterize because they are typically unstable, have low peak powers, and high bandwidth. Measure data indicates these lasers are not typically mode-locked. 13:30–15:30 CF3M • Nonlinear Optics in Nanophotonic Structures III Shayan Mookherjea, University of California San Diego, USA, *Presider*

CF3M.1 • 13:30 Invited

Microresonator-based Optical Frequency Combs, Tobias Kippenberg¹; ¹Ecole Polytechnique Federale de Lausanne (EPFL) and Max Planck Inst. of Quantum Optics (MPQ), Switzerland. Mid and near-IR optical frequency combs generation in ultra high Q crystalline and integrated SiN microcavities is presented. Moreover, universal dynamics that influences phase noise is described.

13:30–15:30 CF3N • Fiber DFB's and Nonlinear Effects Robert Lenson, Bell Labs

Marriott San Jose

Salon IV

Robert Jopson, Bell Labs, Alcatel-Lucent, USA, *Presider*

CF3N.1 • 13:30 Invited Stimulated Brillouin Scattering in Specialty Optical Fibers: Importance of Material, Structure and Manufacturing Parameters, Yves Jaouën³, Guillaume Canat³, Yolande Sikali Mamdem³, Renaud Gabet¹, Laurent Lombard², Ekaterina Burov¹, 'Ielecom ParisTech, France; ²ONERA, France; ³EDF R&D, France; ⁴DRAKA Communications, France. The influence of material doping profile and geometrical structure on Brillouin gain characteristics has been investigated. Based on a FEM modeling, importance of internal residual stress induced by fiber drawing conditions is also pointed out.

CF3L.2 • 13:45

Kerr-lens mode-locked Yb:KYW laser at 3.3-GHz repetition rate, Mamoru Endo¹, Akira Ozawa¹, Yohei Kobayashi¹; ¹The Institute for Solid State Physics, University of Tokyo, Japan. We developed a Jaser-diode pumped, 3.32-GHz repetitionrate, Yb:KYW Kerr-lens mode-locked laser with a bowtie cavity. The spectrum width is 10 nm around 1050 nm with the output power of 13.5 mW.

CF3L.3 • 14:00

Nonlinear-polarization-evolution mode-locking in a hybrid cavity: a route toward low repetitionrate fiber lasers, Yue Zhou¹², Guoqing Chang¹, Hung-Wen Chen¹, Po Ching Chui², Kenneth K. Y. Wong², Franz X. Kaertner^{1,3}; ¹Massachusetts Institute of Technology, USA; ²The University of Hong Kong, Hong Kong; ³Center for Free-Electron Laser Science, DESY and University of Hamburg, Germany. We demonstrate an Yb-fiber oscillator consisting of both polarization-maintaining (PM) and non-PM fibers. A femtosecond Yb-fiber oscillator at 12-MHz repetition-rate with 10-nJ pulse energy is implemented employing this hybrid cavity.

CF3L.4 • 14:15

Large Area SBRs for Ultra-short Pulse Generation, Sheila Nabanja'; '*IEECS, Massachusetts Institute of Technology, USA*. Fabrication and characterization of ultra-broadband III-V/AlxOy Saturable Bragg Reflectors as mesas as well as inverted mesa structures for ultra-short pulse generation is presented along with a physical model of the oxidation process. CF3M.2 • 14:00

Photonic chip based tunable slow and fast light via stimulated Brillouin scattering, Ravi Pant', Adam Byrnes', Christopher G. Poulton², Enbang Li¹, Duk-Yong Choi², Steve J. Madden³, Barry Luther-Davies³, Benjamin J. Eggleton¹; 'School of Physics, University of SYdney, Australia; ²School of Mathematical Sciences, University of Technology Sydney, Australia; ³Laser Physics Centre, Australian National University, Australia. We report the first demonstration of on-chip tunable slow- and fast-light via stimulated Brillouin scattering. We observe group-index ranging from ~-44 to +130 in a 7cm long chalcogenide waveguide at a low gain of ~23dB.

CF3M.3 • 14:15

Broadband Polarization-Insensitive Wavelength Conversion Based on Non-Degenerate Four-Wave Mixing in a Silicon Nanowire, Minhao Pu¹, Hao Hu¹, Hua Ji¹, Michael Galili¹, Leif K. Oxenløwe¹, Palle Jeppesen¹, Jørn M. Hvam¹, Kresten Yvind¹, 'DTU Fotonik, Photonics Engineering, Technical Univ. of Denmark, Denmark. We experimentally demonstrate broadband polarization-insensitive one-to-two avalength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements.

CF3N.2 • 14:00

Strong Brillouin suppression in a fiber ring cavity, Jae K. Jang¹, Stuart G. Murdoch¹; ¹Physics, University of Auckland, New Zealand. We demonstrate an over sixty-times increase in the Brillouin threshold of a short length fiber ring cavity through careful selection of the fiber length.

CF3N.3 • 14:15

Distributed Birefringence Measurement of a 500-m Polarization-Maintaining Fiber with a 20-cm Resolution Based on Brillouin Dynamic Grating, Yongkang Dong¹³, Hongying Zhang²³, Zhiwei Lu¹, Liang Chen³, Xiaoyi Bao³, ¹Institute of Opto-Electronics, Harbin Institute of Technology, China; ²Department of optics information science and technology, Harbin University of Science and Technology, China; ³Department of Physics, University of Ottawa, Canada. We propose a novel scheme to realize distributed birefringence measurement over a 500-m polarization-maintaining fiber with a 20-cm resolution based on Brillouin dynamic grating, observing three characteristic periods of the birefringence variation.

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 225

۲

(

Room A3

CF3C • Precision Imaging and

Direct optical phase retrieval from a threedimensional interferometer, Heng Li¹, Frank W.

Wise²; ¹Physics Department, Cornell University,

USA; ²Department of Applied Physics, Cornell Uni-

versity, USA. We report temporal phase retrieval

from a three-dimensional interferometer, which

measures the noncollinear first-order cross-cor-

relation. This diagnostic can directly retrieve the

temporal phase when transform-limited reference

Multiple-Shell Ankylography, Leigh S. Martin^{1,2}

Chien-Chun Chen¹, Matthew D. Seaberg², Daniel

E. Adams², Jianwei Miao¹; ¹Department of Phys-

ics and Astronomy, University of California at

Los Angeles, USA; ²Department of Physics and

JILA, University of Colorado at Boulder, USA.

Ankylography is a newly developed technique for 3D imaging of small objects from a single view.

Here we demonstrate that ankylography can in

principle be extended to image larger 3D objects

Sparsity-based single-shot subwavelength coher-

ent diffractive imaging, Eliyahu Osherovich¹,

Yoav Shechtman², Alexander Szameit³, Pavel

Sidorenko², Elad Bullkich², Snir Gazit², Shy Sho-

ham⁴, Ernst Bernhard Kley³, Michael Zibulevsky¹

Irad Yavneh¹, Yonina C, Eldar⁵, Oren Cohen²,

Mordechai Segev2; 1Computer Science, Technion,

Israel; ²Physics Department and Solid State Insti-

tute, Technion, Israel; 3Institute of Applied Physics,

Friedrich-Schiller-Universität Jena, Germany; 4De-

partment of Biomedical Engineering, Technion,

Israel; ⁵Department of Electrical Engineering, Tech-

nion, Israel. We present a sparsity-based method

for subwavelength coherent diffractive imaging: an algorithmic approach for reconstruction of subwavelength images from a single intensity measurement of their far-field diffraction pattern.

Reconstruction of tightly focused beams us-

ing Mie-scattering, Thomas Bauer^{1,2}, Sergej Orlov^{1,2}, Ulf Peschel^{2,3}, Peter Banzer^{1,2}, Gerd

Leuchs^{1,2}; ¹Max Planck Institute for the Science of

Light, Germany; ²Institute for Optics, Information

and Photonics, University of Erlangen-Nuremberg,

Germany; ³Cluster of Excellence "Engineering of

Advanced Materials", Germany. By using a sub-

wavelength nano-particle as a field probe and a

tailored detection scheme we are able to recon-

struct the electric energy density in the focal plane of a high numerical aperture focusing system.

by incorporating multiple views.

CF3C.7 • 15:00 C

CF3C.8 • 15:15 💟

Sensing—Continued

CF3C.5 • 14:30

pulses are available.

CF3C.6 • 14:45 🖸

 $(\mathbf{\Phi})$

Room A1

CF3A • Nonlinear Materials and

PMMA copolymerized with polyacrylonitrile as novel host material for host-guest type

second-order NLO polymers, Atsushi Sugita¹,

Yasuaki Tamaki1, Nobuyuki Mase1, Wataru Inami1,

Yoshimasa Kawata¹, Shigeru Tasaka¹; ¹Shizuoka

University, Japan. We will present second-order NLO susceptibility of non-electrically poled NLO

chromophore-doped PMMA copolymerized with

polyacrylonitrile. The second-order nonlinear

coefficient of 2 pm/V was obtained without con-

CW-pumped +11.6 dB gain in DFG using an

efficient QPM adhered-ridge waveguide, Yusuke

Muranaka1,2, Kaori Sugiura1,2, Sunao Kurimura1,2,

Rai Kou^{1,2}, Kiyofumi Kikuchi^{1,2}, Hirochika Na-

kajima², Junichiro Ichikawa³; 1National Institute

for Materials Science, Japan; ²Waseda University,

Japan; 3Sumitomo Osaka Cement Co., LTD., Japan

We recorded the maximum channel conversion

efficiency of +11.6 dB in DFG with 330 mW CW

pump using Mg:LiNbO3-based QPM adhered-

ridge-waveguide wavelength converter and

discussed theoretical conversion efficiency for

Achromatically Coupled Wavelength Conver-

sion Module with SILICAGRIN® Lens, Kaori

Sugiura^{1,2}, Sunao Kurimura^{1,2}, Yusuke Muranaka^{1,2}

Kiyofumi Kikuchi^{1,2}, Taro Suzuki³, Hirochika

Nakajima², Junichiro Ichikawa⁴; ¹National Institute

for Materials Science, Japan; ²Waseda University, Japan; ³TOYO GLASS Co., Ltd., Japan; ⁴Sumitomo

Osaka Cement Co., Ltd., Japan. We develop a

parametric wavelength conversion module with

low chromatic dispersion using SILICAGRIN*

optical fiber condenser. Less than 1 dB of the

insertion loss difference between wavelength 780

Devices—Continued

ventional poling procedure.

CF3A.6 • 14:45

nonlinear optical effects.

CF3A.7 • 15:00

CF3A.5 • 14:30

Room A2

CLEO: Science & Innovations

CF3B • Mid-infrared Parametric Sources—Continued

CF3B.4 • 14:30

Mid-infrared cascaded parametric source in 6 µm region for medical applications, Georg Stoeppler¹, Nicky Thilmann², Marc Eichhorn¹, Valdas Pasiskevicius², Andrius Zukauskas², Carlota Canalias², ¹French-German Research Institute of Saint Louis, ISL, France; ²Royal Institute of Technology, KTH, Sweden. All-diode-pumped parametric source generating 5ns pulses tunable in 6.27µm-8.12µm with high-spatial-quality beam and the pulse energy of 0.9 mJ is demonstrated. The device exploits large-aperture PPRKTP MOPA for pumping ZGP OPO in a RISTRA cavity.

CF3B.5 • 14:45

High-Energy, Widely Tunable, Near- and Mid-Infrared Picosecond Optical Parametric Generator Based On CdSiP2, Suddapalli Chaitanya Kumar¹, M. Jelínek³, Matthias Baudisch¹, K. T. Zawilski⁴, Peter G. Schunemann⁴, V. Kubecek³, Jens Biegert^{1,3}, Majid Ebrahim-Zadeh^{1,2}, 'NLO, ICFO-The Institute of Photonic Sciences, Spain; ²Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain; ³Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic; ⁴BAE Systems, Inc, USA. We report a high-energy picosecond opticalparametric-generator tunable over 6153-6732 nm in mid-IR,1264-1286 nm in near-IR, providing ~600 µJ of output energy over entire signaltuning-range, >25µJ of idler energy over 55% of the idler-tuning-range.

CF3B.6 • 15:00

Broadband 6 μm OPA Driven by Yb:CaF2 DPSSL System, Giedrius Andriukaitis¹, Skirmantas Alisauskas¹, Audrius Pugzlys¹, Andrius Baltuska¹, Lihao Tan², Hua-Wei Jonathan Lim², Poh Boon Phua^{3,3}, Karolis Balsku⁴, Andrejus Michailovas⁴, ¹Photonics Institute, Vienna University of Technology, Austria; ²DSO National Laboratories, Singapore; ³Nanyang Technological University, Singapore; ¹EKSPLA Ltd., Lithuania. 6-µ, 6-µm pulses compressible to 1.5 optical cycles are generated in a multistage OPA driven by 500 Hz Yb:CaF2-DPSSL. The system is favorable for examination of A-scaling laws of photoelectron wavepacket dynamics and for atmospheric sensing.

CF3A.8 • 15:15

nm and 1550 nm is achieved.

Development of efficient broadband green light source by tandem quasi-phase-matched structure, Nan Ei Yu¹, Ju Won Choi¹, Heejong Kang¹, Do-Kyeong Ko¹, C.-m. Ho², S.-h. Fu², C.-w. Hsu², C.-y. Chu², C.-l. Chen², W.-s. Wang², L.-h. Peng², Andy Kung³, Hee Joo Choi⁴, Byoung Joo Kim⁴, Myoungsik Cha⁴, ¹Gwangju Institute of Science and Technology, Republic of Korea; ¹National Taiwan University, Taiwan; ³National Tsing-Hua University, Taiwan; ⁴Pusan National University, Republic of Korea. Broadband green light source using a 5.5-mm-long tandem PPLN was demonstrated. The measured wavelength and temperature bandwidth were 13mm and 100°C, respectively, which had 34.2 times broader spectral bandwidth than periodic one.

CF3B.7 • 15:15

Mid-IR Self-Compression to Few-Cycles in Bulk Material, Michael Hemmer¹, Matthias Baudisch¹, Alexandre Thai¹, Jens Biegert^{1,2}; ¹ICFO - The Institute of Photonics Sciences, Spain; ²ICREA, Spain. We report on the self-compression of 10-cycle mid-IR optical pulses to ~5 cycle duration at 3.1 µm center wavelength with up to 3 µJ energy in Yttrium Aluminum garnet (YAG).

Room A4

CLEO: QELS-Fundamental Science

QF3D • Nano- and Near-Field Spectroscopy—Continued

QF3D.4 • 14:30

Tip-enhanced photoexpansion nano-spectroscopy using tunable quantum cascade lasers, Feng Lu¹, Mikhail A. Belkin¹; 'Department of Electrical and Computer Engineering. The University of Texas at Austin, USA. We report a novel mid-IR nanospectroscopy technique. Absorption is detected by measuring associated sample expansion. High sensitivity and spatial resolution are obtained using local intensity enhancement below a metal atomic force microscope tip.

QF3D.5 • 14:45

Plasmonic Nano-protractor Based on Polarization Spectro-Tomography, Chihhui Wu¹, Farboe Shafie¹, Elaine Li¹, Gennady Shvets¹; *Physics, UT Austin, USA.* We propose and experimentally realize a "plasmonic protractor": a spectroscopic device capable of detecting the orientation, position, and length of a small optically dark object using the polarization-resolved dark field microscopy.

QF3D.6 • 15:00

Coherent Nonlinear Spectroscopy with Spatiotemporally Controlled Fields, Felix Schlosser¹, Mario Schoth¹, Sven Burger², Frank Schmidt², Andreas Knorr¹, Shaul Mukamel³, Marten Richter¹; ¹Institut für Theoretische Physik, Technische Universität Berlin, Germany; ²Konrad-Zuse-Zentrum für Informationstechnik, Germany; ³Department of Chemistry, University of California, USA. Pulse shaping techniques combined with nanoplasmonics obtain spatiotemporal control of optical excitation in metal nanostructures. Using these methods we modify a coherent spectroscopy method to reveal new information about coupled nanosystems.

QF3D.7 • 15:15

Sub-diffraction-limited spatial resolution in CARS microscopy by ground state depletion, Carsten Cleff¹, Petra Gross¹, Carsten Fallnich¹, Herman L. Offerhaus², Jennifer L. Herek², Kai Kruse³, Willem P. Beeker³, Chris Lee³, Klaus Boller³, ¹Institute of Applied Physics, Westfälische Wilhelms-Universität Münster, Germany; ²Optical Sciences Group, MESA+ Research Institute for Nanotechnology, University of Twente, Netherlands; ³Laser Physics & Nonlinear Optics Group, MESA+ Research Institute for Nanotechnology, University of Twente, Netherlands. Suppression of CARS signal generation is demonstrated via ground state depletion in a theoretical investigation. Using a donut-shaped control light field for population transfer results in sub-diffractionlimited spatial resolution CARS microscopy.

226

Room A5

Room A6

 (\blacklozenge)

Room A7

QF3G • Nonlinear Frequency

Mixing Phenomena—Continued

Second harmonic generation in aluminum

nitride waveguides on silicon substrates, Chi

Xiong¹, Wolfram Pernice¹, Carsten Schuck¹,

Hong X. Tang1; ¹Electrical Engineering, Yale

University, USA. Second harmonic generation is demonstrated in aluminum nitride (AlN) ridge

waveguides on silicon substrates pumped by

continuous wave telecom wavelength light. Phase

matching is achieved by engineering waveguide

CLEO: QELS-Fundamental Science

QF3E • Quantum Optics of Atoms and Solids—Continued

QF3E.5 • 14:30

The evidence of phase memory in induced coherence without induced emission, Axel Heuer¹, Sarah Fritsch¹, Ralf Menzel¹; 'University of Potsdam, Germany. The effect of phase memory allows to control the first order interference of two signal beams, generated by two simultaneously pumped parametric down converters, by the phase delay between the pump beams.

QF3F • Entanglement— Continued

QF3F.5 • 14:30

QF3F.6 • 14:45

Polarization-Entangled Photon Generation in a Standard Polarization-Maintaining Fiber, Bin Fang¹, Offir Cohen¹, Jamy Moreno¹, Virgina O. Lorenz¹; ¹Physics and Astronomy, University of Delaware, USA. We demonstrate the generation of polarization-entangled photon pairs in a standard polarization-maintaining fiber using a Sagnac interferometer. This source's spatial mode is well matched to fiber-based quantum information networks.

Impact of Cooling on Raman Scattering in a

Chalcogenide (As₂S₃) Correlated Photon Pair

Source, Matthew J. Collins¹, Alex S. Clark¹, Chunle Xiong¹, Eric C. Mägi¹, Benjamin J. Egg-

leton¹; ¹School of Physics, Centre for Ultrahigh

bandwidth Devices for Optical Systems (CU-

DOS), Institute of Photonics and Optical Science

(IPOS), University of Sydney, Australia. We show a reduction of spontaneous Raman scattering in

chalcogenide at 77 K, which improves the photon

statistics of correlated pair generation only in the

frequency range close to the pump ($\Delta f < 3$ THz).

QF3G.5 • 14:45

modal dispersion.

QF3G.4 • 14:30

Phase Noise and Dispersion in integrated Silicon Nitride based Kerr-Comb generators, Johann Riemensberger¹, Klaus Hartinger^{1,2}, Tobias Herr¹, Emanuel Gavartin¹, Ronald Holzwarth^{2,3}, Tobias Kippenberg^{1,3}, ¹Ecole Polytechnique fédérale de Lausanne, Switzerland; ²Menlo Systems GmbH, Germany; ³Max-Planck-Institue for Quantum Optics, Germany. We report on measurements of phase noise dynamics of microwave beat notes observed in low repetition rate silicon nitride based Kerr-comb generators and relate them to results from dispersion simulations and measurements.

Continuous-Wave Frequency Conversion in Hydrogenated Amorphous Silicon Waveguides, Ke-Yao Wang¹, Amy Foster¹; ¹Electrical and Com-

puter Engineering, Johns Hopkins University, USA.

We demonstrate nonlinear frequency conversion

in hydrogenated amorphous silicon (a-Si:H) with

conversion efficiency of -13dB at telecommunica-

tion data rates. Conversion bandwidths of 150nm

Minimizing Random Disorder in a Kagome

QF3E.6 • 14:45

 $(\mathbf{\Phi})$

Lattice of Superconducting Resonators, Devin Underwood¹, Will Shanks¹, Jens Koch², Andrew Houck¹, 'Electrical Engineering, Princeton University, USA, 'Physics and Astronomy, Northwestern, USA. To ultimately study phase transitions of light, arrays of superconducting resonators must be made with low disorder in individual resonator frequencies. We fabricate and measure such arrays, minimizing disorder to a few parts in 10⁵.

OF3F.7 • 15:00

Demonstration of non-monotonic quantum to classical transition in multiparticle interference, Young-Sik Ra¹, Malte C. Tichy^{2,3}, Hyang-Tag Lim¹, Osung Kwon¹, Florian Mintert^{2,4}, Andreas Buchleitner², Yoon-Ho Kim¹, ¹Physics, Pohang University of Science and Technology (POSTECH), Republic of Korea; ²Physics, Albert-Ludwigs University of Freiburg, Germany; ³Physics and Astronomy, University of Aarhus, Denmark; ⁴Freiburg Institute for Advanced Studies, Albert-Ludwigs University of Freiburg, Germany. We experimentally demonstrate the non-monotonic dependence of many-particle interference signals on the particles' mutual distinguishability. Such non-monotonicity is a generic feature of the quantum to classical transition in multiparticle systems.

QF3F.8 • 15:15

Experimental Implementation of an Approximate Partial Transpose for Two-Qubit Systems, Hyang-Tag Lim¹, Yong-Su Kim¹, Young-Sik Ra¹, Joonwoo Bae², Yoon-Ho Kim¹; ¹Physics, Pohang University of Science and Technology, Republic of Korea; ²School of Computational Sciences, Korea Institute for Advanced Study, Republic of Korea. We report the first experimental realization of an approximate partial transpose for two-qubit systems. Direct detection of entanglement, i.e., without performing quantum state tomography, using the partial transpose operation, is also demonstrated.

are measured in CW regime at telecommunication wavelengths.

OF3G.6 • 15:00

QF3G.7 • 15:15

Universal Dynamics of Kerr-Frequency Comb Formation in Microresonators, Tobias Herr¹, Klaus Hartinger^{1,2}, Johann Riemensberger¹, Christine Wang^{2,3}, Emanuel Gavartin¹, Ronald Holzwarth^{2,3}, Michael L. Gorodetsky⁴, Tobias Kippenberg^{1,3}, ¹École Polytechnique Fédérale de Lausanne, Switzerland;²Menlo Systems GmbH, Germany; ⁴Mascow State University, Russian Federation. We experimentally investigate the initial dynamics of Kerr-frequency comb formation in crystalline MgF2 and planar Si3N4 microresonator and present a universal, platform independent condition for low phase noise performance. maay, ±± may

۲

CLEO2012 Friday.indd 26

Concurrent sessions are grouped across four pages. Please review all four pages for complete session information. 227

Room A8

CLEO: QELS-Fundamental Science

QF3H • Photonic Crystals II— Continued

QF3H.5 • 14:30

Measuring the optical traversal time of a thick complex medium, Nathan Curry¹, Pierre Bondareff¹, Mathieu Leclercq¹, Niek Van Hulst^{2,3}, Riccardo Sapienza², Sylvain Gigan¹, Samuel Gresillon¹, 'ESPCI PARISTECH, France, ²ICFO, Spain; ³ICREA, Spain. We developed a technique to measure the temporal spread of a femtosecond optical pulse through a scattering medium, by means of speckle contrast. This technique is relevant for spatiotemporal control in complex media experiments.

QF3H.6 • 14:45

Enhanced light localization in modulated optical Bloch arrays, Ramy El-Ganainy¹, Mohammad-Ali Miri², Demetrios N. Christodoulides², ¹Department of physics, University of Toronto, Canada, ²College of Optics & Photonics-CREOL, University of Central Florida, USA.We study light propagation in disordered modulated Bloch arrays. For the specific system under consideration, our analysis predicts a 5 fold enhancement in light localization over that expected from a corresponding uniform lattice.

QF3H.7 • 15:00

 $(\mathbf{\Phi})$

Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral, Seng Fatt Liew¹, Heesso Noh¹, Jacob Trevino², Luca Dal Negro^{2,3}, Hui Cao^{1,4}; ¹Department of Applied Physics, Yale University, USA; ²Division of Materials Science and Engineering, Boston University, USA; ³Department of Electrical and Computer Engineering & Photonics Center, Boston University, USA; ⁴Department of Physics, Yale University, USA; ⁴A golden-angle spiral lattice can posses an omnidirectional photonic bandgap despite the lack of translational and rotational symmetries. We show that the band edge modes are spatially localized and possess discrete angular momenta.

QF3H.8 • 15:15

Dispersion in media containing resonant inclusions: where does it come from? Fabrice Lemoult¹, Mathias Fink¹, Geoffroy Lerosey¹; ¹Institut Langevin - ESPCI ParisTech & CNRS, France. In this talk we demonstrate that a far field type of coupling involving Fano resonances can explain dispersion in media containing resonators. This generalizes various approaches such as metamaterials, hybridization band gaps and spoof plasmons.

CF3I • Space Division Multiplexing (SDM)—Continued

Room B2 & B3

CF3I.4 • 14:30 D

Correction of Phase Distortion of an OAM Mode using GS Algorithm based Phase Retrieval, Yongxiong Ren', Hao Huang', Jeng-Yuan Yang', Yan Yan', Nisar Ahmed', Yang Yue', Alan Willner', Kevin Birnbaum², John Choi², Baris Erkmen², Sam Dolinar², 'Department of Electrical Engineering, University of Southern California, USA; 'Jet Propulsion Lab, USA. The Gerchberg-Saxton algorithm based phase retrieval technique is used to correct the wavefront of distorted OAM modes. The simulation results show that this method can efficiently improve the mode purity of OAM modes up to 50%.

CF3I.5 • 14:45 D

Three-Dimensional Spherical Signal Constellation for Few-Mode Fiber based High-Speed Optical Transmission, Jianyong Zhang^{3,1}, Ivan B. Djordjevič²; ¹Institute of lightwave technology, Beijing jiaotong university, China; ²Department of Electrical & Computer Engineering, University of Arizona, USA; ⁴Key Lab of Alloptical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, China. We propose the optimized three-dimensional spherical signal constellations (3D-SSCs) for few-mode fiber-optic communications. The results show that the 3D-SSCs outperform the previously proposed constellations and improve the OSNR by up to 3.89dB.

CF3I.6 • 15:00 Turbulence-Induced Crosstalk in Multiple-

Spatial-Mode Optical Communication, Nivedita Chandrasekaran', Jeffrey H. Shapiro'; 'Research Laboratory of Electronics, Massachusetts Institute of Technology, USA. Free-space optical communication at 10 bits/photon and 5 bits/sec-Hz requires hundreds to thousands of spatial modes. This paper compares turbulence-induced crosstalk for such systems using focused-beam, Hermite-Gaussian, or Laguerre-Gaussian modes. Room C1 & C2

CLEO: Science & Innovations

CF3J • Novel Materials and Approaches for "Green" Photonics—Continued

CF3J.4 • 14:30 D

Plasmonic metal nanoparticle enhanced thin film organic solar cells, Di Qu¹, Fang Liu¹, Yidong Huang¹, Wanlu Xie¹, Qi Xu¹, Youichi Aoki², Hiroki Tsujimura³, Yoshiaki Oku², ¹Department of Electronic Engineering, Tsinghua University, China; ²Interdisciplinary Devices R&D Center, Research and Development Headquarters, ROHM Co., Ltd., Japan. A novel plasmonic enhanced OSCs with MNPs located at the interface of PEDOT:PSS anode layer and P3HT:PCBM active layer has been proposed and demonstrated theoretically and experimentally. The efficiency enhancement up to 25% is observed.

CF3J.5 • 14:45 **P**lasmonic gratings for enhanced light-trapping in thin-film organic solar cells. Khai O Le¹ An-

in thin-film organic solar cells, Khai Q. Le¹, Andrea Alù¹; 'Electrical and Computer Engineering, The University of Texas at Austin, USA. We discuss optimized silver gratings to enhance absorption in organic solar cells. The enhancement is attributed to generated surface plasmon (SP) polaritons and localized SP resonances, and to their optimized coupling over broad wavelength ranges.

CF3J.6 • 15:00 D

Design of Highly Absorption Structure by Flatted ITO Patterned Substrate for Thin Film a-Si Solar Cells, Hau-Vei Han¹, Huai-Shiang Shih¹, Hsin-Chu Chen¹, Yu-Lin Tsai¹, Peichen Yu¹, Hao-Chung Kuo¹, ¹Photonic & Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan. The patterned substrate is a flatted structure which composed with two materials to enhance the absorption of a-Si solar cell. We optimized this structure by simulation method and find it has good omnidirectional antireflection effect.

CF3J.7 • 15:15 D

Heterogeneous Integration of III-V on Si: overcoming the lattice-mismatch barrier via the 1D route, Jae C. Shin¹, Parsian Mohseni¹, Stephanie Tomasulo², Kyle Montgomery¹, Minjoo Lee², Xiuling Li¹; ¹University of Illinois, USA; ²Yale University, USA. We demonstrate one-dimensional heteroepitaxy of InxGa1-xAs nanowires in the entire composition range on silicon substrates without dislocations. Doping and interfaces are characterized. Applications including solar cells will be presented.

Room C3 & C4

CF3K • ICLs and QCL Waveguide Design—Continued

CF3K.5 • 14:30 D

Quantum Cascade Lasers Employing a Wavelength-selective Asymmetric Mach-Zehnder Interferometer, Peter Q. Liu¹, Xiaojun Wang², Jen-Yu Fan², Claire Gmachl¹; ¹Princeton University, USA; ²AdTech Optics, USA. The idea of integrating an asymmetric Mach-Zehnder interferometer in Quantum Cascade laser cavities to introduce mode selectivity is proposed and analyzed. Preliminary results show narrowing of the laser spectra with such cavities.

CF3K.6 • 14:45 C

Surface Plasmon Mode Coupling to the Insulator/Metal Interface of Sloped Sidewalls of Wet-etched Quantum Cascade Lasers, Xue Huang!, Yenting Chiu¹, William Charles^{1,2}, Claire Gmachl¹; ¹Princeton University, USA; ²Phononic Devices. Inc., USA. We find the main challenge for narrowing wet-etched ridges of long-wavelength Quantum Cascade lasers is surface plasmon mode coupling at the insulator/metal interface of sloped sidewalls, resulting in extra waveguide loss and hence high threshold.

CF3K.7 • 15:00 D

Substrate Emission of Ring Cavity Surface Emitting Quantum Cascade Lasers, Clemens Schwarzer¹, Elvis Mujagic¹, Werner Schrenk¹, Jianxin Chen², Claire Gmachl², Gottfried Strasser¹, Ilnst, for Solid State Electronics, Vienna Univ. of Technology, Austria; ²Department of Electrical Engineering, Princeton University, USA. We report studies on bidirectional emission of ring cavity surface emitting quantum cascade lasers. Special attention is put on substrate emission and methods for favoring one single emission direction.

CF3K.8 • 15:15 D

Frequency-Domain Model of Longitudinal Mode Interaction in Semiconductor Ring Lasers, Xinlun Cai¹, Gabor Mezosi², Ying-Lung Daniel Ho¹, Marc Sorel², Siyuan Yu¹; 'Department of Electrical and Electronic Engineering, University of Bristol, United Kingdom; 'Department of Electrical and Electronic Engineering, University of Glasgow, United Kingdom. A frequency-domain model for semiconductor ring lasers (SRLs) is presented. Every aspect of the lasing characteristics of SRLs can be reproduced. Several SRLs are fabricated and tested. Good agreement between theory and experiment is demonstrated.

CLEO: Science & Innovations CF3L • Ultrafast Mode-locking CF3M • Nonlinear Optics in Dynamics—Continued Continued CF3M.4 • 14:30 CF3L.5 • 14:30 Invited Vector Soliton Control by Saturable Absorbers with Complex Recovery, Oleg G. Okhotnikov¹

Salon III

Nanophotonic Structures III-

 (\blacklozenge)

Marriott San Jose

Stable Dual Mode High Repetition Rate Mode-Locked Laser Based on an Integrated Nonlinear Microring Resonator, Marco Peccianti^{2,1}, Alessia Pasquazi2, Brent Little3, Sai T. Chu3, David J. Moss4, Roberto Morandotti²; ¹UOS Montelibretti, Institute for Complex Systems - CNR, Italy; ²Ultrafast Optical Processing Group, INRS-EMT, Canada; ³Infinera Ltd, USA; 4CUDOS and IPOS, Australia. We demonstrate a mode locked laser based on a integrated high-Q microring resonator that exhibits stable operation of two slightly shifted spectral optical comb replicas, generating a highly monochromatic radiofrequency modulation.

CF3N • Fiber DFB's and **Nonlinear Effects—Continued**

Marriott San Jose

Salon IV

CF3N.4 • 14:30

Distributed Feedback Fiber Laser Employing Brillouin Gain, Kazi S. Abedin¹, Paul S. West brook1, Jeffrey W. Nicholson1, Jerome Porque1, Tristan Kremp¹, Xiaoping Liu¹; ¹OFS Laboratories, USA. A single frequency distributed feedback Brillouin fiber laser exhibiting a threshold of 30 mW, and pump-to-Stokes conversion efficiency of 27% is shown. The Brillouin laser operates over a pump frequency detuning range exceeding 1 GHz.

CF3M.5 • 14:45

Electrically Controlled Silicon Nitride Ring Resonator for Quasi-phase Matched Secondharmonic Generation, Rafael Euzebio P. de Oliveira¹, Michal Lipson², Christiano J. S. de Matos1; 1Grupo de Fotônica, Universidade Presbiteriana Mackenzie / MACKPESOUISA, São Paulo, SP, Brazil; ²Cornell Nanophotonics Group, Cornell University, USA. We propose and simulate an electro-optical ring resonator for second-harmonic generation that is controlled by a dc field. Results predict -24.3dB conversion efficiency without need for external compensation of nonlinearityinduced resonance shift.

CF3N.5 • 14:45

Twisted Hi-Bi Fiber DFB Lasers with Controllable Output Polarization, Michalis N. Zervas^{1,2} Louise Walker2, Richard Wilmshurst2; 1University of Southampton, Optoelectronics Research Centre, United Kingdom; ²SPI Lasers, United Kingdom. Externally applied birefringence-axis twist is shown to provide accurate control of the output SOP in hibi fiber DFB lasers. Continuous tuning from circular to linear polarization, with PER of ~40dB has been demonstrated.

CF3L.6 • 15:00

saturable absorber.

Intracavity self-generated 2n pulses and coherent population trapping in a mode-locked laser, Koji Masuda^{1,2}, Ladan Arissian^{2,3}, Jean-Claude Diels^{1,2}; ¹Department of Physics, University of New Mexico, USA; ²CHTM, University of New Mexico, USA; 3Department of Computer and Electrical Engineering, University of New Mexico, USA. 2π pulse self-induced transparency in rubidium is reported for the first time inside a mode-locked laser cavity. multaneous occurrence of a dark line repetition rate resonance is observed in the 87Rb vapor cell.

Marriott San Jose

Salon I & II

Regina Gumenyuk1; 1 Optoelectronics Research

Centre, Finland, Saturable absorbers exhibiting

complex recovery are shown to affect strongly

the dynamics of vector soliton interaction. The

study demonstrates that soliton bunch can be

compressed by attractive forces generated by a

CF3M.6 • 15:00

Guided Bloch Surface Wave polaritons: a route towards polariton circuits., Marco Liscidini¹, Dario Gerace¹, Daniele Sanvitto³, Daniele Bajo-ni²; ¹Physics, University of Pavia, Italy; ²Electronics, University of Pavia, Italy; ³Istituto di Nanoscienze, CNR, Italy. We report on the strong coupling between a single quantum-well and guided Bloch Surface Waves. This results in a guided polariton that may serve as a component for the realization of "polaritonic integrated circuits".

CF3N.6 • 15:00

Single-frequency Raman Distributed-feedback Fiber Laser, Jindan Shi¹, Shaif-ul Alam¹, Morten Ibsen1; 1 Optoelectronics Research Centre, University of Southampton, United Kingdom. We report a 30cm-long Raman Distributed-feedback laser with ~450mW threshold in a commercial Ge/Si fiber. The laser is pumped with up to 1.3W-CW at 1064nm and exhibits single-frequency perfor-mance with a linewidth <2.5kHz at 1109.5nm.

CF3L.7 • 15:15

In-band Pumped Nd:LuVO4 Laser Mode-locked by Negative $\chi(2)$ -lens Formation in an Intracavity LBO Crystal, Hristo Iliev1, Veselin Aleksan drov1, Ivan C. Buchvarov1, Zhang Huaijin2, Jiyang Wang², Junhai Liu³, Valentin Petrov⁴; ¹Physiscs Department, Sofia University, Bulgaria; ²National Laboratory of Crystal Materials, Shandong University, China; ³College of Physics,, Qingdao University, China; ⁴Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy, Germany. Self-starting $\chi(2)$ -lens mode-locking of an in-band pumped, Nd:LuVO4 laser using second harmonic generation in LBO is demonstrated. Pulses as short as 4.7 ps and average powers reaching 3.1 W at 110 MHz are achieved.

CF3M.7 • 15:15

Proposal of two-input, phase-switched, alloptical flip flops, Brian A. Daniel¹, Govind P. Agrawal¹; ¹The Institute of Optics, University of Rochester, USA. We propose using two input beams to a bistable Kerr resonator for overcoming the thermal limitation to the switching speed between stable states. We theoretically demonstrate flipflop operation by phase modulations of the inputs.

CF3N.7 • 15:15

Watt-level fluoride glass Raman fiber laserm Vincent Fortin¹, Martin Bernier¹, Dominic Faucher¹, Julien Carrier¹, Réal Vallée¹; ¹Center for Optics, Photonics, and Lasers (COPL), Université Laval, Canada. We report on the first watt-level fluoride glass Raman fiber laser. A maximum output power of 1.22 W at the first Stokes order wavelength of 2231.4 nm was produced out of a nested cavity Raman fiber laser

۲

 $(\mathbf{\Phi})$