Fundamental Science

CLEO: QELS-

CLEO: Science & Innovations

Room 324-326

CLEO: QELS-Fundamental Science **Room 314**

CLEO: Science & Innovations

07:00–18:00 Registration Open, Baltimore Convention Center, Pratt Street, 300 Level Lobby

08:00-09:45 QThA • Electro-Magnetic **Metamaterials**

Gennady Shvets, Univ. of Texas at Austin, USA, Presider

QThA1 • 08:00

Metamaterial Blazed Gratings, Yu-Ju Tsai¹, Stéphane Larouche¹, Talmage Tyler¹, Guy Lipworth¹, Jack J. Mock¹, Nan M. Jokerst¹, David R. Smith¹; ¹Electrical and Computer Engineering, Duke Univ., USA. We design, fabricate, and test a graded index diffractive structure based on non-resonant Ibeam metamaterials. The measured diffraction spectrum is in good agreement with simulation, and suggests a path toward metamaterial based diffractive optics.

QThA2 • 08:15

Passive Resonance Tuning through Closely Spaced Coupled Split Ring Resonators, Matthew T. Reiten¹, Dibakar Roy Chowdhury¹, Jianfeng Zhou¹, John F. O'Hara¹, Antoinette J. Taylor², Abul Azad¹; ¹Center for Integrated Nanotechnologies, Los Alamos National Lab, USA; ²Materials Physics and Applications Division, Los Alamos National Lab, USA. Bilayer split ring resonators as a function of separation ($\sim\lambda$ /500) and orientation are measured. Terahertz measurements match simulations showing frequency shifting of the resonances with implications for electrically small antenna design.

QThA3 • 08:30

Funneling Light Through a Subwavelength Aperture Using Epsilon-Near-Zero Materials, David Slocum¹, David Adams¹, Sandeep Inampudi¹, Shivashankar Vangala¹, William Goodhue¹, Viktor A. Podolskiy¹, Dan Wasserman¹; ¹Physics and Applied Physics, Univ. of Massachusetts Lowell, USA. We demonstrate enhanced light funneling through subwavelength features at optical frequencies using an epsilon near zero (ENZ) material layer. Transmission through a subwavelength slit filled with the epsilon near zero material is characterized.

OThA4 • 08:45

Two-Dimensionally Isotropic High Index Metamaterials, Yushin Kim¹, Muhan Choi^{1,2}, Seung Hoon Lee1, Seung Beom Kang2, Jonghwa Shin3, Min Hwan Kwak², Kwang-Young Kang², Yong-Hee Lee3, Namkyoo Park4, Bumki Min1; 1Mechanical Engineering, KAIST, Republic of Korea; ²ETRI, Republic of Korea; 3Physics, KAIST, Republic of Korea; ⁴Electrical Engineering, Seoul National Univ., Republic of Korea. We fabricated two-dimensionally isotropic high index metamaterials composed of hexagonal/square metallic ring and demonstrated polarization-insensitive effective refractive indices in the terahertz frequency range.

08:00-09:45 CThA • High-Speed On-Chip **Signal Processing** Benjamin Lee, IBM, USA, Presider

Room 321-323

CThA1 • 08:00

High-Speed Data Transmission in Multi-Layer Deposited Silicon Photonics for Advanced Photonic Networks-on-Chip, Aleksandr Biberman¹, Nicolás Sherwood-Droz², Xiaoliang Zhu¹, Michal Lipson², Keren Bergman¹; ¹Dept. of Electrical Engineering, Columbia Univ., USA; 2School of Electrical and Computer Engineering, Cornell Univ., USA. We introduce a multi-layer silicon photonic microring resonator filter, fabricated using deposited materials, and transmit up to 12.5-Gb/s error-free data, establishing a novel class of high-performance silicon photonics for advanced photonic NoCs.

CThA2 • 08:15

Ultra-compact, slow light enhanced, 160Gbaud de-multiplexing in a silicon photonic crystal waveguide, Bill Corcoran¹, Mark D. Pelusi¹, Christelle Monat¹, Juntao Li², Liam O'Faolain², Thomas F. Krauss², Benjamin J. Eggleton¹; ¹CUDOS, IPOS, School of Physics, The Univ. of Sydney, Australia; ²School of Physics and Astronomy, Univ. of St. Andrews, UK. We demonstrate error-free demultiplexing of 160Gbit/s optical data to a 10Gbit/s data stream, exploiting slow light enhancement of four-wave mixing in an ultra-compact 96µm long, dispersion engineered silicon photonic crystal waveguide.

CThA3 • 08:30

On-chip optical pulse erasure for ultrahigh bandwidth signal processing, Ravi Pant^{1,3}, Trung D. Vo^{1,3}, Chunle Xiong^{1,3}, Mark D. Pelusi^{1,3}, Steve J. Madden^{2,3}, Barry Luther-Davies^{2,3}, Ben Eggleton^{1,3}; ¹School of Physics, Univ. of Sydney, Australia; ²Laser Physics Centre, Australian National Univ., Australia; ³Centre for Ultrahigh bandwidth Devices for Optical Systems, CUDOS, Australia. We present on-chip, all-optical pulse erasure for enabling ultrahigh-bandwidth signal processing. 15 dB pump depletion is achieved for picoseconds pulses using the instantaneous $\chi^{(3)}$ nonlinearity in a dispersion-engineered chalcogenide waveguide.

CThA4 • 08:45

Time domain switching / demultiplexing using four wave mixing in GaInP photonic crystal waveguides, Isabelle Cestier¹, Amnon Willinger¹, Vardit Eckhouse1, Gadi Eisenstein1, Sylvain Combrié², Pierre Colman², Gaelle Lehoucq², Alfredo De Rossi²; ¹EE Dept., Technion, Israel; ²Thales Research and Development, France. Dynamical four wave mixing in GaInP photonic crystal waveguides is demonstrated for time domain switching/demultiplexing to extract one out of 16 or 32 channels having an aggregate bit rate of 10.56Gbit/s.

08:00-09:45 QThB • Symposium on The Zeno Effect in Optoelectronics and Quantum Optics I Edo Waks, Univ. of Maryland, USA, Presider

QThB1 • 08:00 Invited

QThB2 • 08:30

classical field states.

OThB3 • 08.45

single photons.

Quantum Zeno Effect and Quantum Zeno

Dynamics in Cavity Quantum Electrodynam-

ics, Jean-Michel Raimond¹, Clement Sayrin¹,

Sebastien Gleyzes¹, Igor Dotsenko¹, Michel Brune¹,

Serge Haroche¹, Paolo Facchi², Saverio Pascazio²;

¹LKB, ENS, UPMC, France; ²Universita di Bari,

Italy. We describe a cavity QED experiment on

quantum Zeno effect with Rydberg atoms and a

microwave superconducting cavity. We propose an implementation of quantum Zeno dynamics

leading to promising methods for tailoring non-

Optical 'bistability' with single atom absorbers,

Joseph Kerckhoff, Michael A. Armen¹, Dmitri S. Pavlichin¹, Hideo Mabuchi¹; ¹Edward L. Ginzton

Lab, Stanford Univ., USA. We present observations

of macroscopic switching of the optical field trans-

mitted by a saturation-driven, single-atom cavity

QED system induced by the atomic scattering of

Zeno or Anti-Zeno : which is more useful? Gershon Kurizki, Weizmann Inst., Israel. The quantum Zeno effect (QZE) and its inverse, the anti-Zeno effect (AZE), are complementary paradigms underlying the dynamical control of quantum systems subject to decoherence or mixedness.

08:00-09:45

CThB • Extreme Wavelength **Comb Generation**

David Jones, Univ. of British Columbia, Canada, Presider

CThB1 • 08:00

High harmonic generation with fs frequency combs and limitations due to intracavity plasma dynamics, Jason Jones¹, David Carlson¹, Jane Lee¹, Ewan M. Wright¹, John Mongelli¹; ¹College of Optical Sciences, Univ. of Arizona, USA. The dynamic intracavity ionization of a dilute gas target can substantially alter the pulse formation inside resonant fs enhancement cavities. We numerically and experimentally study these effects and how they affect intracavity high harmonic generation.

CThB2 • 08:15

High harmonic generation of Ti:S fs pulses using a passive cavity toward state detection of single indium ion, Tetsuya Ido¹, Kentaro Wakui¹, Kazuhiro Hayasaka¹; ¹Natinal Inst. of Information and Communictions Technology, Japan. VUV pulses at 159nm were generated as the 5th high harmonic of passively enhanced Ti:S fs pulses. The average output of 1.5µW might be sufficient to realize direct state detection of an indium ion clock.

CThB3 • 08:30 Invited

Frequency comb metrology in the extreme ultraviolet, Dominik Z. Kandula^{1,2}, Christoph Gohle^{1,3} Tjeerd J. Pinkert¹, Jonas Morgenweg¹, Itan Barmes¹, Wim Ubachs¹, Kjeld S. Eikema¹; ¹LaserLaB, FEW, VU Univ., Netherlands; ²Max Born Inst., Germany; ³Physics, Ludwig-Maximilians-Univ., Germany. Frequency comb generation and excitation of argon, neon, and helium is shown from 51 to 85 nm with amplified and harmonically upconverted comb laser pulses, resulting in an 8-fold improved helium ground state ionization energy.

CLEO: Science & Innovations

07:00–18:00 Registration Open, Baltimore Convention Center, Pratt Street, 300 Level Lobby

08:00-09:45

CThC • Guided-Wave Optical Sensing

Ulrike Willer, Clausthal Univ. of Technology, Germany, Presider

CThC1 • 08:00

Edge Emitting Sensors for Accurate Quantification of Hydrogen Composition Above 0.5%, Benjamin G. Griffin', Lynford L. Goddard'; 'Electrical and Computer Engineering, Univ. of Illinois at Urbana-Champaign, USA. An edge-emitting waveguide laser with an integrated palladium thin film for hydrogen sensing is presented. This device exhibits a 15% increase in the laser output power and 50pm peak wavelength redshift per percent hydrogen.

CThC2 • 08:15

Sensitized Silicon Ring Resonators for the Detection of TNT in the Gas Phase, Rozalia Orghici⁷, Ulrike Willer², Peter Lützow¹, Wolfgang Schade¹²; ¹Fraunhofer Heinrich Hertz Inst., Germany, ²Inst. for Energy Research and Physical Technologies, Clausthal Univ. of Technology, Germany. A silicon ring resonator is coated with receptor molecules for selective enrichment of TNT. Upon intercalation of TNT, changes in effective refractive index lead to a shift in resonance frequency which can accurately be determined.

CThC3 • 08:30

Probing Quantum Dot Cores, Their Interfaces and Thiol Cappings Non-Destructively in Dilute Solution using Raman Scattering in Hollow Core Photonic Crystal Fiber, Jacky S. W. Mak¹, Abdiaziz A. Farah¹, Feifan Chen¹, Amr S. Helmy¹; ¹The Edward S. Rogers Sr. Dept. of Electrical and Computer Engineering. Univ. of Toronto, Canada. Efficient Raman scattering of thiol-capped CdTe quantum dot solutions were obtained using HC-PCF. Strong Raman modes of the CdTe core, thiol agents, and their interfacial compound were observed and compared for the first time.

CThC4 • 08:45

Photonic Crystal Slot Waveguide Spectroscopy for the Detection of Chemical Warfare Simulants, Swapnajit Chakravarty¹, Ray T. Chen²; ¹Omega Optics, USA; 'Electrical and Computer Engineering, Univ. of Texas, USA. A photonic crystal slot waveguide based infrared absorption spectroscopy device is demonstrated for the on-chip spectroscopic determination of chemical warfare simulant triethylphosphate.

08:00–09:45 CThD • New Wavelength Fiber Lasers

Jihong Geng, AdValue Photonics, USA, Presider

CThD1 • 08:00 Invited

Mid-IR Fiber Lasers Based on Molecular Gasfilled Hollow-Core Photonic Crystal Fiber, Andrew Jones', A. V. Vasudevan Nampoothiri², Tobias Fiedler³, Rajesh Kadel¹, William Hageman¹, Natalie V. Wheeler³, Francios Couny³, Fetah Benabid³, Wolfgang Rudolph², Kristan L. Corwin¹, Brian R. Washburn¹; 'Kansas State Univ., USA; ³Dept. of Physics, Univ. of New Mexico, USA; ³Centre for Photonics and Photonic Materials, Dept. of Physics, Univ. of Bath, UK. Lasing from HCN gas contained in HC-PCF is observed for the first time. Mid-IR pulses (3.15 and 3.09 µm) were generated by optically pumping at 1.54 µm. A ¹²C, H₂-filled gas laser is also studied quantitatively.

CThD2 • 08:30

Mid-IR Supercontinuum (SC) Generation in ZBLAN fiber pumped by Tm-doped amplifier with fused silica SC input, Ojas Kulkarni¹, Vinay Alexander¹, Malay Kumar¹, Mohammed N. Islam¹², Michael J. Freeman², Fred L. Terry¹; Electrical Engineering and Computer Science, Univ. of Michigan, USA; ²Omni Sciences Inc., USA. We demonstrate supercontinuum generation beyond 4.5 µm by first shifting 1.55 µm laser-diode pulses to ~2 µm in standard single-mode fiber followed by amplification using Tm-doped amplifier and subsequent coupling to ~7 m ZBLAN fiber.

CThD3 • 08:45

0.4 mW Average Power at 17.5µm from Frequency Mixing Output of Two-Color Fiber Chirped Pulse Amplifier, Donna Strickland¹, Mojtaba Hajialamdari¹, Alaa Al-Kadry¹; ¹Physics and Astronomy, Univ. of Waterloo, Canada. We have demonstrated the generation of 400 µW of power at ~18 µm by difference-frequency mixing the 1038 and 1105 nm from a two-color, chirped pulse amplification Yb:fibre system.

CThE4 • 08:45

True Phase-Matched Third-order DFB Terahertz Quantum-Cascade Lasers using Weaklycoupled Cavities, Tsung-Yu Kao', Qing Hu', John Reno'; 'Electrical Engineering, MIT, USA; 'Center of Integrated Nanotechnologies, Sandia National Laboratories, USA. A novel laser cavity design in third-order DFB THz QCLs based on true phasematching technique is demonstrated. It increases the usable numbers of third-order DFB grating to 150 (5.6-mm long device) and achieve 6 deg beam divergence.

08:00–09:45 CThE • THz QCLS Giacomo Scalari, ETH Zurich, Switzerland, Presider

CThE1 • 08:00

A Terahertz Quantum-Cascade Laser with an Active Leaky-Wave Metamaterial Antenna, Amir A. Tavallaee^{1,2}, Matthew Puckett^{1,2}, Benjamin Williams^{1,2}, Philip Hon¹, Tatsuo Itoh¹, Qi-Sheng Chen³, ¹Electrical Engineering, Univ. of California, Los Angeles, USA; ²California NanoSystems Inst. (CNSI), USA; ³Aerospace Systems, Northrop Grumman, USA. A one-dimensional metamaterial waveguide for terahertz quantum-cascade lasers is presented that tailors laser radiation to a lowdivergence beam. The demonstrated prototype exhibits narrow (FWHM~15°) surface emission (40° from broadside) at 2.74 THz.

CThE2 • 08:15

Metal-Metal THz Quantum Cascade Laser Gain and Loss Investigated by THz Time Domain Spectroscopy, Michael Martl¹, Juraj Darmo¹, Christoph Deutsch¹, Martin Brandstetter¹, Alexander Benz¹, Aaron M. Andrews², Pavel Klang³, Werner Schrenk³, Gottfried Strasser², Karl Unterrainer^{1,3}; ¹Photonics Inst., Vienna Univ. of Technology, Austria; ²Inst. of Solid State Electronics, Vienna Univ. of Technology, Austria; 3Center for Micro- an Nanostructures, Vienna Univ. of Technology, Austria. THz time-domain studies on metal-metal THz quantum cascade lasers are presented. A coupled cavity method allows to probe the laser via modulation of coherent broadband THz pulses. Observed laser gain and loss processes are discussed.

CThE3 • 08:30

Active photonic crystal terahertz laser operating in higher bands, Alexander Benz¹, Christoph Deutsch¹, Martin Brandstetter¹, Karl Unterrainer¹, Aaron M. Andrews¹, Pavel Klang¹, Hermann Detz¹, Werner Schrenk¹, Gottfried Strasser¹; ¹Vienna Univ. of Technology, Austria. We present the design, fabrication and characterization of active photonic crystals terahertz quantum-cascade lasers operating in higher photonic bands. The upper bands lead to a large tuning range during operation.

Room 336

Room 337

CLEO: Science & Innovations

07:00–18:00 Registration Open, Baltimore Convention Center, Pratt Street, 300 Level Lobby

08:00-09:45

QThC • Fundamentals of Nano-Optics and Plasmonics

David Woolf, Harvard Univ., USA, Presider

QThC1 • 08:00

The Role of Kinetic Inductance in Metal Optics, Matteo Staffaroni¹, Eli Yablonovitch¹; ¹UC Berkeley EECS Dept., USA. A simple LC circuit model recovers the surface plasmon dispersion relation. The model clearly reveals the role of kinetic inductance in shaping the dispersion and other key properties of surface plasmons.

QThC2 • 08:15

Plasmonic Properties of Metallic Nanoparticles: The Effects of Size Quantization, Emily Townsend¹, Garnett W. Bryant¹; Joint Quantum Inst., National Inst. of Standards & Technology and Univ. of Maryland, USA. We examine the quantum mechanics of plasmons in metallic nanoparticle systems using time-dependent density functional theory. We identify "quantum core plasmons" and "classical surface plasmons".

QThC3 • 08:30

Organic materials with negative and controllable electric permittivity, *Guohua Zhu'*, *Lei Gu'*, *John Kitur'*, *Augustine Urbas'*, *Jarrett Vella²*, *Mikhail Noginov'*, '*Norfolk State Univ*, USA; ²*Air Force Research Lab*, USA. We show that metal-free materials with negative real parts of the electric permittivity can be realized experimentally and their dielectric functions can be controlled by laser illumination.

QThC4 • 08:45

Photon Drag Effect in Nanostructured Plasmonic Films, Andrey Yakim¹, Natalia Noginova¹, Yuri Barnakov¹; 'Center for Materials Research (CMR), Norfolk State Univ., USA. Strong enhancement of the photon drag effect due to nanostructuring of the surface has been demonstrated in thin metal films. 08:00–09:45 CThF • Nonlinear Microscopy Tomasz Tkaczyk, Rice Univ., USA, Presider

CThF1 • 08:00

Remote Focusing Differential Multiphoton Microscopy: Application to Neuronal Imaging, Erich E. Hoover¹, Michael D. Young¹, Susy M. Kim², Eric V. Chandler¹, Jeffrey J. Field¹, Dawn N. Vitek¹, Kraig E. Sheetz², Jing W. Wang², Jeff A. Squier¹; ¹Physics, Colorado School of Mines, USA; ²Biological Sciences, Univ. of California-San Diego, USA; ³Physics and Nuclear Engineering, United States Military Academy, USA. We apply remote focusing to multi-focal multiphoton microscopy by simultaneously imaging multiple focal planes of Drosophila melanogaster olfactory neurons. This technology permits imaging the entire volume of the antennal lobe in a single scan.

CThF2 • 08:15

Controlled Spatiotemporal Focusing Through Turbid Media, Ori Katz¹, Yaron Bromberg¹, Eran Small¹, Yaron Silberberg¹, ¹Physics of Complex Systems, Weizmann Inst. of Science, Israel. We apply adaptive beam shaping for spatiotemporal focusing of ultrashort pulses through turbid media, in the context of nonlinear microscopy. We find that controlled temporal shaping is attainable using only the spatial degrees of control.

CThF3 • 08:30

In vivo Imaging Using Second-Harmonic Nanoparticles, Chia-Lung Hisich^{1,2}, Thomas Lanvin¹, Rachel Grange¹, Ye Pu¹, Demetri Psaltis¹; ¹School of Engineering, EPFL, Switzerland; ²Electrical Engineering, Caltech, USA. We demonstrate second-harmonic nanoparticles as nanoprobes for long-term and in vivo imaging. The nanoparticles emitted a stable signal over five-hour continuous excitation and showed great contrast in a living mouse tail at 100 µm depth.

CThF4 • 08:45

High-Speed Second Harmonic Generation Holographic Microscopy, Omid Masihzadeh¹, Philip Schlup¹, Randy Bartels^{1,2}; ¹Electrical and Computer Engineering, Colorado State Univ., USA; ²School of Biomedical Engineering, Colorado State Univ., USA. We present three-dimensional images of biological samples using nonlinear optical, holographic microscopy. The femtosecond oscillator operates at a wavelength with low scattering in the sample and low average power prevents damage to the samples.

08:00–09:45 CThG • Mode-Locked Lasers *Stephane Calvez, Univ. of Strathclyde, UK, Presider*

CThG1 • 08:00

High-power spectral bistability in a multi-section quantum dot laser under continuous-wave or mode-locked operation, Daniil I. Nikitichev¹, Maria Ana Cataluna¹, Ying Ding¹, Ksenia A. Federova¹, Igor Krestnikov², Daniil A. Livshits², Edik U. Rafailov¹; 'Electronic Engineering and Physics, Univ. of Dundee, UK; ²Innolume GmbH, Germany. Wavelength bistability between 1245nm and 1295nm is demonstrated in a multi-section quantum-dot laser, controlled via the reverse bias on the saturable absorber. Continuous-wave or mode-locked regimes are achieved (output power up to 25mW and 17mW).

CThG2 • 08:15

Two-section InAs/InP Quantum-Dash Passively Mode Locked Lasers, Ricardo Rosales¹, Kamel Merghem¹, Anthony Martinez¹, Alain Accard², Francois Lelarge², Abderrahim Ramdane¹; ¹Lab for Photonics and Nanostructures, CNRS, France, ²Alcatel-Thales III-V Lab, joint lab of "Bell labs" and "Thales Research & Technology", France. First observations of 2-section InAs/InP quantum-dash passive mode locking at 48 GHz are presented. Mode locking trends are compared to those of a 1-section device and to the ones reported for InAs/ GaAs quantum-dot lasers.

CThG3 • 08:30 Invited

Femtosecond Semiconductor Lasers, Anne Tropper'; 'Physics and Astronomy, Univ. of Southampton, UK. Passive modelocking of surface-emitting semiconductor quantum well lasers can generate transform-limited optical pulses with duration comparable to the carrier-carrier scattering time. This presentation reviews recent advances in this field.

08:00-09:45

CThH • Coherent Systems David Caplan, MIT Lincoln Lab, USA, Presider

CThH1 • 08:00

Bandwidth Scalable, Coherent Transmitter Based on Parallel Spectral Slice Waveform Generation, David J. Geisler¹, Nicolas K. Fontiane¹, Ryan P. Scott¹, Tingting He¹, Loukas Paraschis², Ori Gerstel², Jonathan P. Heritage¹, S. J. Ben Yoo¹; ¹Electrical and Computer Engineering, Univ. of California, Davis, USA; ²Cisco Systems, USA. We present a bandwidth scalable optical transmitter for creating high bandwidth optical signals using parallel low speed electronics. Proof-of-concept 20 GHz spectral width, 100 ns, 10 Gb/s DPSK and 20 Gb/s QPSK waveforms are generated.

CThH2 • 08:15

Analyses of Polarization-Multiplexed WDM Transmission Characteristics of High-Order Optical QAM Signals, Kazuro Kikuchi'; 'Univ. of Tokyo, Japan. We analyze optical transmission characteristics of polarization-multiplexed WDM signals using 64-QAM and 256-QAM formats at 12.5 Gsymbol/s. XPM between WDM channels and two polarization tributaries limit the transmission distance below 1,000 km.

CThH3 • 08:30

8×400-Gbit/s PDM-QPSK with 100 GHz Channel Spacing Over 2000km Transmission Using MAP Detection, Junyi Wang', Xuan He', Kailu Gao', Longston Myers', Chongjin Xie', Zhongqi Pan'; 'EECE, Univ. of Louisiana at Lafayette, USA; 'Bell labs, Alcatel-Lucent, USA. We simulated 8×400-Gbit/s PDM-QPSK over 2000-km transmission by using Map detection to reduce the channel spacing to 100-GHz. MAP detection can significantly improve the system performance to < 10^{bit/s} EER compared to non-MAP detection.

CThH4 • 08:45

Experimental Optical Multiplexing of Two 20-Gbit/s QPSK Data Channels from Different Wavelengths onto a Single 40-Gbit/s Star 16-QAM using Fiber Nonlinearities, Xiaoxia Wu', Jian Wang', Hao Huang', Alan E. Willner'; ¹USC, USA. We experimentally demonstrate optical multiplexing of two 20-Gbit/s QPSK data channels at different wavelengths onto a single 40-Gbit/s star 16-QAM channel with tunable ring ratio using two cascaded fiber-based nonlinear stages.

CLEO: Science

& Innovations

CLEO: QELS-Fundamental Science

07:00–18:00 Registration Open, Baltimore Convention Center, Pratt Street, 300 Level Lobby

08:00-09:45

QThD • Discrete Optics and Periodic Structures

Zhigang Chen, San Francisco State Univ., USA, Presider

QThD1 • 08:00

Optical tachyons, broken PT-symmetry, and strain effects in photonic grapheme, Alexander Szamei¹, Mikael C. Rechtsman¹, Omri Bahat-Treidel¹, Moti Segev¹; ¹Physics, Technion, Israel. We demonstrate that optical tachyons, particles that travel faster than the speed of light, can be generated by PT-symmetry breaking in photonic graphene. We further show that the PT-symmetry can be restored via strain.

QThD2 • 08:15

New Physics of Subwavelength High Contrast Gratings, Vadim Karagodsky¹, Forrest Sedgwick¹, Connie J. Chang-Hasnain¹; ¹Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA. We present a simple yet precise theory, which explains the two main extraordinary features of optical gratings in the near-subwavelength regime: namely broadband high (>99%) reflectivity and ultra-high quality factor (Q-2x10⁵) resonances.

QThD3 • 08:30

Notch Nonlinear Frequency Shift in AlGaAs Bragg Grating Waveguides, Matteo Clerici1, Marco Peccianti^{1,2}, Michael J. Strain³, Pamela Tannouri¹, Alessia Pasquazi¹, Sze Phing Ho^{1,4}, Ian Rowe¹, Katarzyna A. Rutkowska⁵, Marc Sorel³, Roberto Morandotti¹; ¹Énergie, Matériaux et Télécommunications, INRS, Canada; ²IPCF-CNR and UOS, Univ. "Sapienza", Italy; 3School of Engineering, Univ. of Glasgow, UK; 4Nanophotonics Research Alliance, Universiti Teknologi Malaysia, Malaysia; ⁵Faculty of Physics, Warsaw Univ. of Technology, Poland. We present an investigation on the nonlinear dynamics of intense pulses in an AlGaAs Bragg waveguide and we report the experimental observation of an intensity dependent blue-shift of the Bragg notch spectral line.

QThD4 • 08:45

Discrete Solitons in Photonic Lattices with Topological Defects, Matthias Heinrich¹, Robert Keil¹, Felix Dreisow¹, Andreas Tünnermann¹, Stefan Nolte¹, Alexander Szameit^{2,1}; ¹Inst. of Applied Physics, Friedrich-Schiller-Universität Jena, Germany; ²Physics Dept. and Solid State Inst., Technion, Israel. We demonstrate numerically and experimentally how Topological Defects represented by junctions within otherwise periodical planar photonic lattices influences discrete solitons similar to conventional defects constituted by detuned waveguides.

08:00–09:45 QThE • Single Photons: Sources and Detectors

Michael Raymer, Univ. of Oregon, USA, Presider

QThE1 • 08:00

Optical Fibre With Embedded Diamond Nanocrystals: Towards a High Collection Efficiency, Waveguided Single Photon Source, Matthew R. Henderson', Shahraam Afshar V.¹, Andrew D. Greentree², Tanya M. Monro¹; ¹School of Chemistry & Physics, Univ. of Adelaide, Australia; ²School of Physics, Univ. of Melbourne, Australia; A model for the capture of diamond colour centre emission by a step-index fibre, including effects due to the fibre core-cladding interface, is presented. We investigate the parameter space for optimal single photon capture.

QThE2 • 08:15

Sub-nanosecond Electro-optic Modulation of Triggered Single Photons from a Quantum Dot, Matthew T. Rakher¹, Kartik Srinivasan¹; 'Center for Nanoscale Science and Technology, National Inst. of Standards and Technology, USA. Telecommunications-band single photons from a quantum dot are amplitude modulated on timescales fast compared to its radiative decay. Control of single photon wave-packets is an important resource for developing hybrid quantum systems.

QThE3 • 08:30

Third-Order Antibunching from an Imperfect Single-Photon Source, Martin J. Stevens', Scott Glancy', Sae Woo Nam', Richard P. Mirin'; 'NIST, USA. We measure second- and third-order coherences of an imperfect single-photon source. The magnitude of 3rd-order antibunching indicates that imperfect 2nd-order antibunching results from background emission with Poissonian photon number statistics.

QThE4 • 08:45

Multi-wavelength pumping technique for upconversion single-photon detectors, Lijun Ma', Joshua Bienfang', Oliver Slattery', Xiao Tang'; 'NIST, USA. We propose a multi-wavelength pumping technique to improve temporal resolution of up-conversion single-photon detectors. By using two-wavelength pumping we doubled the date rate of a quantum system beyond its original limitation.

CThI3 • 08:45

intensity integrator.

CThl2 • 08:30

Low Noise Stabilized Chirped Pulse Theta Laser for Photonic ADC, Dimitrios Mandridis¹, Charles Williams¹, Ibrahim Ozdur¹, Peter J. Delfyett¹; 'CRE-OL, The College of Optics and Photonics, Univ. of Central Florida, USA. A semiconductor-based 100 MHz Theta cavity design laser using a fiberized Fabry-Perot etalon with an intra-cavity modified Hänsch-Couillaud scheme is presented. AM noise spectra reveal suppression of the supermode noise spur by >30 dB.

08:00-09:45

CThl • **Optical Signal Processing** *Tetsuya Kawanishi, NICT, Japan, Presider*

CThI1 • 08:00 Invited

Demonstration of a 10 GHz CMOS-Compatible Integrated Photonic Analog-to-Digital Converter, Matthew E. Grein¹, Steven Spector¹, Anatol Khilo², Amir H. Najadmalayeri², Michelle Y. Sander³, Michael Peng², Jade Wang¹, Cheryl M. Sorace³, Michael W. Geis¹, Matthew M. Willis¹, Donna M. Lennon¹, Theodore Lyszczarz¹, Erich P. Ippen², Franz X. Kaertner²; ¹MIT Lincoln Lab, USA; ²Research Lab of Electronics, Massachusetts Inst. of Technology, USA. We demonstrate two fully functional channels of a real-time photonic ADC using mostly CMOS-compatible devices to optically sample and electronically digitize a 10-GHz RF signal with 37.9 dB SNR (6.0 ENOB) with a 1 GHz optical pulse train.

Photonic Intensity Integrator with Combined

High Processing Speed and Long Operation

Time Window, Mohammad H. Asghari¹, Yongwoo

Park¹, Jose Azana¹; ¹EMT, Énergie, Matériaux

et Télécommunications (EMT), Canada. We

demonstrate a new design for time integration

of microwave and optical intensity signals with

unprecedented processing time-bandwidth

product (>140), by cascading a discrete-time

integrator and high-speed analog time-limited

Room 318-320

CLEO: QELS-Fundamental Science

QThA • Electro-Magnetic Metamaterials—Continued

QThA5 • 09:00

Highly Confined Hybrid Spoof Surface Plasmons in Ultra-thin Metal/Dielectric Heterostructures, Hossein Mousavi', Alexander Khanikaev¹, Burton Neuner III¹, Yoav Avitzour¹, Dmitriy Korobkin¹, Gabriel Ferro², Gennady Shvets¹; ¹Dept. of Physics, Univ. of Texas at Austin, USA; ²Laboratoire des Multimatériaux et Interfaces, Université Claude Bernard Lyon 1, France. Highly confined "spoof" surface plasmons (SSPs) are predicted and observed in a perforated metal film coated with a thin dielectric layer. They are better confined than conventional guided modes and SSPs while controllable by perforations geometry.

QThA6 • 09:15

On-Way Slow Light in Nonreciprocal Low-Symmetry Metamaterials, Alexander B. Khanikaev, Chihhui Wu¹, Hossein Mousavi¹, Gennady Shvets¹; ¹physics, The Univ. of Texas at Austin, USA. It is shown that metamaterials containing magnetooptical media exhibit nonreciprocal (NR) properties ranging from polarization dependent isolation to one-way slow-light. This opens a new avenue to control light and design NR optical elements.

QThA7 • 09:30

Retarded-interaction magnetization waves in planar split-ring-resonator arrays, Manuel Decker¹, Nils Feth¹, Stefan Linden¹, Martin Wegener¹; ¹Karlsruhe Inst. of Technology (KIT), Germany. Resonance damping in split-ring-resonator square arrays operating at 200-THz frequency depends on both lattice constant and observation angle. This behavior is interpreted in terms of magnetization waves with retarded nearest-neighbor interaction. Room 321-323

CLEO: Science & Innovations

CThA • High-Speed On-Chip Signal Processing—Continued

CThA5 • 09:00 Invited

CThA6 • 09:30

all-optical scenarios.

A Bidirectional SRL with Further Miniatur-

ized RR Structure: Design and Its High-speed

All-optical Switching, Zhuoran Wang¹, Guohui

Yuan¹, Xinlun Cai², Guy Verschaffelt³, Jan Danc-

kaert³, Yong Liu¹, Siyuan Yu²; ¹School of Optoelec-

tronic Information, Univ. of Electronic Science and

Technology of China, China; ²Dept. of Electrical

and Electronic Engineering, Univ. of Bristol, UK;

³Dept. of Applied Physics and Photonics, Vrije

Universiteit Brussel, Belgium. A bidirectional SRL

device with further miniaturized RR structure is

fabricated. The fast switching speed of about 40ps and excellent BER performance indicate that this SRL device can be explored further in high-speed

Ultra-fast Optical Signal Processing using Optical Time Lenses and Highly Nonlinear Silicon Nanowires, Leif K. Oxenloewe; ¹DTU Fotonik, Dept. of Photonic Engineering, Technical Univ. of Denmark, Denmark. Abstract not available. Room 324-326

CLEO: QELS-Fundamental Science

QThB • Symposium on The Zeno Effect in Optoelectronics and Quantum Optics I—Continued

QThB4 • 09:00 Invited

Organic Materials for Zeno-Based Optical Switching, Joel Hales', Jonathon D. Matichak', Hsin-Chieh Lin', Yanrong Shi', Jochen Campo', Nikolay Makarov', Hyeongeu Kim', Sei-Hum Jang', Alex K.-Y, Jen', Seth R. Marder', Joseph W. Perry'; 'School of Chemistry and Biochemistry, Georgia Inst. of Technology, USA; ²Dept. of Materials Science and Engineering, Univ. of Washington, USA. Compounds showing strong non-degenerate two-photon absorption hold potential for Zenobased optical switching schemes. We report on organic compounds including polymethines and squaraines with large non-degenerate two photon cross sections.

OThB5 • 09:30

Quantum Logic Operations Using the Zeno Effect, James Franson¹, Todd Pittman¹; ¹Physics Dept., Univ. of Maryland Baltimore County, USA. Quantum logic operations can be performed using the quantum Zeno effect based on strong two-photon absorption. This approach can be generalized to perform all-optical switching of classical signals.

Room 314

CLEO: Science & Innovations

CThB • Extreme Wavelength Comb Generation—Continued

CThB4 • 09:00

Intracavity high harmonic generation driven by Yb-fiber based MOPA system at 80MHz repetition rate, Akira Ozawa^{1,2}, Yohei Kobayashi^{1,2}, ¹Inst. for Solid State Physics, Univ. of Tokyo, Japan; ²Core Research for Evolutional Science and Technology (CREST), JST, Japan. Coherent deep-UV radiation is produced by Yb-fiber-laser based cavityenhanced high-harmonic generation at 80-MHz repetition rate. The intracavity-power exceeds 3kW and up to 17th harmonics are outcoupled by thin Brewster's plate made by MgO crystal.

CThB5 • 09:15

Direct Referencing of a Quantum-Cascade-Laser at 4.3 µm to a Near-Infrared Frequency Comb, Marco Marangoni¹, Alessio Gambetta¹, Davide Gatti¹, Antonio Castrillo³, Gianluca Galzerano², Paolo Laporta^{1,2}, Livio Gianfrani², ¹Physics, Politecnico di Milano, Italy; ²IFN-CNR, Italy; ³Environmental Sciences, Seconda Università di Napoli, Italy. A sum-frequency-generation scheme is exploited to refer the frequency of a quantum-cascade-laser at 4.3 µm to a near-IR frequency comb based on a dual-branch Er:fiber laser without interposition of any transfer oscillator.

CThB6 • 09:30

Octave Spanning Supercontinuum in an As₂S₃ Taper using Ultra-low Pump Pulse Energy, Darren D. Hudson¹, Steven Dekker¹, Eric Mägi¹, Alex Judge¹, Stuart Jackson¹, Enbang Li¹, Jas Sanghera², Brandon Shaw², Ishwar D. Aggarwal², Ben Eggleton¹; ¹CUDOS, Univ. of Sydney, Australia; ²Naval Research Lab, USA. An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Chirp compensation allows the octave to be generated directly from the unamplified laser output.

10:00–10:30 Coffee Break, Exhibit Halls E and F, 100 Level

10:00–15:00 Exhibit Hall Hours, *Exhibit Hall*, 100 Level

Thursday, 5 May

154

CLEO: Science & Innovations

CThC • Guided-Wave Optical Sensing—Continued

CThC5 • 09:00

Low-cost PCB-integrated Polymer Waveguide Sensor for Gas Detection, Nikolaos Bamiedakis¹, Tanya Hutter², Richard V. Penty¹, Ian H. White¹, Stephen R. Elliott²; ¹Engineering Dept., Univ. of Cambridge, UK; ²Dept. of Chemistry, Univ. of Cambridge, UK. An optical waveguide sensor formed directly on low-cost PCB substrates is presented for the first time. The device integrates polymer waveguides functionalized with chemical dyes, photonic and electronic components and allows multiple-gas detection.

CThC6 • 09:15

Optical Gain Assisted Far-Field Sub-Wavelength Imaging, Joshua S. Deaver¹, Weiguo Yang¹, John O. Schenk², Michael A. Fiddy²; ¹Engineering and Technology, Western Carolina Univ., USA; ²Center for Optoelectronics and Optical Communications, Univ. of North Carolina at Charlotte, USA. We propose a far-field sub-wavelength imaging scheme, where evanescent waves from an object are converted to sustainable propagating waves by using optical gain. This approach does not rely on negative refraction, hyper-lenses, or plasmonic effects.

CThC7 • 09:30

Single nanoparticle detection using a microcavity laser, Lina He¹, Sahin K. Ozdemir¹, Jiangang Zhu¹, Lan Yang¹; ¹Washington Univ. in St. Louis, USA. Optical microcavity laser is utilized for labelfree detection of single nanoparticles. Detection limit is significantly improved due to the ultranarrow laser linewidth compared to the resonance linewidth of a passive microcavity.

CThD • New Wavelength Fiber Lasers—Continued

CThD4 • 09:00 Invited

CThD5 • 09:30

Direct visible lasers by rare earth doped waterproof fluoro-aluminate fibers, Yasushi Fujimoto'; 'Inst. of Laser Engineering, Japan. We have successfully drawn rare earth (Pr and Dy) doped waterproof fluoro- aluminate glass fibers at low loss (0.1~0.3 dB/m) and demonstrated visible laser oscillations pumped by a GaN-LD.

CThE • THz QCLS—Continued

CThE5 • 09:00

Gain measurements of a metal-metal terahertz quantum cascade laser using an integrated terahertz pulse emitter, David P. Burghoff, Tsung-Yu Kao¹, Dayan Ban²¹, Alan Lee¹, John Reno³, Qing Hu¹; ¹Dept. of Electrical Engineering and Computer Science, Massachusetts Inst. of Technology, USA; ²Dept. of Electrical and Computer Engineering, Univ. of Waterloo, Canada; ³Sandia National Laboratories, USA. A terahertz pulse emitter is fabricated alongside a quantum cascade laser with a metal-metal waveguide. Terahertz pulses are used to measure the gain of the laser ridge, which is clamped above threshold to 18 cm⁻¹.

CThE6 • 09:15

Vertical Sub-Wavelength Mode Confinement in THz Quantum Cascade Lasers, Elodie Strupiechonski¹, Davide Grassani¹, Daivid Fowler¹, François H. Julien¹, Raffaele Colombelli¹, Suraj P. Khanna², Lianhe L², Edmund H. Linfield², Giles A. Davies², Andrey B. Krysa³; ¹IEF, CNRS, Université Paris- Sud 11, France; ³SEEE, Univ. of Leeds, UK; ³Electronic and Electrical Engineering, EPSRC National Center for III-V Technologies, Univ. of Sheffield, UK. We reduce thickness of the active cores in THz/mid-infrared quantum-cascade lasers. Devices with active regions 60 times thinner than free-space emission wavelength are demonstrated with surprisingly modest increase in threshold current density.

CThE7 • 09:30

Fast tuning of MEMS-based tunable terahertz wire lasers, Qi Qin¹, Qing Hu¹, John Reno², ¹Dept. of Electrical Engineering and Computer Science and Research Lab of Electronics, MIT, USA; ²Center of Integrated Nanotechnologies, Sandia National Laboratories, USA. We demonstrate a fast frequency tuning of terahertz wire-lasers. Using a piezo-actuator and a MEMS-plunger enables a tuning speed up to ~15KHz. Improved bondingpad of wire-lasers leads to larger fabrication yield and better mode discrimination.

10:00–10:30 Coffee Break, Exhibit Halls E and F, 100 Level

UV light generation induced by microwave microplasma in hollow-core optical waveguides,

Benoît Debord¹, Raphael Jamier¹, Frédéric Gérôme¹,

Caroline Boisse-Laporte², Philippe Leprince², Olivier

Leroy², Jean-Marc Blondy¹, Fetah Benabid^{1,3}; ¹Xlim

research Inst., France; ²Laboratoire de Physique des

Gaz et des Plasmas, France; 3Centre for Photonics

and Photonic Materials, UK. We experimentally observed for the first time the built up of a mi-

crowave microplasma in gas-filled hollow-core

waveguides with internal diameter down to 65µm.

Ultraviolet wavelengths have been generated and guided directly inside the hollow-core.

10:00–15:00 Exhibit Hall Hours, Exhibit Hall, 100 Level		
	NOTES	

QThC • Fundamentals of Nano-Optics and Plasmonics-Continued

QThC5 • 09:00

Temporal Coupled-Mode Theory for Resonant Apertures, Lieven Verslegers¹, Zongfu Yu¹, Peter B. Catrysse¹, Zhichao Ruan¹, Shanhui Fan¹; ¹Electrical Engineering, Stanford Univ., USA. We develop the coupled-mode theory for resonant apertures. We show that the maximum transmission and absorption cross sections for resonant apertures are only related to the wavelength and the directivity of the aperture's radiation pattern.

QThC6 • 09:15

Wood's anomaly in arrays of highly anisotropic plasmonic antennas, Paul W. Kolb¹, Timothy D. Corrigan⁵, Howard D. Drew^{2,3}, Ray J. Phaneuf^{1,4}, Hossein Mousavi⁶, Alexander Khanikaev⁶, Gennady Shvets⁶; ¹Lab for Physical Sciences, USA; ²Physics, Univ. of Maryland, USA; 3Center for Nanoscale and Advanced Materials, Univ. of Maryland, USA; ⁴Materials Science and Engineering, Univ. of Maryland, USA; 5Physical Sciences, Concord Univ., USA; Physics, The Univ. of Texas, USA. We examine the Wood's anomaly in arrays of nanorod pairs and find an apparent strong coupling between longitudinal plasmon modes and an oscillating dipole moment perpendicular to the plane of the substrate.

QThC7 • 09:30

Super-resolution via Enhanced Evanescent Tunneling, Alessandro Salandrino¹, Demetrios Christodoulides1; 1CREOL, Univ. of Central Florida, USA. We propose the concept of enhanced evanescent tunneling. We show that this process can be used to probe both the amplitude and phase of the evanescent portion of the angular spectrum, thereby allowing target superresolution.

CThF • Nonlinear Microscopy— Continued

Room 336

CThF5 • 09:00

Subharmonic Synchronization of Picosecond Lasers for Stimulated Raman Scattering Microscopy, Wataru Umemura¹, Yasuyuki Ozeki^{1,2}, Kenta Fujita1, Kiichi Fukui3, Kazuyoshi Itoh1; 1Dept. of Material and Life Science, Osaka Univ., Japan; ²JST-PRESTO, Japan; ³Dept. of Biotechnology, Osaka Univ., Japan. A 38-MHz picosecond Yb-fiber laser is successfully synchronized to a 76-MHz picosecond Ti:sapphire laser with electronic phase comparators and an intra-cavity electro-optic modulator for high-contrast, label-free imaging with stimulated Raman scattering.

CThF6 • 09:15

Coherent anti-Stokes Raman scattering (CARS) holographic biological imaging, Perry Edwards¹, Kebin Shi¹, Jing Hu², Qian Xu¹, Yanming Wang², Demetri Psaltis³, Zhiwen Liu¹; ¹Electrical Engineering, the Pennsylvania State Univ., USA; ²Biochemistry and Molecular Biology, the Pennsylvania State Univ., USA; 3School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland. We demonstrate non-scanning three-dimensional (3D) imaging of cellular components in live cancerous (HeLa) cells by combining the chemical selectivity of CARS with the 3-D imaging capability of holography to establish a new technique for bio-imaging.

CThF7 • 09:30

In-line holographic CARS microscopy, Qian Xu¹, Kebin Shi¹, Haifeng Li¹, Kerkil Choi², Ryoichi Horisaki², David Brady², Demetri Psaltis³, Zhiwen Liu¹; ¹Electrical Engineering, The Pennsylvania State Univ., USA; ²Electrical and Computer Engineering, Duke Univ., USA; 3School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland. We investigated inline holographic CARS microscopy, in which the reference generated from a nonlinear medium co-propagates with the CARS signal produced from a specimen. We show that this technique has 3D chemical selective imaging capability.

CThG6 • 09:30

diodes, David Bitauld¹, Simon Osborne¹, Stephen O'Brien1; 1Tyndall National Inst., Ireland. We demonstrate low timing jitter 100 GHz passive mode-locking of a discrete mode (DM) laser. This Fabry-Perot device incorporates a spatially varying effective index selecting modes. Near Fourier limited 2.5 ps pulses were obtained.

Passive mode locking of discrete mode laser

CThH • Coherent Systems-Continued

CThH5 • 09:00

Optical 8PSK Transmitter using Tandem IQ Modulators with Binary Driving Electrical Signals, Guo-Wei Lu¹, Takahide Sakamoto¹, Tetsuya Kawanishi1; 1NICT, Japan, Japan. We propose and demonstrate an optical 8-ary phase-shift keying transmitter using tandem in-phase/quadrature modulators. A 30-Gb/s 8PSK is successfully generated through cascading a rectangular quadrature phase-shift keying (QPSK) and a square QPSK.

CThH6 • 09:15

Crosstalk-Induced OSNR Penalty Prediction on 112 Gb/s PolMux-QPSK System, Yu-Ting Hsueh1, Andrew Stark1, Mark Filer2, Thomas Detwiler¹, Sorin Tibuleac², Gee-Kung Chang¹, Stephen Ralph¹; ¹Georgia Inst. of Technology, USA; ²ADVA Optical Networking, USA. Penalties from in-band crosstalk for 112 Gb/s PolMux-QPSK systems are shown to be readily determined by use of a spectrally weighted crosstalk. Experimental results demonstrate that the method is robust for linear and nonlinear regimes.

CThH7 • 09:30

Frequency-Domain Adaptive Equalization in Digital Coherent Receivers, Md. S. Faruk¹, Kazuro Kikuchi1; 1Electrical Engineering and Information Systems, The Univ. of Tokyo, Japan. Aiming at the reduction of computational complexity of conventional time-domain equalizers in digital coherent receivers, we propose and demonstrate a novel frequency-domain adaptive equalization technique based on the constant-modulus algorithm.

10:00–10:30 Coffee Break, Exhibit Halls E and F, 100 Level

10:00–15:00 Exhibit Hall Hours, Exhibit Hall, 100 Level

NOTES

Room 337

CLEO: Science

& Innovations

CThG • Mode-Locked Lasers—

Femtosecond VECSELs with up to 1-W Aver-

age Output Power, Oliver D. Sieber¹, Martin

Hoffmann¹, Valentin J. Wittwer¹, Wolfgang P.

Pallmann¹, Igor Krestnikov², Sergey S. Mikhrin²,

Daniil A. Livshits², Matthias Golling¹, Yohan Bar-

barin1, Thomas Südmeyer1, Ursula Keller1; 1QE /

ULP, ETH Zürich, Switzerland; ²Innolume GmbH,

Germany. We developed novel low-dispersion

VECSELs modelocked with fast OD-SESAMs.

The first femtosecond modelocked OD-VECSEL

achieves 1 W average power with 784-fs pulses. At lower power, we achieved sub-500-fs pulses both

10-GHz MIXSEL: An Integrated Ultrafast Semi-

conductor Disk Laser with 2.2 W Average Power,

Valentin J. Wittwer¹, Benjamin Rudin¹, Deran

J.H.C. Maas¹, Martin Hoffmann¹, Oliver D. Sieber¹,

Yohan Barbarin¹, Matthias Golling¹, Thomas Süd-

meyer1, Ursula Keller1; 1D-PHYS/IQE, ETH Zurich,

Switzerland. We present a 10-GHz Modelocked

Integrated External-Cavity Surface Emitting Laser

(MIXSEL) with 2.2 W average power in 21-ps

pulses, which is the highest power level from any

10-GHz modelocked semiconductor laser.

with QW- and QD-VECSELs.

CThG5 • 09:15

Continued

CThG4 • 09:00

CLEO: Science

& Innovations

Multitap Microwave Photonic Phase Filters,

Ehsan Hamidi¹, Minhyup Song¹, Rui Wu¹, V.r.

Supradeepa¹, Christopher M. Long¹, Daniel E. Leaird¹, Andrew M. Weiner¹; ¹Purdue Univ., USA.

We demonstrate multitap microwave photonic

filter with complex tap weights as a programmable

spectral phase filter based on single-sideband

modulation of an optical frequency comb, and line-by-line optical pulse shaping in an interfer-

CThI • Optical Signal

CThI4 • 09:00

Processing—Continued

CLEO: QELS-Fundamental Science

QThD • Discrete Optics and **Periodic Structures—Continued**

QThD5 • 09:00

Diverging Rabi Oscillations in Sub-wavelength Photonic Lattices, Barak Alfassi¹, Or Peleg¹, Nimrod Moiseyev¹, Mordechai Segev¹; ¹Physics, Technion, Israel. We show that Rabi oscillations between Bloch-modes of an waveguide array with sub-wavelength periodicity diverge, in both frequency and field amplitude, when the optical wavelength approaches a mathematical exceptional point.

QThE • Single Photons: Sources and Detectors—Continued

QThE5 • 09:00

Accessing Photon Bunching with Photon Number Resolving Multi-Pixel Detector, Leonid Krivitsky¹, Dmitry Kalashnikov¹, Maria Chekhova^{2,3}; ¹Data Storage Inst., Singapore; ²M. V. Lomonosov Moscow State Univ., Russian Federation; ³Max-Planck Inst. for the Science of Light, Germany. The intensity correlation function of squeezed vacuum, produced in an OPA, was measured with a photon-number resolving multi-pixel detector (MPPC). Based on realistic MPPC model, strong photon bunching was revealed for low-gain OPA radiation.

OThE6 • 09:15

Full-Field Quantum Correlations with Multi-Pixel Detectors, Ryan E. Warburton¹, Jonathan Leach², David G. Ireland², Frauke Izdebski¹, Miles J. Padgett², Gerald S. Buller¹; ¹Engineering and Physical Sciences, Heriot-Watt Univ., UK; ²Physics & Astronomy, Univ. of Glasgow, UK. Using multipixel detectors, we demonstrate strong full-field quantum correlations in the position and momentum bases. Spatial light modulators used as tunable lenses enabled the observation of correlations in various superpositions of these bases.

CThI5 • 09:15

ometeric scheme.

Flat-Top Microwave Photonic Filter Based on Optical Frequency Comb Shaping, Minhyup Song¹, Christopher M. Long¹, Ehsan Hamidi¹, Rui Wu¹, Venkata Supradeepa¹, Dongsun Seo¹, Daniel E. Leaird¹, Andrew M. Weiner¹; ¹School of Electrical and Computer Engineering, Purdue Univ., USA. We present flat-top microwave photonic filters through amplitude and phase shaping of optical frequency combs. Flat-topped filters with greater than 27-dB stopband loss are demonstrated using 32 taps with both positive and negative tap coefficients.

Lane Martin¹, Giovanni Di Giuseppe^{1,2}, Armando

OThD6 • 09:15

Perez-Leija^{1,3}, Robert Keil⁴, Alexander Szameit⁵, Ayman Abouraddy¹, Demetrios Christodoulides¹, Bahaa E. Saleh¹; ¹CREOL, The College of Optics & Photonics, Univ. of Central Florida, USA; 2School of Science and Technology, Physics Division, Univ. of Camerino, Italy; 3INAOE, Coordinacion de Optica, Mexico; 4Inst. of Applied Physics, Friedrich-Schiller-Universität Jena, Germany; 5Solid State Inst. and Physics Dept., Technion, Israel. We observe the transition from extended to Anderson-localized states in silica waveguide arrays exhibiting offdiagonal coupling disorder.

Anderson localization in optical waveguide

arrays with off-diagonal coupling disorder,

QThD7 • 09:30

Observation of Glauber-Fock dynamics in photonic lattices, Armando Perez-Leija^{1,2}, Robert Keil³, Hector Moya-Cessa¹, Demetrios Christodoulides¹, Alexander Szameit⁴; ¹CREOL, USA; ²Friedrich-Schiller-Universität, Germany; ³Optica, INAOE, Mexico; 4Solid State Inst. and Physics Dept., Technion, Israel. We report the first observation of classical intensity distributions in optical arrays that are totally analogous to quantum coherent and displaced Fock states. Bloch-like oscillations and revivals are also predicted in such photonic lattices.

OThE7 • 09:30

Cavity-Enhanced Nanowire Superconducting Single Photon Detectors on GaAs, Alessandro Gaggero¹, Saeedeh Jahanmiri Nejad², Francesco Marsili², Francesco Mattioli¹, Roberto Leoni¹, David Bitauld², Dondu Sahin², G. H. Hamhuis², Richard Noetzel², Rosendo Sanjines³, Andrea Fiore²; ¹Inst. for photonics and nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Italy; ²COBRA Research Inst., Eindhoven Univ. of Technology, Netherlands; 3 Inst. of Condensed Matter Physics (IPMC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. We report on efficient nanowire NbN superconducting single photon detectors (SSPDs), integrated with an optical cavity based GaAs/AlAs distributed Bragg reflectors, showing a detection efficiency of 18.3% at 4.2K at 1.3 µm wavelength.

CThI6 • 09:30

A 16-fs aperture-jitter photonic ADC: 7.0 ENOB at 40 GHz, Amir H. Nejadmalayeri1, Matthew E. Grein², Anatol Khilo¹, Jade Wang², Michelle Y. Sander¹, Michael Peng¹, Cheryl M. Sorace¹, Erich P. Ippen¹, Franz X. Kaertner¹; ¹RLE, MIT, USA; ²MÎT Lincoln Lab, USA. A photonic ADC based on balanced detection, phase encoded optical sampling, wavelength multiplexing, and electronic quantization is demonstrated. It achieves 7.0 ENOB resolution at a 2GSa/s sub-sampling rate for a 40 GHz input analog signal.

10:00–10:30 Coffee Break, Exhibit Halls E and F, 100 Level

Room 318-320

CLEO: QELS-Fundamental Science

10:30-12:15

QThF • Disordered Material Meir Orenstein, Technion Israel Inst. of Technology, Israel, Presider

QThF1 • 10:30

Fabrication and characterization of 3D deterministic aperiodic structures, Michael Renner¹², Martin Wegener², Georg von Freyman¹²; ¹Fachbereich Physik, Universität Kaiserslautern, Germany; ²Institut für Nanotechnologie and DFG Center for Functional Nanostructures, Karlsruher Inst. of Technology, Germany. We present the realization of photonic structures based on the 3D generalization of deterministic aperiodic sequences in a positive photo-resist by direct laser writing. Diffraction patterns are studied showing characteristic intensity distribution.

QThF2 • 10:45

Hyper-Transport of Light by Virtue of Disorder, Liad Levi¹, Yevgeny Krivolapov¹, Moti Segev¹, Shmuel Fishman¹; ¹Physics, Technion-Israel Inst. of Technology, Israel. We demonstrate experimentally that when a spatially-random potential exhibits fast fluctuations also during propagation direction, transport becomes faster than ballistic. This new concept has major implications on transport of quantum particles.

QThF3 • 11:00

Anderson delocalization in one dimensional u or ε-near-zero metamaterial stacks and other dispersion effects on localization, Ara A. Asatryan¹, Lindsay C. Botten¹, Michael A. Byrne¹, Valentin D. Freilikher², Sergey Gredeskul^{3,4}, Ílya V. Shadrivov⁴, Ross C. McPhedran⁵, Yurii A. Kivshar^{4,6}; ¹Mathematical Sciences, Univ. of Technology Sydney, Australia; ²Dept. of Physics, Bar-Ilan Univ., Israel; ³Dept. of Physics, Ben Gurion Univ. of the Negev, Israel; ⁴Nonlinear Physics Center, Australian National Univ., Australia; 5School of Physics, Univ. of Sydney, Sydney, Australia; 'St.Petersburg State Univ. of Information Technologies, Mechanics and Optics, Russian Federation. We have carried out a comprehensive study of dispersion and absorption effects on Anderson localization in one-dimensional metamaterial stacks and have shown that the field is delocalized in μ or ϵ -nearzero media at normal incidence.

QThF4 • 11:15

Eigenmodes in a randomly disordered medium, Wonjun Choi¹, Allard P. Mosk², Q-Han Park¹, Wonshik Choi¹, ¹Dept. of Physics, Korea Univ, Republic of Korea; ²Complex Photonic Systems, Faculty of Science and Technology, and MESAb Inst. for Nanotechnology, Univ. of Twente, Netherlands. We numerically observe that open eigenmodes enhance the energy stored inside disordered media and prove that eigenmodes contribute to a single-channel optimizing mode, which is realized in recent experiments, in proportion to their eigenvalues. Room 321-323

CLEO: Science & Innovations

10:30-12:15

CThJ • **Optomechanics I** *Milos Popovic, Univ. of Colorado at Boulder, USA, Presider*

CThJ1 • 10:30

Electromagnetically Induced Transparency and Slow Light with optomechanics, Amir H. Safavi-Naeini¹, Thiago P. Mayer Alegre¹, Jasper Chan¹, Matt Eichenfield¹, Martin Winger¹, Jeffrey T. Hill¹, Qiang Lin¹, Darrick Chang¹, Oskar Painter¹; ¹Caltech, USA. We demonstrate electromagnetically induced transparency and slow light in an optomechanical cavity, at cryogenic and ambient conditions, and show effects analogous to electromagnetically induced absorption.

CThJ2 • 10:45

Cavity optomechanical sensors for atomic force microscopy, Kartik Srinivasan¹, Houxun Miao^{1,2}, Matthew Rakher¹, Marcelo Davanco^{1,2}, Vladimir Aksyuk^{1,3}, 'Center for Nanoscale Science and Technology, National Inst. of Standards and Technology, USA; 'Maryland Nanocenter, Univ. of Maryland, USA; 'Dept. of Electrical and Computer Engineering, Univ. of Maryland, USA. We develop a Si cavity optomechanical sensor for atomic force microscopy through near-field coupling between a nanocantilever and microdisk cavity. The device exhibits sub-fm/\Hz displacement sensitivity, GHz bandwidth, and >60 dB of dynamic range.

CThJ3 • 11:00

Mechanical Trapping in a Quadratically Coupled Optomechanical Double Disk, Jeffrey T. Hill', Qiang Lin', Jessie Rosenberg', Oskar Painter'; 'Applied Physics, Caltech, USA. We demonstrate a novel approach for trapping mechanical motion and elastic tuning of mechanical rigidity while preserving phonon number, through a giant quadratic optomechanical coupling created from a tunable coupled microdisk resonator.

CThJ4 • 11:15

Tunable 2D Photonic Crystal Cavities for Cavity Electro-Optomechanics, Martin Winger', Thiago P. Mayer Alegre', Amir H. Safavi-Naeini', Oskar Painter'; 'Thomas J. Watson, Sr., Lab of Applied Physics, California Inst. of Technology, USA. We present and demonstrate a novel electro-optomechanical structure based on a slotted waveguide photonic-crystal cavity, in which electrostatics and optics couple simultaneously to the same "phonon" resonance. Room 324-326

CLEO: QELS-Fundamental Science

10:30-12:00

QThG • Symposium on The Zeno Effect in Optoelectronics and Quantum Optics II Joseph Altepeter, Northwestern Univ., USA, Presider

QThG1 • 10:30

Zeno All-Optical Switching in a Silicon Ring Resonator using Inverse Raman Scattering, Henry Wen¹, Onur Kuzucu¹, Nicolás Sherwood-Droz², Taige Hou², Michal Lipson^{2,3}, Alexander L. Gaeta¹; ¹Applied and Engineering Physics, Cornell Univ, USA; ²Electrical & Computer Engineering, Cornell Univ, USA; ³Kavli Inst. at Cornell for Nanoscale Science, Cornell Univ, USA. We experimentally demonstrate all-optical control of a single resonance in a silicon micro-ring resonator using Raman-induced loss. Simulations indicate the potential for signal routing with >97% throughput using picojoule control pulses.

QThG2 • 10:45

All-optical switching in SU-8 conductor-gapdielectric plasmonic microring resonator using thermal nonlinearity, David Perron¹, Marcelo Wu¹, Cameron Horvath¹, Daniel Bachman¹, Vien Van¹; 'Electrical Engineering, Univ. of Alberta, Canada. Efficient light-to-heat conversion due to ohmic loss in a Au/SiO₂/SU-8 plasmonic microring resonator was exploited to achieve all-optical switching. We obtained 20 times larger resonance shift in the resonator over similar SU-8 dielectric microrings.

QThG3 • 11:00 Invited

Nonlinear optics near the single photon level with quantum dots, Edo Waks¹, Deepak Sridharan¹, Ranojoy Bose¹, Hyochul Kim¹, Glenn Solomon², ¹Electrical and Computer Engineering, Univ. of Maryland, USA; ²Physics, National Inst. of Science and Technology, USA. We describe our work on engineering nonlinear optical devices using quantum dots coupled to optical resonators. These systems enable large optical Stark shifts and all optical switching with only a few photons.

Room 314

CLEO: Science & Innovations

10:30-12:15

CThK • CLEO Symposium on Broadband Spectroscopy: New Techniques and Sources I: Dual-Comb Heterodyne Spectroscopy Scott Sanders, Univ. of Wisconsin-

Madison, USA, Presider

CThK1 • 10:30 Invited

Optically referenced double comb interferometry: applications and technological needs, Jerome Genest¹, Jean-Daniel Deschënes¹, Carlos Andres Perilla¹, Simon Potvin¹, Sylvain Boudreau¹; ¹Departement de genie electrique et de genie informatique, Universite Laval, Canada. Chirping to enhance dual comb interferometry is discussed, along with multiplicative noise. The signal providing the optical path difference axis is not at the carrier frequency. Applications less affected by the spectral range are proposed.

CThK2 • 11:00

High Accuracy Molecular Spectroscopy with Combs Broadened From 1.35 to 1.7 µm, Alexander M. Zolot¹, Ian Coddington¹, Fabrizio Giorgetta¹, Esther Bauman¹, William Swann¹, Jeffrey Nicholson², Nathan Newbury¹; ¹NIST, USA; ²OFS Laboratories, USA. A coherent dual comb spectrometer spanning over 45 THz in the NIR was constructed from broadened erbium fiber lasers. Gas phase water, methane, and acetylene spectra were measured and characterized toward establishing absolute frequency references.

CThK3 • 11:15

1.5 Octave Highly Coherent Fiber Frequency Comb, Axel Ruehl^{1,2}, Kevin C. Cossel³, Michael J. Martin³, Hugh McKay², Brian Thomas², Ling Dong^{4,2}, Martin E. Fermann², John M. Dudley⁵, Ingmar Harl², Jun Ye³, Inst. for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, Netherlands; ²IMRA America Inc., USA; ³JILA, National Inst. of Standards and Technology and Univ. of Colorado, USA; ⁴College of Engineering and Science, Clemson Univ., USA; ³Dept. of Optics, Univ. of Franche-Comte, France. We present a highly coherent Yb-fiber laser based frequency comb spanning nearly 1.5 spectral octaves. The coherence properties are investigated by optical beat experiments and numerical simulations.

Thursday, 5 May

CLEO: Science & Innovations

10:30-12:15

CThL • Fiber Based Sensors Zuyuan He, Univ. of Tokyo, Japan, Presider Scott Bisson, Sandia Natl. Labs, USA, Presider

CThL1 • 10:30

Distributed Sensing inside Long-length FBG at Region beyond Laser Coherence Length based

on Synthesis of Optical Coherence Function, Koji Kajiwara', Zuyuan He', Kazuo Hotate'; 'Electrical Engineering and Information Systems, The Univ. of Tokyo, Japan. Measurement of Bragg-wavelength distribution inside a long-length FBG at region beyond laser coherence length is demonstrated based on synthesis of optical coherence function for a multi-point distributed sensor system with wide measurement range.

CThL2 • 10:45

Integrated Optical Refractometer Based On Multimode Interference, Jaime Viegas¹⁴, Mona Mayeh², Paulo V. Marques³⁴, Faramarz Farahi²; ¹Masdar Inst., United Arab Emirates, ²Center for Optoelectronics and Optical Communications, Univ. of North Carolina at Charlotte, USA; ³Physics, Faculty of Sciences, Univ. of Porto, Portugal; ⁴UOSE, INESC Porto, Portugal. An integrated optical refractometer based on multimode interference, with sensitivity enhancement due to sub-micrometer axial features, is demostrated with experimental sensitivity as high as 3200 nm/RIU and resolution on the order of 5 pm.

CThL3 • 11:00

Chirped and tilted fiber Bragg grating edge filter for in-fiber sensor interrogation, Tuan Guo^{1,2}, Hwa-Yaw Tam², Jacques Albert²; Inst. of Photonics Technology, Jinan Univ., China; ²Dept. of Electrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong; ³Dept. of Electronics, Carleton Univ., Canada. Power-referenced edge filter based on a linearly chirped and weakly tilted fiber Bragg grating is proposed. It provides a smooth transfer function with 0.7 dB/nm of discrimination over C-band for the temperature-self-compensated FBG interrogation.

CThM • Bandgap and Crystalline Fibers

Siddharth Ramachandran, Boston Univ., USA, Presider

CThM1 • 10:30

10:30-12:00

Sub-picosecond microjoule-class fiber lasers, Caroline Lecaplain', Bülend Ortaç', Guillaume Machinet', Johan Boullet', Martin Baumgartl', Thomas Schreiber', Eric Cormier', Ammar Hideur', ¹UMR CNRS 6614 CORIA, France; ²UNAM-Inst. of Materials Science and Nanotechnology, Turkey; ³CELIA, France; 'Inst. of Applied Physics, Germany; 'Fraunhofer Inst. for Applied Optics and Precision Engineering, Germany. We study the impact of the mode-locking mechanism on the performances of a microjoule-class all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers.

CThM2 • 10:45

Bench Top Milli-Joule Energy-level Nanosecond Pulse Delivery through Hollow-core Fiber, Benoit Beaudou¹, Frédéric Gérôme¹, Gael Gabore¹, Georges Humbert¹, Jean-Louis Auguste¹, Yu Cheng³, Jean-Marc Blondy¹, Fetah Benabid^{1,3}, ¹Xlim, France; ²Meggitt Sensing Systems, France; ³CPPM-Univ. of Bath, UK. We report on the fabrication of a large pitch hollow-core fiber designed for maximizing energy transmission at 1064nm. Due to an air-mode/silica overlap reduced to 0.05%, a first demonstration of 4mJ nanosecond-pulses coupling is achieved.

CThM3 • 11:00

Practically Deployable and Effectively Single Mode All-Solid Photonic Bandgap Fiber with Large Effective Area, Masahiro Kashiwagi¹, Saitoh Kunimasa², Takenaga Katsuhiro¹, Tanigawa Shoji¹, Matsuo Shoichiro¹, Fujimaki Munehisa¹, ¹Fujikura Ltd., Japan; ²Hokkaido Univ., Japan. We have designed and fabricated a practically deployable large effective area all-solid photonic bandgap fiber. Effectively single mode operation and 440 µm² effective area were achieved at a 7.5 cm-bending radius.

10:30–12:15 CThN • THz Waveguides Yujie Ding, Lehigh Univ., USA, Presider

CThN1 • 10:30

Ultra Low Bending Loss Spiral Photonic Crystal Fibers in Terahertz Regime, Arti Agrawal¹, J. Kejalakshmy¹, M. Uthman¹, B. M. Rahman¹, K. T. Grattan¹; ¹Electrical Engineering, City Univ. London, UK. A spiral PCF design in Topas* with ultra low bending loss, very low confinement loss and superior dispersion properties in the Terahertz regime is presented. The design provides parameters for optimal performance over several characteristics.

CThN2 • 10:45

Analysis of resonant cavity geometries in a THz TE_r-mode parallel-plate waveguide, Victoria Astley', Blake McCracken', Rajind Mendis', Daniel Mittleman'; 'Dept. of Electrical and Computer Engineering, Rice Univ., USA. We describe an experimental and computational study of the dependence of narrow resonances on geometry for rectangular resonant cavities in THz TE₁-mode parallel-plate waveguides. Increased Q-values can be obtained by modifying the cavity geometry.

CThN3 • 11:00

A new technique to measure loss, effective refractive index and electric field distribution of THz porous fibers, Shaghik Atakaramians^{1,2}, Shahraam Afshar V.², Michael Nagel³, Tanya M. Monro², Derek Abbott¹; ¹School of Electrical & Electronic Engineering, The Univ. of Adelaide, Australia; ¹School of Chemistry & Physics, The University of Adleaide, Australia; ¹Institut für Halbleitertechnik, RWTH Aachen Univ., Germany. We developed a new technique, employing a probe-tip, to measure both aeff and neff of porous fibers. Moreover, using this approach, we measure the evanescent electric field as a function of frequency.

CThL4 • 11:15

Precise Signal Processing Schemes in Resonator Fiber Optic Gyro with Bipolar Digital Serrodyne Phase Modulation Technique, Xijing Wang¹, Zuyuan He¹, Kazuo Hotate¹; 'Electrical Engineering and Information Systems, The Univ. of Tokyo, Japan. Precise signal processing schemes for resonator fiber optic gyro with bipolar digital serrodyne phase modulation are proposed with suppressed noise induced by higher harmonics and stabilized control signal to adjust amplitude of phase modulation waveform.

CThM4 • 11:15

Quaternary One-Dimensional Photonic Crystal Cladding Hollow-Core Bragg Fiber, Lichao Shi¹², Wei Zhang¹², Jie Jin¹², Yidong Huang¹², Jiangde Peng¹²; ¹Dept. of Electronic Engineering, Tsinghua Uniw, China; ²Tsinghua National Lab for Information Science and Technology, China. We proposed and fabricated hollow-core Bragg fiber with quaternary one-dimensional photonic crystal cladding. The cladding increases the design flexibility. The transmission measurements revealed it guides light by the higher order photonic bandgaps.

CThN4 • 11:15

Suspended core polymer fibers with isolated mode for terahertz guiding, Bora Ung⁴, Mathieu Rozé¹, Anna Mazhorova¹, Markus Walther², Maksim Skorobogatiy¹, ¹Engineering physics, Ecole Polytechnique de Montreal, Canada; ²Materials Research Center, Univ. of Freiburg, Germany. The fabrication and characterization of polymer suspended core fibers (porous and non-porous) for terahertz guiding is demonstrated for the first time. These novel fibers enable strong mode isolation from perturbations in the surrounding environment.

10:30-12:15

QThH • Nonlinear and Ultrafast Nanophotonics

Mario Hentschel, Univ. of Stuttgart, Germany, Presider

QThH1 • 10:30

Metamolecular Nonlinear Optics, Hannu Husu¹, Roope Siikanen¹, Goery Genty¹, Henna Pietarinen¹, Martti Kauranen¹, Joonas Lehtolahti², Janne Laukkanen², Markku Kuittinen²; ¹Dept. of Physics, Tampere Univ. of Technology, Finland; ²Dept. of Physics and Mathematics, Univ. of Eastern Finland, Finland. We vary relative arrangement of anisotropic metal nanoparticles (metamolecules) in arrays. Their second-harmonic response is not a simple orientational average of the molecular responses. Instead, collective resonances of the structures dominate.

QThH2 • 10:45

Multi-photon Autocorrelation in Gold Nanostructures, Daniele Brida¹, Paolo Biagioni¹, Jer-Shing Huang², Johannes Kern³, Matteo Savoini¹, Lamberto Duò¹, Bert Hecht³, Marco Finazzi¹, Giulio Cerullo¹; ¹Politecnico di Milano, Italy; ¹National Tsing-Hua Univ., Taiwan; ³Universität Würzburg, Germany. We performed interferometric autocorrelation of ultrashort laser pulses using the multi-photon photoluminescence of gold nanostructures. We observe an incoherent contribution with a decay constant related to electron cooling in the conduction band.

QThH3 • 11:00

Ultrafast observation of weak coupling effects in ZnO-Ag heterostructures, Benjamin Lawrie¹, Richard Mu², Richard F. Haglund³; ¹Interdisciplinary Materials Science, Vanderbilt Univ., USA; ³Dept. of Physics, Fisk Univ, USA; ³Dept. of Physics and Astronomy, Vanderbilt Univ., USA. Pump-probespectroscopy on ZnO/MgO heterostructures demonstrates a 600fs decay to impurity bound excitons located near the ZnO/MgO interface. Surface-plasmon-polaritons supported on a 30nm Ag film quench this process through weak coupling effects.

QThH4 • 11:15

Silicon Based Ultrafast Active Plasmonics near 1.5 µm, Jan Niklas Caspers', Nir Rotenberg', Henry M. van Driel'; 'Dep. of Physics and Inst. for Optical Science (IOS), Univ. of Toronto, Canada. Light plasmon coupling resonances near 1.5 µm are optically shifted by nearly 50 nm on a gold-coated silicon grating for 800 fs, 775 nm excitation; recovery occurs in ~70 ps.

JOINT

10:30-12:15

JThA • Microscopic Imaging and Endoscopy Yu Chen, Univ. of Maryland, USA, Presider

JThA1 • 10:30 Invited

Fiber-optic Two-photon Fluorescence and Second Harmonic Generation Endomicroscopy, Yuyiing Zhang', Kartikeya Murari¹, Jiefeng Xi¹, Yongping Chen¹, Meredith Arkin², Samata Kakkad³, Mala Mahendroo², Kate Luby-Phelpe¹, Shenping Li⁵, Zaver Bhujwalla³, Kristine Glunde³, Ming-Jun Li⁷, Xingde Li¹; ¹Biomedical Engineering, Johns Hopkins Univ, USA; ²Obstetric and Gynecology, UT Southwestern Medical Center, USA; ³Radiology, Johns Hopkins Univ, USA; ⁴Cell Biology, UT Southwestern Medical Center, USA; ⁵Science & Technology Division, Corning Incorporated, USA. We present updates on recent developments of a fully integrated, ultracompact fiber-optic scanning endomicroscope for nonlinear optical imaging. Approaches to significantly improve signal collection efficiency and resolution will be discussed.

JThA2 • 11:00

Full-Range, Complex-Conjugate-Free, Endoscopic Spectral-Domain Optical Coherence Tomography, Kang Zhang', Yong Huang', Jin U. Kang'; 'Electrical and Computer Engineering, Johns Hopkins Univ., USA. We implemented full-range, complex-conjugate-free, endoscopic SD-OCT with a forward-viewing miniature resonant fiberscanning probe and phase modulation in the reference-arm. This method can be applied to various endoscopic SD-OCT systems.

JThA3 • 11:15

Optical Coherence Tomography Forward-Imaging Needle for Real-time Deep Brain Surgery Guidance, Chia-Pin Liang', Jerry Wierwille', Thais Moreira', Musab S. Jafri', Cha-Min Tang', Yu Chen', 'Bioengineering, Univ. of Maryland, College Park, USA; 'Neurology, Univ. of Maryland School of Medicine, USA. We have developed a real-time (16 frames/second), narrowest to-date (700-um-diam) optical coherence tomography (OCT) forwardimaging needle and demonstrated its feasibility for guiding deep brain surgery based on both structural and Doppler imaging. Room 337

NO

CAMERAS

CLEO: Science & Innovations

10:30-12:00 CThO • OFDM

René-Jean Essiambre, Bell Labs, Alcatel-Lucent, USA, Presider

CTh01 • 10:30 Invited

All-optical Real-time OFDM Transmitter and Receiver, Wolfgang Freude¹, David Hillerkuss¹, Thomas Schellinger¹, Rene Schmogrow¹, Marcus Winter¹, Thomas Vallaitis¹, Rene Bonk¹, Andrej Marculescu¹, Jingshi Li¹, Michael Dreschmann², Joachim Meyer², Shalva Ben Ezra³, Mordechai (Motti) Caspi³, Bernd Nebendahl⁴, Francesca Parmigiani⁵, Periklis Petropoulos⁵, Bojan Resan⁶, Andreas E. H. Oehler⁶, Kurt Weingarten⁶, Tobias Ellermeyer7, Joachim Lutz7, Michael Moeller7, Michael Huebner², Juergen Becker², Christian Koos¹, Juerg Leuthold¹; ¹Inst. of Photonics and Quantum Electronics (IPQ), Karlsruhe Inst. of Technology (KIT), Germany; ²Inst. of Information Processing Technology (ITIV), Karlsruhe Inst. of Technology (KIT), Germany; 3Finisar Corporation, Israel; ⁴Agilent Technologies, Germany; ⁵Optoelectronics Research Centre, UK; 6Time-Bandwidth Products, Switzerland; ⁷Micram Microelectronic GmbH, Germany. OFDM has emerged as a promising modulation technique in long-haul and access optical networks. The computational complexity of the format can be met with powerful digital signal processors, and especially by exploiting all-optical signal processing.

CThO2 • 11:00

Characterization of Fast and Power Efficient Optical OFDM Transmission System Based on Hartley Transform, Michela Svaluto Moreolo', Josep Maria Fabrega', Gabriel Junyent'; 'Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain. The analysis in unamplified and ASE-dominated optical systems shows that similar performance as DMT can be achieved with FHTbased O-OFDM, providing an efficient scheme in terms of power and complexity for cost-sensitive applications.

CThO3 • 11:15

Coarse Optical Orthogonal Frequency Division Multiplexing for Optical Datacommunication Applications, Sim Heung Lee¹, Liang Geng¹, Jonathan D. Ingham¹, Richard V. Penty¹, Ian H. White¹, David Cumningham²; ¹Univ. of Cambridge, UK; ²Avago Technologies, UK. We propose a low-cost solution using orthogonal transmission of NRZ and CAP format data to realize a coarse OFDM transmission system. Using low bandwidth electronics and optoelectronic components, the system is demonstrated at 37.5Gb/s.

10:30-12:15

QThl • Optical Filamentation and Related Nonlinear Phenomena

Eric Van Stryland, CREOL, The College of Optics and Photonics, USA, Presider

QThl1 • 10:30

Energy exchange between two filaments in air via a traveling plasma grating, Magali Durand¹², Yi Liu¹, Benjamin Forestier¹, Aurélien Houard¹, André Mysyrowicz¹; ¹Laboratoire d'Optique Appliquée, ENSTA ParisTech, Ecole Polytechnique, CNRS, France; ²Département d'Optique Théorique et Appliquée, ONERA, France. We observe efficient energy exchange between filaments in air mediated by a travelling plasma grating formed at the intersection of the two filaments. The velocity of this grating is studied by means of Doppler effect.

QThl2 • 10:45

Spontaneous currents inside air filaments, Bing Zhou¹, Aurélien Houard¹, Yi Liu¹, Bernard Prade¹, André Mysprowicz¹, Arnaud Couairon², Patrick Mora², Christopher Smeenk³, Ladan Arissian³, Paul Corkum³; ¹LOA, ENSTA ParisTech, Ecole Polytechnique, CNRS, France; ²CPHT, Ecole Polytechnique, CNRS, France; ³National Research Council, Canada. Currents circulating in the plasma column of filaments in air are detected with a fast current monitor. The currents can be amplified with circularly polarized light.

QThI3 • 11:00

Measurement and control of electric currents in Ar and N₂ filaments, Bing Zhou¹, Aurélien Houard¹, Yi Liu¹, Bernard Prade¹, André Mysyrowicz², Arnaud Couairon², Patrick Mora², Christopher Smeenk², Ladan Arissian³, Paul Corkum³; ¹LOA, ENSTA ParisTech, Ecole Polytechnique, CNRS, France; ²CPHT, Ecole Polytechnique, CNRS, France; ³National Research Council, Canada. Spontaneous currents inside the plasma column of filaments of N₂ and Argon circulate in opposite directions. A competition between the laser Lorentz force and a Coulomb wake force explains the difference.

QThI4 • 11:15

Multi-dimensional plasma grating from filament interaction in air, Jia Liu¹, Haifeng Pan¹, Jian Wu¹, Heping Zeng¹; ¹State Key Lab of Precision Spectroscopy, East China Normal Univ, China. We demonstrated the formation of 2D plasma grating by noncollinear interaction of femtosecond filaments in air. The 2D photonic plasma supported 2D diffraction of the generated third-harmonic pulses.

10:30–12:15 QThJ • Quantum Storage and

Frequency Entanglement Ulrik Lund Andersen, DTU, Denmark, Presider

QThJ1 • 10:30

Single-photon-level memory at room temperature, Klaus F. Reim¹, Patrick Michelberger¹, Ka C. Lee¹, Joshua Nunn¹, Nathan K. Langford¹, Ian A. Walmsley¹; ¹Physics, Univ. of Oxford, UK. We present an efficient broadband optical singlephoton-level room-temperature memory, capable of operating with a low unconditional noise floor in the quantum regime, with memory efficiencies exceeding 30nd storage times of up to 4 µs.

QThJ2 • 10:45

Free-space Photon Storage with Variable Time Delays, Bradley G. Christensen¹, Kevin McCusker¹, Michael Goggin², Katie Crimmins¹, Paul Kwiat¹; ¹Physics, Univ. of Illinois, USA; ²Physics, Truman State Univ., USA. We discuss a high-efficiency "digital" photon storage system using multiple optical cavities to create variable storage times.

QThJ3 • 11:00

Extending Quantum Optical Benchmarks with Entanglement Measures, Nathan Killoran¹, Norbert Lütkenhaus¹; ¹Inst. for Quantum Computing & Dept. of Physics and Astronomy, Univ. of Waterloo, Canada. Benchmarks based on entanglement verification can show when optical devices are in the quantum domain. Using no additional resources, we extend existing benchmarks to rigorously quantify the entanglement, covering nearly all of the quantum domain.

QThJ4 • 11:15

Cold Atoms Coupled to a Superconducting Flux Qubit, Jeffrey A. Grover¹, Jonathan Hoffman¹, Zaeill Kim¹, Austin Wood¹, James R. Anderson¹, Alex J. Dragt¹, Mohammad Hafez¹, Christopher J. Lobb¹, Luis A. Orozco¹, Steven L. Rolston¹, Jacob M. Taylor¹, Constantine P. Vlahacos¹, Fred C. Wellstood¹; ¹Joint Quantum Inst., National Inst. of Standards and Technology and Dept. of Physics, Univ. of Maryland, College Park, USA. We present a scheme and our advances to magnetically couple ⁸⁷Rh atoms to a superconducting flux qubit by trapping the atoms in the evanescent wave outside an tapered optical fiber.

CLEO: Science & Innovations

10:30-12:15

CThP • Silicon Optical Links John Bowers, Univ. of California at Santa Barbara, USA, Presider

CThP1 • 10:30

Polarization insensitive Grating Coupler for Lightwave Coupling between Silicon Nanophotonic Waveguide and Surface Mounted Photodetector, Ryohei Takei', Kotaro Uchiho', Tetsuya Mizumoto'; 'Electrical and Electronic Engineering, Tokyo Inst. of Technology, Japan. The lightwave connection of silicon chips and external elements is a serious problem. The grating coupler is effective for the connection of the surface mounted photodetector. We demonstrate the polarization insensitive operation.

CThP2 • 10:45

Dynamic Sub-20 ns Reconfiguration of a Silicon CMOS Photonic Filter and Filter Shape Measurement, Binbin Guari, Nicolas K. Fontaine', Ryan P. Scott', David J. Geisler', Stevan Djordjević', Salah Ibrahim', Stanley Cheung', Tiehui Su', Andrew T. Pomerene', Liberty Gunter', Steve Danziger', Zhi Ding', S. J. Ben Yoo'; 'Univ. of California at Davis, USA; 'BAE Systems North America, USA. Dynamic filter shapes of a silicon photonic lattice filter switching between a notch and bandpass filter are measured at a 16.67 ns interval using a frequency-to-time mapping method and a coherent measurement technique.

CThP3 • 11:00

CMOS-Compatible Temperature Insensitive Silicon Microring Modulator, Biswajeet Guha¹, Kyle Preston¹, Michal Lipson^{1,2}; 'Electrical & Computer Engineering, Cornell Univ, USA; 'Kavli Inst. at Cornell for Nanoscience, USA. We demonstrate a passively temperature stabilized silicon electrooptic modulator, consisting of a ring resonator coupled to a Mach-Zehnder interferometer with tailored mode confinement. We show 2 GHz modulation over 40°C temperature range.

CThP4 • 11:15

Performance Guidelines for WDM Interconnects Based on Silicon Microring Resonators, Kyle Preston¹, Nicolás Sherwood-Droz¹, Jacob S. Levy¹, Michal Lipson¹; ¹Electrical and Computer Engineering, Cornell Univ., USA. We derive fundamental performance tradeoffs that determine bandwidth and optical power budget in largescale WDM links or networks utilizing silicon microresonators. Bandwidth per waveguide scales to >1THz, but nonlinearities limit optical power to millivatt levels.

QThF • Disordered Material— Continued

QThF5 • 11:30

Quantum Interference of Multiple Beams Induced by Multiple Scattering, Johan R. Ott¹, N. Asger Mortensen¹, Peter Lodahl¹; ¹Dept. of Photonics Engineering. Technical Univ. of Denmark (DTU), Denmark. We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiplescattering and that quantum interference survives disorder averaging.

QThF6 • 11:45

Light Localization in Disordered Metamaterials, Salvatore Savo¹, Nikitas Papasimakis¹, Nikolay I. Zheludev¹; ¹Optoelectronics research center, Univ. of Southampton, UK. For the first time we demonstrate localization of electromagnetic radiation in disordered planar metamaterials. The statistics of near-field intensity indicate that the localization is linked to subradiant modes in the metamolecules.

QThF7 • 12:00

Coupled defect-waveguides in amorphous photonic lattices: Enhanced coupling through randomness, Alexander Szameit⁴, Mikael C. Rechtsmar¹, Matthias Heinrich², Felix Dreisow², Robert Keil², Stefan Nolte², Moti Segev¹; ¹Physics, Technion, Israel; ²Physics, Friedrich-Schiller-Universität, Germany. We present, experimentally and theoretically, coupled defect-waveguides in an amorphous photonic lattice, exhibiting enhanced coupling by virtue of disorder.

Room 321-323

CLEO: Science & Innovations

High Q optomechanical resonators in silicon

nitride nanophotonic circuits, King Yan Fong¹,

Wolfram H. Pernice¹, Mo Li², Hong Tang¹; ¹Yale

Univ., USA; 2Univ. of Minnesota, USA. We demon-

strate nanophotonic circuits for integration of high

Q micromechanical resonators and nanooptical

components. Mechanical resonance of nanostring

is actuated and readout by optomechanical interac-

tion. Quality factor up to 696,000 is obtained.

CThJ • Optomechanics I— Continued

Room 324-326

CLEO: QELS-Fundamental Science

QThG • Symposium on The Zeno Effect in Optoelectronics and Quantum Optics II—Continued

QThG4 • 11:30

A Compact Orbital Angular Momentum Spectrometer Using Quantum Zeno Interrogation, Paul Bierdz¹, Hui Deng¹; ¹Physics, Univ. of Michigan, USA. We present a scheme to measure the spectrum of orbital angular momenta of light using a precisely timed optical loop and quantum non-demolition measurements. We also discuss the influence of imperfect optical components.

Room 314

CLEO: Science & Innovations

CThK • CLEO Symposium on Broadband Spectroscopy: New Techniques and Sources I: Dual-Comb Heterodyne Spectroscopy— Continued

CThK4 • 11:30 Invited

Molecular Spectroscopy with Laser Frequency Combs, Theodor W. Hänsch^{1,2}, Nathalie Picqu^{2,1,2}, ¹Max Planck Institut für Quantenoptik, Germany; ²Ludwig-Maximilians-Universität München, Germany. The millions of precisely controlled laser comb lines produced with a train of ultrashort laser pulses can harnessed for highly-multiplexed molecular spectroscopy. Multi-heterodyne spectroscopy with frequency combs is emerging as a powerful new tool.

CThJ6 • 11:45

CThJ5 • 11:30

Silicon Opto-Acoustic Oscillator, Suresh Sridaran¹, Sunil A. Bhave¹, 'Electrical and Computer engineering, Cornell Univ, USA. Improved modulation depth of MEMS based optical modulators is obtained using implantation to reduce resistance. The increased output power enables closing of optical-electrical loop around the modulator to make an Opto-Acoustic Oscillator at 237MHz.

CThJ7 • 12:00

Electromechanically Tunable Photonic Crystal Cavities, Leonardo Midolo', Rene J. van Veldhoven', Richard Noetzel', Mehmet A. Dundar', Andrea Fiore'; 'Applied Physics, COBRA Research Inst., Eindhoven Univ. of Technology, Netherlands. We report a novel approach to tuning photonic crystal cavities based on the electrostatic actuation of coupled InGaAsP membranes and we report up to 7 nm mode shift with 8.6 V bias.

QThG5 • 11:45

All-optical switching via inverse Raman scattering in an optical fiber, Khanh Kieu', Lukas Schneebeli', Joel Hales', Joseph W. Perry', Robert Norwood', Nasser Peyghambarian'; 'Univ. of Arizona, USA; ²Georgia Tech, USA. We report the observation of inverse Raman scattering (IRS) in optical fiber. The achieved level of attenuation via IRS in an optical fiber is > 20dB at a time scale < 5ps.

CThK5 • 12:00

Suitability of supercontinuum light near 2 µm for coherent dual comb spectroscopy, Kevin Knabe', Paul A. Williams', Nathan Newbury'; 'PML, NIST, USA. We evaluate the signal-to-noise ratio penalty for dual comb spectroscopy caused by the excess optical phase noise and relative intensity noise on the long-wavelength supercontinuum of a spectrally broadened Er-fiber laser frequency comb.

10:30-15:00 Technology Transfer Showcase (Panel Discussion and Tabletop Display), Exhibit Hall F. 100 Level

12:15–13:00 Lunch Break (concessions available in Exhibit Halls E and F, 100 Level)

CLEO: Science & Innovations

CThL • Fiber Based Sensors— Continued CThM • Bandgap and Crystalline Fibers—Continued CThN • THz Waveguides— Continued

CThL5 • 11:30

Enlargement of Measurement Range by Double Frequency Modulations in One-Laser Brillouin Correlation-Domain Distributed Discrimination System, Weiwen Zou^{1,2}, Zuyuan He¹, Kazuo Hotate¹; ¹Dept. of Electrical Engineering and Information Systems, Univ. of Tokyo, Japan; ²Dept. of Electronic Engineering, Shanghai Jiao Tong Univ., China. A new scheme based on double frequency modulations is proposed to enlarge the measurement range in Brillouin correlationdomain distributed discrimination system with one laser source.

CThL6 • 11:45

VCSEL-based tilted fiber grating vibration sensing system, Tuan Guo¹², Yuheng Huang³, Bai-Ou Guan¹, Chao Lu³, Hwa-Yaw Tan², Jacques Albert⁴; Inst. of Photonics Technology, Jinan Univ., China; ³Dept. of Electrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong; ³Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic Univ., Grang Kong; ⁴Dept. of Electronics, Carleton Univ., Canada. Fiber-optic vibration sensing system using tilted fiber grating and verticalcavity surface-emitting laser (VCSEL) has been demonstrated. Dynamic vibration measurement up to 200 Hz with improved signal-to-noise ratio better than 40 dB was achieved.

CThL7 • 12:00

Detection of single nanoparticles using a nano fiber-taper, Jiangang Zhu¹, Sahin K. Ozdemir¹, Lina He¹, Da-Ren Chen², Lan Yang¹; 'Electrical & Systems Engineering, Washington Univ. in St. Louis, USA; 'Energy, Environmental & Chemical Engineering, Washington Univ. in St. Louis, USA. We present a sensitive single nanoparticle detection scheme using a nano tapered fiber. Experiments of detecting R = 120 nm and 175 nm polystyrene (PS) nanoparticles at 1550 nm wavelength band are demonstrated.

CThM5 • 11:30 Invited

Semiconductor Core Optical Fiber, John Ballato¹, T. Hawkins¹, P. Foy¹, C. McMillen², S. Morris¹, R. Stolen¹, J. Fan³, L. Zhu³, R. Rice⁴; ¹School of Materials Science and Engineering, USA; ²Dept. of Chemistry, USA; ³Dept. of Electrical and Computer Engineering, USA; ⁴DreamCatchers Consulting, USA. Progress in the fabrication and performance of glass-clad crystalline semiconductor core optical fibers is reviewed. This new class of optical fibers may significantly advance applications in nonlinear optics and infrared power delivery.

CThN5 • 11:30

Low-loss hollow metallic waveguides efficiently coupled to Terahertz micro-ring quantum cascade lasers, Miriam Vitiello^{1,2}, Ji-Hua Xu², Mirgender Kumar², Fabio Beltram², Alessandro Tredicucci², Oleg Mitrofanov³, Harvey E. Beere², David A. Ritchie⁴; ¹CNR-IFAC, Italy; ²NEST, CNR-NANO and Scuola Normale Superiore, Italy; ³Dept. of Electronic and Electrical Engineering, Univ. College London, UK; ⁴Cavendish Lab, Univ. of Cambridge, UK. We demonstrate that the azimuthally polarized beam of a micro-ring THz quantum-cascade laser can be coupled to hollow metallic waveguides with efficiencies ≥96% and perfectly matched with the TE₁₀ waveguide mode, giving attenuation losses <3dB/m.

CThN6 • 11:45

The Transition from TEM-like Mode to Plasmonic Mode in Finite-width THz Parallel-plate Waveguide, Jingbo Liu¹, Rajind Mendis¹, Daniel Mittleman¹; ¹ECE Dept, RICE UNIV, USA. We report the near-field measurement of the electric field distribution inside the metal PPWG, We observe the transition from TEM-like mode to plasmonic mode. This mode transition depends on the geometry of the waveguide.

CThN7 • 12:00

Sub-Wavelength Plasmonic Mode Confinement in Semiconductor-Gap-Dielectric Waveguide in THz range, Hovhannes Haroyan¹, Yuri Avetisyan¹, Masayoshi Tonouchi²; ¹Microwave Eng, Yerevan State Univ, Armenia; ²Inst. of Laser Engineering Osaka Univ, Japan. We have investigated the dispersion relation of a novel semiconductorgap-dielectric waveguide in terahertz range. It is shown that InSb-SiO₂-Si structure supports strongly confined guided mode with area of 6.6 $\times 10^5 \lambda^2$ at 1 THz.

10:30–15:00 Technology Transfer Showcase (Panel Discussion and Tabletop Display), Exhibit Hall F, 100 Level

12:15–13:00 Lunch Break (concessions available in Exhibit Halls E and F, 100 Level)

QThH • Nonlinear and Ultrafast Nanophotonics—Continued

QThH5 • 11:30

Nonlinear Optics of Magnetic Plasmonic Nanostructures, Irina A. Kolmychek¹, Tatyana V. Murzina¹, Oleg A. Aktsipetrov¹; ¹Moscow State Lomonosov Univ., Russian Federation. Magnetization-induced second harmonic generation in core(shell) Fe₂O₃(Au) nanoparticles and Au/Co/ Au nanosandwiches was studied in the transversal Kerr effect geometry. Plasmon-assisted changes in the nonlinear magneto-optical response were revealed.

OThH6 • 11:45

Ultrasensitive On-Chip Photonic Crystal Nanobeam Sensor using Optical Bistability, Qimin Quan¹, Frank Vollmer², Ian B. Burgess¹, Parag B. Deotare¹, Ian Frank¹, Sindy Tang¹, Rob Illic3, Marko Loncar1; 1School of Engineering and Applied Sciences, Harvard Univ., USA; 2Wyss Inst., Harvard Univ., USA; ³Cornell Nanoscale Science and Technology Facility, Cornell Univ., USA. An ultrasensitive nonlinear cavity sensing method is proposed and demonstrated, in which the detection limit is not bounded by the quality factor of the cavity. 10mg/dL glucose concentration and 100aM BSA molecules are detected.

OThH7 • 12:00

Picosecond Few-Fermion Dynamics of a Single Self-Assembled InGaAs Quantum Dot, Markus Betz¹, Markus Zecherle², Claudia Ruppert², Emily Clark³, Jonathan Finley³; ¹Experimentelle Physik 2, TU Dortmund, Germany; ²Physik-Dept. E11, TU München, Germany; ³Walter Schottky-Institut und Physik-Dept. E24, TU München, Germany. Population dynamics, excited biexciton states, excitonic and conditional biexcitonic Rabi oscillations in a single quantum dot embedded in a photodiode are investigated combining ultrafast pump-probe techniques with sensitive photocurrent readout.

Monitoring of germination dynamics of multiple individual bacterial spores by multiple-trap Raman tweezers and differential interference contrast microscopy, Pengfei Zhang¹, Lingbo Kong¹, Peter Setlow², Yong-qing Li¹; ¹East Carolina Univ., USA; ²Univ. of Connecticut Health Center, USA. Multiple-trap Raman tweezers and differential interference contrast microscopy were used dynamics of multiple individual bacterial spores.

JOINT

Room 336

JThA • Microscopic Imaging and Endoscopy—Continued

JThA4 • 11:30

Optical Coherence Tomography Guided Breast Biopsy, Nicusor Iftimia¹; ¹Physical Sciences Inc, USA. We present an optical coherence tomography (OCT) based approach for breast biopsy guidance. The detailed description of the instrumentation and the preliminary results on an animal model of breast cancer will be discussed.

JThA5 • 11:45

Simultaneous Morphological and Biochemical Imaging of Oral Epithelial Cancer in a Hamster Cheek Pouch Model, Brian E. Applegate¹, Jesung Park¹, Sebina Shrestha¹, Paritosh Pande¹, Irma B. Gimenez-Conti², Jimi L. Brandon²; ¹Biomedical Engineering, Texas A&M Univ., USA; 2Dept. of Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, USA. We present the results of an animal study aimed at determining the value of collecting both morphological and biochemical images for oral cancer diagnosis using a multimodal optical coherence tomography and fluorescence lifetime imaging system.

JThA6 • 12:00

for simultaneously monitoring the germination

Room 338

CLEO: Science & Innovations

CThO • OFDM—Continued

CThO4 • 11:30

Phase-Managed Alias Sampling in 1-Tb/s Coherent Optical OFDM, Lin Cheng¹, He Wen¹, Xiaoping Zheng¹; ¹Tsinghua Univ., China. The sampling rate is reduced to half of the Nyquist frequency to release the ADC requirement in CO-OFDM system. An experiment of 1-Tb/s multi-band CO-OFDM with hybrid subcarrier modulations and phase-managed alias sampling is demonstrated

CTh05 • 11:45

Experimental Demonstration of a Bandwidth Scalable LAN Emulation over EPON Employing OFDMA, Lei Deng^{1,2}, Ying Zhao^{1,3}, Xianbin Yu¹, Valeria Arlunno¹, Robert Borkowski¹, Deming Liu², Idelfonso Tafur Monroy¹; ¹DTU Fotonik, Technical Univ. of Denmark, Denmark; 2School of Optoelectronics Science and Engineering, HuaZhong Univ. of Science and Technology, China; 3Dept. of Electronic Engineering, Tsinghua Univ., China. We propose a novel EPON system supporting bandwidth scalable local area network emulation by using orthogonal frequency division multiplexing access technology. Added to the EPON traffic, 250Mbps and 500Mbps OFDM LAN traffics are experimentally emulated.

10:30–15:00 Technology Transfer Showcase (Panel Discussion and Tabletop Display), Exhibit Hall F, 100 Level.

12:15–13:00 Lunch Break (concessions available in Exhibit Halls E and F, 100 Level)

164

CLEO: Science

CLEO: QELS-Fundamental Science

QThl • Optical Filamentation and Related Nonlinear Phenomena— Continued

QThI5 • 11:30

Direct comparison of high-order harmonics generated in gas and in carbon plasma, Yoann Pertot¹, Luc Elouga Bom¹, Shouyuan Chen², Sabih D. Khan², Zenghu Chang^{2,3}, Tsuneyuki Ozaki¹; ¹Energie, matériaux et télécommunications, INRS-EMT, Canada; ¹Dept. of Physics, Kansas State Univ, USA; ³Attosecond Science and Technology, Univ. of Central Florida, USA. We perform the first direct comparison between high-order harmonics generated from carbon plasma and from argon gas cell, and find that the former is ten times more intense than the latter.

QThI6 • 11:45

Sub-1mJ Over-Two-Octave White-Light Continuum Generated by Induced Phase Modulation in Argon-Filled Hollow Fiber, Shaobo Fang1, Keisaku Yamane¹, Jiangfeng Zhu¹, Chun Zhou², Zhigang Zhang², Mikio Yamashita¹; ¹Dept. of Applied Physics, Hokkaido Univ., and Core Research Evolutional Science and Technology, Japan Science and Technology Agency, Japan; ²Inst. of Quantum Electronics, School of Electronics Engineering and Computer Science, State Key Lab of Advanced Optical Communication System and Networks, Peking Univ., China. We generated 0.9-mJ pulses spanning from 270 to 1200 nm by utilizing the induced phase modulation in pressure gradient hollow fiber. This enables 1.5-fs, 0.65-cycles, 0.6-TW, 1-kHz transform-limited pulses for attosecond science and technology.

QThI7 • 12:00

Distinguishing instantaneous from rotational Kerr response in air using supercontinuum spectral interferometry, Jared Wahlstrand¹, Yu-Hsiang Cheng², Howard Milchberg^{1,2}; ¹Physics, Univ. of Maryland, USA; ¹Electrical and Computer Engineering, Univ. of Maryland, USA. We measure the polarization dependence of the Kerr effect in air using single-shot supercontinuum spectral interferometry, enabling separation of the instantaneous and rotational components of the nonlinearity.

QThJ • Quantum Storage and Frequency Entanglement— Continued

QThJ5 • 11:30

Demonstration of a Scalable Multi-photon Entanglement Source, Eli Megidish¹, Tomer Shacham¹, Assaf Halevy¹, Liat Dovrat¹, Hagai S. Eisenberg¹; ¹Racah Inst. of Physics, Hebrew Univ. of Jerusalem, Israel. We experimentally demonstrate a novel multiphoton entangling system that in principle can entangle any number of photons. Spatial degrees of freedom are replaced by temporal degrees of freedom. Four and six photon states are presented.

QThJ6 • 11:45

Scaling Multipartite Entanglement in the Optical Frequency Comb, Matthew Pysher¹, Yoshichika Miwa², Reihaneh Shahrokhshahi¹, Russell Bloomer⁴, Olivier Pfister¹; ¹Dept. of Physics, Univ. of Virginia, USA; ²Dept. of Applied Physics, Univ. of Tokyo, Japan. We report the simultaneous experimental generation of multiple quadripartite continuousvariable cluster states in the optical frequency comb of a single optical parametric oscillator operating below threshold.

& Innovations CThP • Silicon Optical Links—

Continued

CThP5 • 11:30 Invited

A 4x12.5 Gbps CWDM Si Photonics Link using Integrated Hybrid Silicon Lasers, Brian R. Koch¹, Andrew Alduino¹, Ling Liao¹, Richard Jones1, Michael Morse1, Brian Kim1, Wei-Zen Lo1, Juthika Basak¹, Hai-Feng Liu¹, Haisheng Rong¹, Matthew Sysak¹, Christine Krause¹, Rushdy Saba², Dror Lazar², Lior Horwitz², Roi Bar², Stas Litski², Ansheng Liu1, Kevin Sullivan1, Olufemi Dosunmu1, Neil Na¹, Tao Yin¹, Frederick Haubensack¹, I-wei Hsieh¹, John Heck¹, Robert Beatty¹, Jock Bovington¹, Mario J. Paniccia¹; ¹Photonics Technology Lab, Intel, USA; 2Intel, Israel. We demonstrate a 4 wavelength by 12.5Gbps Silicon Photonics CWDM link integrating all optical components, electronics, and packaging technologies required to form the link.

QThJ7 • 12:00

Interference of Two Photons of Different Color with Applications to Quantum Computing, Michael Raymer¹, Hayden J. McGuinness¹, Steven van Enk¹, Colin J. McKinstrie², ¹Univ. of Oregon, USA; ³Bell Laboratories, Alcatel-Lucent, USA. Two photons having different colors can undergo the Hong-Ou-Mandel interference effect if the usual beam splitter is replaced by Bragg scattering via four-wave mixing in an optical fiber, which acts as a frequency shifter.

CThP6 • 12:00

Ultra-Compact TOSA/ROSA with 40-Gbps Transmission Rate Using Silicon Optical Benches Technology, Chin-Ta Chen¹, Hsiao-Chin Lan^{2,3}, Hsu-Liang Hsiao^{1,2}, Bo-Kuan Shen¹, Chia-Chi Chang^{1,2}, Guan-Fu Lu¹, Jen-Yu Chang¹, Sheng-Lung Li1, An-Nong Wen2, Yo-Shen Len4, Mount-Learn Wu1; 1Dept. of Optics and Photonics, National Central Univ., Taiwan; ²Centera Photonics Inc., Taiwan; ³Optical Sciences Center, National Central Univ., Taiwan; *Dept. of Electrical Engineering, National Central Univ., Taiwan. Miniaturized TOSA/ROSA by using silicon optical bench (SiOB) technology is experimentally demonstrated with parallel transmission of 4-channel×10-Gbps. Whole module assembly is passive alignment achievable, and no coupling lens needed.

10:30–15:00 Technology Transfer Showcase (Panel Discussion and Tabletop Display), Exhibit Hall F, 100 Level

12:15–13:00 Lunch Break (concessions available in Exhibit Halls E and F, 100 Level)

JOINT

13:00-14:30

JThB • Nonlinear and Quantum Science and Measurements Joint Poster Session

CLEO:QELS-Fundamental Science 1: Quantum Optics of

Atoms, Molecules and Solids

Quantum Correlations and

Atomic Coherence

JThB1

Pairwise Concurrence Dynamics of a 4 Qubit Model Beyond Rotating Wave Approximation, S. M. Hashemi Rafsanjani¹, S. Agarwal¹, Joseph H. Eberly¹, ¹Univ. of Rochester, USA. We examine the entanglement dynamics of two two-level systems (A & B) each interacting with separate harmonic oscillators (a & b) in a regime where rotating wave approximation is not valid.

JThB2

Atomic vapor quantum memory for a photonic polarization qubit, Young-Wook Cho¹, Yoon-Ho Kim¹; 'Dept. of Physics, Pohang Univ. of Science and Technology (POSTECH), Republic of Korea. We report an experimental realization of a warm atomic vapor quantum memory for the photonic polarization qubit. We have fully characterized the memory with quantum process tomography.

JThB3

Quantum Correlations using Strong Optical Pulses in Rare Earth Ion Doped Crystals, Patrick Ledingham¹, Jevon Longdell¹; ¹The Univ. of Otago, New Zealand. We use photon echo based protocols with cryogenic rare earth ion dopants to create photon streams with time separated correlations. Theoretically, these streams are non-classically correlated. We present results toward realizing this correlation.

JThB4

Analysis of Two Level Atom in Bichromatic Field: Entropy Flow and Search for the Carnot Cycle, Robinjeet Singh', Kebei Jiang', Petr M. Anisimov', Harold Metcalf, Jonathan P. Dowling'; 'Physics and Astronomy, Louisiana State Univ, USA; ²Physics and Astronomy, Stony Brook Univ, USA. We study the two-level atom interaction with bichromatic field to understand the entropy flow during this interaction in the absence of spontaneous emission. This flow is characterized by the Carnot cycle that demonstrates efficient cooling.

JThB5

Decay Time in a Cavity in Slow or Fast Light Regime, Fabien Bretenaker¹, Thomas Laupretre¹, Cedric Proux¹, Sylvain Schwartz², Fabienne Goldfarb¹, Rupamanjari Ghosh²; ¹Laboratoire Aime Cotton, CNRS, France; ⁵School of Physical Sciences, Jawaharlal Nehru Univ, India; ³Thales Research and Technology France, France. We investigate the decay time of a cavity containing strong dispersion achived through EIT in ⁴He^{*} with linear polarizations. The photon lifetime is shown to be governed by the group velocity of light.

JThB6

Time-Dependent Inhibited Spontaneous Emission, David Braming', Young Ho Shin', Sarthak Khanal', Alan Migdall²³; ¹Physics, Trinity College, USA; ¹National Inst. of Standards and Technology, USA; ¹Joint Quantum Inst., Univ. of Maryland, USA. The spontaneous emission rate of photon pairs in a parametric downconverter can be inhibited by a cavity mirror. Using a fast switch, we detect photons within the cavity during times when the emission was inhibited. JThB7 Full Quantum Mechanically Treatment of Squeezed Vacuum State Generation through Self-Rotation, Kebei Jiang', Robinjeet Singh', Petr M. Anisimov¹, Hwang Lee¹, Jonathan P. Dowling¹; ¹Physics and Astronomy, Louisiana State Univ, USA. We present a full quantum mechanical picture of squeezed vacuum state generation via self-rotation in an X system. As a result, extra noise that is overlooked in semi-classical picture is found and its effect on the degree of squeezing is discussed.

JThB8

Generation of a macroscopic singlet state in an atomic ensemble, Naeimeh Behbood¹, Mario Napolitano¹, Brice Dubost¹, Robert J. Sewell¹, Marco Koschorreck¹, Morgan W. Mitchell¹; ¹ICFO, Spain. We report on an experiment underway for generating singlet states in a cold atomic ensemble. We have developed a new detection system with the capability of real time measurement and feedback control.

JThB9

Spectral Properties of Rare-Earth-Ion Doped Whispering Gallery Mode Resonators, David McAuslan¹, Dmitry Korystov¹, Jevon Longdell¹; ¹Jack Dodd Centre for Photonics and Ultra-Cold Atoms, Physics Dept., Univ. of Otago, New Zealand. The properties of a Pr³⁺;Y₂SiO₅ resonator are measured as an initial step towards performing strong coupling cavity QED experiments. Using photon echoes the resonator mode volume is measured as 6.99×10⁻¹² m³ and the ions coherence time as 68 µs.

JThB10

Scalable Multi-Photon Coincidence-Counting Electronics, David Branning¹, Young Ho Shin¹, Sarthak Khanal¹, Brandon Clary¹, Mark Beck²; ¹Physics, Trinity College, USA; ²Physics, Whitman College, USA. We present a multi-channel coincidence-counting module for use in quantum optics experiments. The module counts up to 4-fold coincidences at up to 84 MHz. Combined multiple modules can count M-order coincidences among N inputs.

JThB11

Search For Patterns In Single-Photon Polarization Sequences, David Branning', Adam Katcher¹, Wayne Strange¹, Mark P. Silverman¹; ¹Physics, Trinity College, USA. Sequences of polarization measurements on single photons were subjected to comprehensive runs analysis without numerical unbiasing. No significant discrepancies with the predicted numbers of runs were observed, even with multi-photon events retained.

• Quantum Dots

JThB12

Extracting the radiative, nonradiative and spin-flip rate of single self-assembled quantum dots in photonic crystals, *Qin Wang'*, *Søren Stobbe'*, *Peter Lodahl'*; '*DTU-Fotonik*, *Denmark*. We have developed a practical method to study the decay dynamics of neutral excitons in single self-assembled quantum dots and verified it experimentally.

JThB13

Resonance fluorescence from quantum dots: beyond the Mollow triplet, Anders M. Lund¹, Per Kaer¹, Michael Lorke¹, Jesper Mørk¹; ¹DTU Fotonik - Dept. of Photonics Engineering, Technical Univ. of Denmark, Denmark. We show that the resonance fluorescence spectrum of a quantum dot excited by a strong pulse contains multiple peaks. An analytical model shows how the peak positions depend on pulse width and amplitude.

JThB14

Quantum control of two-photon inter-excited states transitions, Jongseok Lim¹, Han-gyeol Lee¹, Sangkyung Lee¹, Jaewook Ahn¹, ¹Physics, KAIST, Republic of Korea. We demonstrate quantum control of two-photon inter-excited states transitions in a V-type atomic system. By varying linear and quadratic chirps, we project the transitions to coherent transient phenomena in a two-level system.

JThB15

Tunneling Current In A Double Quantum Dot Excitonic System, Amit Joshi'; 'Physics, EIU, USA. Two coupled quantum dots entangled through their interaction with a cavity mode, including Forster and exciton-phonon interactions, allow for observation of the Josephson effect in terms of photon assisted tunneling current similar to super current.

CLEO:QELS–Fundamental Science 2: Quantum Science, Engineering and Technology

JThB16

Photon-number-resolving detection at 1.04 µm by coincidence frequency upconversion, Kun Huang', Xiaorong Gu', Min Ren', Yi Jian', Haifeng Pan', E. Wu', Heping Zeng'; State Key Lab of Precision Spectroscopy, East China Normal Univ, China. We demonstrated the photon-number-resolving detection at 1.04 µm by coincidence frequency upconversion. The detection efficiency of 6.8% was obtained. The Poissionian distribution of the up-converted photons was observed directly.

JThB17

Single-photon detection at 1.55 µm using a bipolar gating signal, Abdessattar Bouzid^{1,2}, Jum-Bum Park¹, Se Min Kim^{1,3}, Sung Moon¹; 'Center for Nanosystem Technology, Korea Inst. of Science and Technology, Republic of Korea; ²Univ. of Science and Technology, Republic of Korea; ³Dept. of physics, Inha Univ., Republic of Korea. The effect of bipolar gating signal on afterpulsing in an In-GaAs/InP single-photon detector is characterized at 1.55 µm. The results demonstrate that the use of bipolar gating signal can efficiently reduce the afterpulse noise.

JThB18

Frequency Down-Conversion of Non-Classical Light from Visible Wavelength to Telecom Wavelength Using Difference-Frequency Generation, Rikizo Ikuta¹, Tsuyoshi Kitano¹, Yoshiaki Kusaka¹, Takashi Yamamoto¹, Masato Koashi¹, Nobuyuki Imoto¹; ¹Graduate School of Engineering Science, Osaka Univ., Japan. We experimentally demonstrate frequency down-conversion of non-classical light from 780 nm to 1522 nm by differencefrequency generation. The observed second-order correlation of the converted light is 0.54.

JThB19

Bayesian Analysis of Parity Based Detection Scheme, Keith R. Motes¹, Petr M. Anisimov¹, Jonathan P. Dowling¹; 'Physics, LSU, USA. Using Bayesian analysis we characterized performance of phase estimation in the Mach-Zehnder interferometer with two-mode squeezed vacuum input. Phase uncertainty, averaged over many trials, is examined and the dependence on photon number is found.

JThB20

Quantum Theory of Optical Coherence in the Space-frequency Domain, Mayukh Lahiri', Emil Wolf²; ¹Dept. of Physics and Astronomy, Univ. of Rochester, USA; ²Inst. of Optics, Univ. of Rochester, USA. The quantum treatment of optical coherence theory is generally carried out in the space-time domain. We present a quantum mechanical theory of first-order coherence for statistically non-stationary light in the space-frequency domain.

JThB21

Quantum Frequency-Entangled Optical Spread Spectrum for Stealthy Target Detection and Communications, Jonathan L. Habif¹; 'Disruptive Information Processing Technologies Group, Raytheon BBN Technologies, USA. We describe a transceiver for performing stealthy communication and target detection based on the continuousvariable nature of frequency entanglement that achieves improved detection sensitivity using weak signals in an environment of high noise.

JThB22

Design of Synchronous "Plug & Play" QKD-WDM-PON for Efficient Quantum Communications, Yi Zhao¹², Martin Roetteler², Lei Xu², Ting Wang², 'Caltech, USA; 'NEC Laboratories America, USA. We propose a new design of quantum key distribution (QKD) - WDM-PON with "plug & play" scheme and synchronization. Simulations show that the design can improve the quantum key generation rate 3-4 times over conventional schemes.

JThB23

Spontaneous Emission from Nanodiamond NV Color Centers on Structured Surfaces, Faraz A. Inam¹, Torsten Gaebel¹, Carlo Bradac¹, Luke Stewart², Michael J. Withford², Judith M. Dawes², Michael J. Stel^{1–2}, James R. Rabeau^{1–2}, ¹Centre for Quantum Science and Technology, Dept of Physics and Astronomy, Macquarie Univ, Australia; ²MQ Photonics Research Centre, Dept of Physics and Astronomy, Macquarie Univ, Australia. We measure distributions of emission rates of single nitrogen vacancy color centers in nanodiamond crystals on distinct surfaces. Comparison to calculations shows emission is strongly influenced by dipole orientation relative to surface interfaces.

JThB24

Polarization Entanglement Generation Based on Birefringence in Polarization Maintained Dispersion Shifted Fiber at 1.5 µm, Qiang Zhou¹, Wei Zhang¹, Pengxiang Wang¹, Yidong Huang¹, Jiangde Peng¹; ¹Dept. of Electronic Engineering, Tsinghua National Lab for Information Science and Technology, China. 1.5 µm polarization entanglement generation is experimentally demonstrated based on birefringence in polarization maintained dispersion shifted fiber. Two-photon interference with visibility of >89% without subtracting background counts is achieved, indicating its polarization entanglement property.

Thursday, 5 May

JOINT

JThB • Nonlinear and Quantum Science and Measurements Joint Poster Session—Continued

JThB25

Twin-Photon Correlated Confocal Microscopy, David S. Simon¹, Alexander V. Sergienko¹; ¹Boston Univ., USA. We introduce two new devices, the correlation confocal and twin-photon microscopes. Like the usual two-photon confocal microscope, they use spatially-correlated photon pairs to improve resolution, but with correlation enforced in different manners.

JThB26

Multipartite entanglement in the optical frequency comb of a depleted-pump optical parametric oscillator, *Reihaneh Shahrokhshahi*¹, Olivier Pfister¹; ¹Physics, Univ. of Virginia, USA. We study the effect of pump depletion in a single type-I optical parametric oscillator (OPO) and find that pump-mediated, signal-field quantum correlations generate multipartite entanglement in the optical frequency comb of the OPO.

JThB27

Generation of Narrowband Hyperentangled Biphotons, Shanchao Zhang', Jiefei Chen¹, Hui Yan¹, Michael M T.Loy¹, George K L Wong', Shengwang Du'; 'Dept. of Physics, The Hong Kong Univ. of Science and Technology, Hong Kong. We generate narrowband hyperentangled nondegenerate paired photons using spontaneous four-wave mixing in cold atoms. The entanglement in both time-frequency and polarization is confirmed by correlation measurements and quantum state tomography.

JThB28

Photon-phonon entanglement in a coupled optomechanical system, Uzma Akram¹, Gerard J. Milburn¹; ¹Dept. of Physics, School of Maths and Physics, Univ. of Queensland, Australia. We consider two coupled optomechanical cavities exploring entanglement between all modes in the collective system. In addition to intra cavity entanglement interestingly we find remarkably robust steady state intercavity photon-phonon entanglement.

CLEO:QELS-Fundamental Science 4: Optical Interactions with Condensed Matter and Ultrafast Phenomena

JThB29

Charge Transport and Ultrafast Localization in Nanocrystalline CdS Films Studied by Optical Pump - Terahertz Probe Spectroscopy, Zoltan Mics¹, Hynek Nemec², Petr Kuzel¹, Petr Maly², Petr Nemec²; ¹Inst. of Physics, Czech. Acad. Sci., Czech Republic; ²Faculty of Mathematics and Physics, Charles Univ, Czech Republic. Terahertz timeresolved conductivity measurements supported by simulations of photocarrier motion provide length scales of the charge localization within nanocrystals and characterize the conductive coupling between them on the ultrafast timescale.

JThB30

Saturation Behaviour of PbSe Nanocrystal Exciton Emission Coupled to Silicon Photonic Crystal Microcavities, Haijun Qiao^{1,2}, Charles Foell', Keith Abel³, Stephen Hughes⁴, Frank van Vegge⁷, Jeff F. Young¹, ¹Dept. of Physics and Astronomy, Univ. of British Columbia, Canada; ²Dept. of Chemistry, Simon Fraser Univ., Canada; ¹Dept. of Chemistry, Univ. of Victoria, Canada; ¹Dept. of Physics, Engineering Physics, and Astronomy, Queen's Univ, Canada. We demonstrate the saturation of non-resonantly pumped, cavity-coupled exciton emission from 5 nm PbSe nanocrystals on silicon photonic crystal microcavities at microwatt excitation powers at room temperature, in agreement with simulations.

JThB31

Thermoelectric Vs. Photoelectric Response of Graphene-Metal Photodetectors, Haining Wang¹, Jared Strait¹, Farhan Wang¹, Carlos Ruiz-Vargas², Jiwoong Park²; ¹Electrical and Computer Engineering, Cornell Univ., USA; ²Chemistry and Chemical Biology, Cornell Univ., USA. We study the photocurrent in graphene-metal photodetectors. Our results show that the thermoelectric current dominates the photocurrent response.

JThB32

A Quantum-Optical Approach to Carrier Multiplication in Quantum Dots, Franz Schulze¹, Andreas Knorr¹, Carsten Weber¹; ¹Institut für Theoretische Physik, Technische Universität Berlin, Germany. Measurements of carrier multiplication (CM) in quantum dots show promising but also contradictory results. We approach this problem theoretically by identifying relevant signatures of CM in accessible quantum-optical emission spectra.

JThB33

A Proposed Scheme for the Electron and Nuclear Spin Initialization in General Localized Electron Systems, Toshihide Takagahara¹; ¹Kyoto Inst. of Technology, Japan. An efficient scheme is proposed to initialize both the electron and nuclear spins in general localized electron systems via the hyperfine interaction-induced crossing between the singlet and triplet electronic states.

JThB34

Carrier Dynamics Investigation in a Quantum Cascade Laser using Mid-IR Femtosecond Pulses, Sheng Liu^{1,2}, Elaine Lalanne², Peter Q. Liu³, Anthony M. Johnson^{1,2}, Claire F. Gmach³; ¹CASPR, UMBC, USA; ²Physics, UMBC, USA; ³Electrical Engineering, Princeton Univ, USA. In a room temperature 4.5µm QCL resonantly pumped with fs Mid-IR pulses, we observe an ultrafast gain recovery within the first 200fs, gain oscillation within the 1ps and a slower gain recovery of lifetime ~2-3ps.

JThB35

Effects of exchange, phase space filling, and screening on 1s-2p 2D excitonic transitions, Andrew M. Parks¹, Marc M. Dignan¹; ¹Dept. of Physics, Engineering Physics and Astronomy, Queen's Univ., Canada. We study the 1s-2p exciton transition in a quantum well. If the ratio of free carrier to 1s exciton density is greater than 0.15%, screening dominates exchange and phase-space filling, yielding a red shift.

JThB36

Calculations of the two-photon Franz-Keldysh effect and field-induced quantum interference control in GaAs, Jared Wahlstrand^{1/2}, Steven T. Cundiff², J. E. Sipe²; ¹Physics, Univ. of Maryland, USA; ²JILA, National Inst. of Standards and Technology, USA. The one- and two-photon Franz-Keldysh effect in bulk GaAs is calculated using a 14-band model for the band structure. Two-photon transitions are found to have a strong polarization dependence.

JThB37

Photoinduced Critical Slowing Down of Femtosecond Hole Spin Relaxation in Ferromagnetic GaMnAs, Tianqi Li¹, Aaron Patz¹, Ilias E. Perakis², Xinyu Liu³, Jacek Furdyna³, Jigang Wang¹; ¹Physics & Astronomy, Iowa State Univ, USA; ²Physics, Univ. of Crete, Greece; ³Physics, Univ. of Notre Dame, USA. We report for the first time photoinduced femtosecond hole spin dynamics and critical behaviors in a ferromagnetic semiconductor, revealing, in particular, a critical slowing down of hole spin relaxation near ferro- to paramagnetic phase transition.

JThB38

Coherent control of phonon localization in ZnTe(110) using femtosecond laser pulses, Jianbo Hul², Oleg V. Misochko³, Kenji Ohmori²⁴, Kazutaka G. Nakamura¹²; ¹Materials and Structures Lab, Tokyo Inst. of Technology, Japan; ²JST-CREST, Japan; ³Inst. of Solid State Physics, Russian Academy of Sciences, Russian Federation; ⁴Inst. of Molecular Science, National Inst. of Natural Science, Japan. Two-phonon bound states have been impulsively excited via second-order Raman scattering in ZnTe(110) and detected with the pump-probe technique. By using femtosecond laser pulses, we have realized the coherent manipulation of phonon localization.

JThB39

Ultrafast THz Saturable Absorption in Doped Semiconductors, Dmitry Turchinovich¹, Matthias C. Hoffmann², ¹DTU Fotonik - Dept. of Photonics Engineering, Technical Univ. of Denmark, Denmark; ²Max Planck Research Dept. for Structural Dynamics, CFEL, Univ. of Hamburg, Germany. We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.

JThB40

Dynamics of Photo-Excited Carriers in Gallium Nitride under Subpicosecond Laser Pulse Excitation, Sergey Rudin¹, Gregory A. Garrett¹, Michael Wraback¹, Enrico Bellotti²; ¹U.S. Army Research Lab, USA; ²Electrical and Computer Engineering, Boston Univ., USA. We present a study of subpicosecond kinetics of photo-excited carriers in bulk gallium nitride. The theoretical results are compared with the experimental results of the time-resolved photoluminescence induced by a 100-femtosecond pulse.

JOINT

JThB • Nonlinear and Quantum Science and Measurements Joint Poster Session—Continued

JThB41

Time-Resolved x-ray diffraction with polycapillary x-ray optics, Yuan Gao', Matthew DeCamp'; 'Physics and Astronomy, Univ. of Delaware, USA. Picosecond x-ray diffraction using a quasicollimating polycapillary optic and a laser plasma based x-ray source is demonstrated, significantly reducing data acquisition time for time-resolved studies.

JThB42

Conical Intersection Dynamics in a Rhodopsin Analog: Isorhodopsin, Dario Polli¹, Daniele Brida¹, Cristian Manzoni¹, Katelyn M. Spillane², Marco Garavelli², Philipp Kukura⁴, Richard A. Mathies², Giulio Cerullo¹; ¹Politecnico di Milano, Italy; ²Univ. of California at Berkeley, USA; ³Università di Bologna, Italy; ⁴Oxford Univ., UK. Using broadband sub-20-fs ultrafast spectroscopy we study the conical intersection dynamics in the visual pigment analog 9-cis Isorhodopsin. We find a longer excited state lifetime and oscillations suggestive of pulsed photoproduct formation.

CLEO:QELS–Fundamental Science 7: High-Field Physics and Attoscience

JThB43

Characterizing isolated atomic unit attosecond pulses, Michael Chini¹², Steve Gilbertson⁷, Sabih D. Khan², Zenghu Chang¹; ¹CREOL and Dept. of Physics, Univ. of Central Florida, USA; ²Dept. of Physics, Kansas State Univ., USA. Characterizing shorter attosecond pulses has been limited by an approximation in the FROG-CRAB retrieval. We demonstrate a new technique based on interference in laser-assisted photoionization which can characterize ultrabroadband attosecond pulses.

JThB44

Molecular orientation by intense visible and THz optical pulses, Kenta Kitano¹², Nobuhisa Ishii¹², Jiro Itatani¹³, ¹Inst. for Solid State Physics, Univ. of Tokyo, Japan; ²CREST, Japan Science and Technology Agency, Japan; ³PRESTO, Japan Science and Technology Agency, Japan. We propose an all-optical method for molecular orientation by using intense visible and THz optical pulses. We show numerically that the highest degree of orientation <cos 0 > -0.6 in HBr is feasible under experimentally available conditions.

JThB45

Explosions of Xenon Doped Methane Clusters in Intense X-Ray FEL Pulses, Nirmala Kandadai1, Kay Hoffmann¹, Heiko Thomas¹, Ahmed Helal¹, John Keto¹, Todd Ditmire¹, Bianca Iwan², Nicusor Timneanu², Jacob Andreasson², Marvin Seibert², David van der Spoel², Janos Hajdu², Sebastian Schorb³, Tais Gorkhover³, Daniela Rupp³, Marcus Adolph³, Thomas Möller³, Gillis Doumy⁴, Louis F. DimMauro⁴, Christoph Bostedt⁵, John Bozek⁵, Matthias Hoener⁶, Brendan Murphy⁶, Nora Berrah⁶; ¹The Univ. of Texas at Austin, USA; ²Uppsala Univ., Sweden: ³Technische Universität Berlin, Germany: ⁴The Ohio State Univ., USA; ⁵Stanford Linear Ac-celerator Center, USA; ⁶Western Michigan Univ., USA. Interaction of ultrashort -X-rays laser with xenon doped methane clusters have been studied in the first experiments at LCLS with time-of-flight technique. Xe doping affects the explosion of the CH₄ clusters.

JThB46

Effects of Inter-Electron Correlation Before Ionization, Xu Wang¹; ¹Physics & Astronomy, Univ. of Rochester, USA. Using a classical ensemble method, we predict that electron-electron correlation before ionization leads to measurable effects in both nonsequential and sequential double ionization regimes. Laser field ellipticity is key to observe these effects.

JThB47

Optimized two-color polarization gating with infrared laser for isolated attosecond pulse generation, Pengfei Lan¹, Eiji Takahashi¹, Qingbin Zhang¹, Katsumi Midorikawa¹; ¹aIKEN, Japan. We proposed and theoretically demonstrated an optimized two-color polarization gating method to produce isolated attosecond pulse by using a multicycle infrared laser pulses with the pulse duration up to 60 fs.

JThB48

Influence of Nonadiabatic Tunneling Ionization on Short-Wavelength-Driven High Harmonic Generation, Vasileios-Marios Gkortsas¹, Chien-Jen Lai¹, Kyung-Han Hong¹, Siddharth Bhardwaj¹, Edilson Falcão-Filho¹, Franz X. Kaertner¹; 'Electrical Engineering and Computer Science, Massachusetts Inst. of Technology, USA. High harmonic generation efficiency is theoretically modeled and compared with experiments using 400 and 800 nm driver pulses. Our study shows that for short drive wavelengths nonadiabatic tunneling ionization leads to enhanced low order harmonics.

JThB49

Strong-Field Quantum Control of Energy Ladder Climbing, Sangkyung Lee¹, Jongseok Lim¹, Jaewook Ahn¹; ¹Physics, KAIST, Republic of Korea. We demonstrate coherent control of multiphoton absorption in a dynamically shifted energy level structure. In a three-level model of atomic sodium, we controlled the quantum interference of sequential 2 1 photons and direct three-photon transitions.

JThB50

Polarization Dependence of Carbon Fragments from Methane in Strong and Ultrastrong Laser Fields, Nagitha Ekanayake¹, Bruce Wen¹, Lauren Howard¹, Sarah Wells¹, Michael Videtto¹, Christopher Mancuso¹, Teddy Stanev¹, Zack Condon¹, Sara LeMar¹, Arielle Camilo¹, Rob Toth¹, Matthew DeCamp¹, Barry C. Walker¹; ¹Univ. of Delaware, USA. We present the polarization dependence of the ultrafast photoionization for C⁺ⁿ (n<5) fragments from methane. The study extends from the strong field (C^{*}, C⁺²) at 10¹⁴ W/cm² to the ultrastrong field (C^{*}, at 10¹⁸ W/cm².

JThB51

Two-Color-Laser-Driven Direct Electron Acceleration in Infinite Vacuum, Liang lie Wong¹, Franz X. Kaertner¹; ¹Dept. of Electrical Engineering and Computer Science and Research Lab of Electronics, Massachusetts Inst. of Technology, USA. We propose a scheme that uses a two-color pulsed radially-polarized laser beam to achieve electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color beam.

CLEO:QELS-Fundamental Science 5: Nonlinear Optics and Novel Phenomena

JThB52

Enhanced surface third harmonic generation in TiO₂ nanolayers, Susanta K. Das¹, Christoph Schwanke¹, Andreas Pfuch^{2,3}, Wolfgang Seeber², Martin Bock¹, Ruediger Grunwald¹; ¹Max Born Inst. for Nonlinear Optics and Short-Pules Spectroscopy, Germany; ²Otto Schott Inst., Friedrich Schiller Univ., Germany; ³Innovent e.V., Germany. Highly efficient surface third harmonics (STHG) in TiO₂ nanolayers was obtained by exciting with 13-fs Ti:sapphire laser pulses. Using a 180 nm thick film, the conversion efficiency exceeded air-glass STHG by a factor of 30.

JThB53

Investigation of Slow, Stop, and Fast Light Based on Polariton Resonances in Boron Nitride, Da Li¹, Yi Jiang¹, Yujie J. Ding¹; ¹Electrical & Computer Engineering, Lehigh Univ., USA. Following our measurement of polariton resonances in boron nitride, we have investigated slow, stop, and fast light behaviors in mid-infrared region.

JThB54

Anti-Stokes Photoluminescence in GaN due to Three-Photon Absorption, Guan Sun¹, Yujie J. Ding¹; 'Electrical & Computer Engineering, Lehigh Univ, USA. We have observed anti-Stokes photoluminescence from n-type free-standing GaN, pumped at the excitation photon energy of 1.586 eV, due to three-photon absorption.

JThB55

Low-power All-optical Switching via Tunable Coupling of Nanocomposite Photonic Crystal Microcavities, Xiaoyong Hu¹, Qihuang Gong¹, Zhiqiang Li¹, Hong Yang¹; Peking Univ., China. All-optical diode is realized in asymmetric nanocomposite All-optical switching effect is realized based on dynamically tunable coupling of nanocomposite photonic crystal microcavities. The threshold pump photon energy as low as 600 f is achieved.

JThB56

Experimental observation of Raman-shifting soliton pairs, Alexander Hause', Philipp Rohrmann', Haldor Hartwig', Fedor Mitschke'; 'Institut juer Physik, Universitat Rostock, Germany. Two types of fiber-optic soliton pairs in the presence of Raman self-frequency shift were predicted recently. We report experimental observation of one of these types and obtain good quantitative agreement.

JThB57

Calculating the second harmonic near field radiation pattern from a LiNbO₃ nanowire using a nonlinear Volume Integral Equation Method, Ioannis Papadopoulos¹, Ye Pu¹, Demetri Psaltis¹; School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. We propose a novel nonlinear Volume Integral Equation formulation for second harmonic scattering problems, which we use for the calculation of the second harmonic near field generated from LiNbO, nanowires.

JThB58

Phase-matched second harmonic generation by enhanced nonlinearities in ferroelectric domain walls, Xuewei Deng', Huaijin Ren', Xianfeng Chen'; 'Physics Dept., Shanghai Jiao Tong Univ, China. By employing angle modulation, phase-matched efficient Cherenkov second harmonics can be generated by different domain walls, which is a novel mechanism totally distinguished from Quasi-phase-matching.

JThB59

A strategy to experimentally find bound states of dispersion managed solitons, Philipp Rohrmann¹, Haldor Hartwig¹, Alexander Hause¹, Fedor Mitschke¹; ¹Institut fuer Physik, Universitaet Rostock, Germany. An experimental method to find bound states of dispersion managed solitons is presented. The pulse parameters are optimized with a genetic algorithm in a closed loop. Numerical tests of the method have already been successful.

JThB60

Measuring Vortex Charge With a Triangular Aperture, Luis de Araujo¹, Matthew E. Anderson²; ¹Inst. of Physics, Universidade Estadual de Campinas, Brazil;²Dept. of Physics, San Diego State Univ, USA. We measure the charge of vortex beams (up to \pm 7) via diffraction in a triangular aperture. We also apply this technique for measuring femtosecond vortices and non-integer vortices. The results compare favorably with numerical modeling.

JThB61

Control of Optical Rogue Waves in Supercontinuum Generation with a Minute Continuous Wave, Qian Li¹, Chi Zhang², Kim K. Y. Cheung², Yi Qiu², Kevin. K Tsia², Kenneth K. Y. Wong², Feng Li¹, Alan Pak Tao Lau¹, Ping Kong Alex Wai¹; ¹The Hong Kong Polytechnic Univ., Hong Kong; ²The Univ. of Hong Kong, Hong Kong. We numerically demonstrate that optical rogue wave in supercontinuum generated with picosecond pulse can be controlled by a minute continuous wave.

JThB62

Theory of Faraday effect in high-Q Whispering-Gallery optical cavities, Shoufeng Lan¹, Mani Hossein-Zadeh¹; ¹Electrical Engineering, Center for High Technology Materials, Univ. of New Mexico, USA. The general theory of Faraday rotation in high-Q Whispering-Gallery optical cavities is investigated. We have studied the behavior of the transmission spectrum and identified the optimal condition for maximum sensitivity to external magnetic field.

JThB63

Transversely Stable Soliton Trains in Photonic Lattices, Jianke Yang¹; ¹Univ. of Vermont, USA. We theoretically demonstrate that transverse instability of soliton trains can be completely eliminated by photonic lattices if the soliton trains bifurcate from X points of Bloch bands with saddle-shaped diffraction.

JOINT

JThB • Nonlinear and Quantum Science and Measurements Joint Poster Session—Continued

JThB64

Nonelectrical Poling Procedure for ordering NLO dyes in novel host amorphous ferroelectric polymer, Atsushi Sugita', Masashi Morimoto', Nobuyuki Mase', Yoshimaa Kawata', Shigeru Tasaka'; 'Shizuoka Unviersity, Japan. We will report new strategy for providing second-order NLO activity in host-guest NLO polymers without conventional electrical poling procedure. Formation mechanism of polar order of NLO dyes in amorphous ferroelectric polymers will be shown.

JThB65

Direct Observation of Slow Light in the Noise Spectrum of a Laser, Abdelkrim El Amili', Bernardo-Xavier Miranda^{1,2}, Fabienne Goldfarb', Ghaya Bailt', Gregoire Beaudoin', Isabelle Sagnes', Fabien Bretenaker', Mehdi Alouini^{2,4}; 'Laboratoire Aimé Cotton CNRS, France; 'Institut de Physique de Rennes, France; 'Laboratoire de Photonique et Nanostructures, France; 'Athales Research and technology, France. The role of coherent population oscillations is evidenced in the noise spectrum of an ultra-low noise laser. The coherent population oscillations manifest themselves through their associated dispersion probed by the non-lasing side modes.

JThB66

3D OPCPA simulations for a Petawatt class system including nonlinear refractive index effects, Alexandre Thai¹, Christoph Skrobol^{2,3}, Philip K. Bates¹, Gunnar Arisholm⁴, Zsuzsanna Major^{3,3}, Ferenc Krausz^{2,3}, Stefan Karsch^{2,3}, Jens Biegert^{1,5}, ¹ICFO, Spain; ²Max-Planck-Institut für Quantenoptik, Germany; ¹Ludwig-Maximilians-Universität München, Germany; ⁴Forsvarets Forskningsinstitutt, Norway; ³ICREA-Institució Catalana de Recerca i Estudis Avançats, Spain. We present 3D OPCPA simulations for 3.67 J, 4 fs transform limited pulses. Including nonlinear refractive index effects reduces the energy by ~11%, increases the transform limit by ~17%, and reduces peak intensity by ~30%.

JThB67

Full Characterization of Tightly Focused Vector Fields through Far Field Third Harmonic Signals, David Kupka', Randy Bartels'; 'Colorado State Univ., USA. A non-iterative algorithm applied on nanosphere induced far field third harmonic signals capable of retrieving the full vector third order polarization densities and fundamental field at the focal plane is presented.

JThB68

Second Harmonic Generation in Planar Au/Co/ Si Structure: Current- and Magneto-Induced Effects., Sergey I. Mitryukovskiy¹, Oleg A. Aktsipetrov¹, Tatyana V. Murzina¹, Aleksandr I. Stognij², ¹Physics, Lomonosov Moscow State Univ., Russian Federation; ²Inst. of Solid State and Semiconductor Physics, National Academy of Sciences of Belarus, Belarus. Second-harmonic generation (SHG) in planar Au/Co/Si nanostructures are studied. Current- and magneto-induced contributions to the SHG signal from cobalt interfaces are observed, and are shown to be comparable with the crystallographic SHG component.

JThB69

The Effects of Spurious Loss/Gain in Numerical Simulations, Christopher A. Sapiano', J. Stewart Aitchison', Li Qian'; 'Electrical and Computer Engineering, Univ. of Toronto, Canada. The effects of spurious loss and gain from error are investigated in numerical simulation of four-wave mixing. Results are compared to previously published results and it is demonstrated that these data suffered from erroneous gain.

JThB70

Low Light-Level Two-Photon Absorption using Tapered Optical Fibers in Rubidium Vapor, Meimei Lai', Scott M. Hendrickson', Todd Pittman', James Franson'; ¹Physics, UMBC, USA. We describe an experimental observation of two-photon absorption with ultralow power levels of less than 150 nanoWatts. The experiment involves the use of sub-wavelength diameter tapered optical fibers suspended in rubidium vapor.

JThB71

Observation of Optical Phase Amplification in Three Wave Mixing, Douglas C. French¹, Igor Jovanovic¹; ¹Mechanical and Nuclear Engineering, The Pennsylvania State Univ., USA. We present the first measurement of the amplification of optical phase in a phase-sensitive optical parametric amplifier.

JThB72

Equiangular Spiral Tellurite Photonic Crystal Fiber for Supercontinuum Generation in Mid-Infrared, Yousaf O. Azabi¹, Arti Agrawal¹, B. M. Rahman¹, K. T. Grattan¹, J. Kejalakshmy¹, ¹School of Engineering and Mathematical Sciences, City Univ, London, UK. We demonstrate very low and flat dispersion (±2ps/nm/km,slope<0.0028ps/nm²/ km@1.8-2µm) in the Mid-Infrared band along with high non-linear coefficient (γ=1155W⁻¹km ¹@1.93µm) achieved in a tellurite photonic crystal fiber for generating supercontinuum.

JThB73

Unidirectional Perfect Transmission Resonances in Nonlinear Asymmetric Photonic Multilayers, Sergei V. Zhukovsky', Andrey G. Smirnov²; ¹Dept. of Physics, Univ. of Toronto, Canada; ²B. I. Stepanov Inst. of Physics, National Academy of Sciences, Belarus. Unidirectional transmission in asymmetric nonlinear photonic multilayers of the type (BA)^k(AAB^k(AABB)^m with perfect transmission resonances is examined. Optical diode action with >92% transmittance in only one direction is demonstrated numerically.

JThB74

Continuous-wave second harmonic generation of a tunable CO₂ laser in orientation-patterned GaAs, Leonel P. Gonzalez', Derek Upchurch', Peter G. Schunemanr', Lee Mohnkern', Shekhar Guha'; 'dir Force Research Lab, USA; 'BAE Systems, USA. Frequency doubling of a tunable continuous wave CO₂ laser in orientation-patterned GaAs is demonstrated. For 1.8 W incident power at 9.29 micron, 1.9 mW of second harmonic power was obtained from a 4 cm long crystal.

JThB75

Gold nanoshells for nonlinear plasmonic at telecom wavelengths, Edilson L. Falcao-Filho², R. Barbosa-Silva², R. G. Sobral-Filho², A. M. Brito-Silva², A. Galembeck³, C. B. de Araújo²; ¹Dept.o de Física, Universidade Federal de Pernambuco, Brazil; ¹Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Brazil; ¹Departamento de Química Fundamental, Universidade Federal de Pernambuco, Brazil. The nonlinear response of silica-gold-nanoshells (SGNS) in chloroform was studied at 1560nm, and an analytical approach that allowed extraction of the third- and the fifth-nonlinear susceptibility of a SGNS from the data is presented.

JThB76

Two-Photon Correlations of Broadband Four Wave Mixing, Rafi Vered¹, Michael Rosenbluh¹, Avi Péer¹; ¹Bar Ilan Univ., Israel. We experimentally demonstrate the precise time-energy correlation of light generated by ultrabroad four-waves mixing in a photonic crystal fiber. Ultra broadband sumfrequency generation serves as an ultrafast detector of both the time and frequency correlation.

CLEO: Science & Innovations 4: Applications of Nonlinear Optics

JThB77

Compact Representation of Spatial Modes of Phase-Sensitive Image Amplifier, Muthiah Annamalai', Michael Vasilyev', Nikolai Stelmakh', Prem Kumar'; 'Dept. of Electrical Engineering, Univ. of Texas at Arlington, USA; 'Dept. of Electrical Engineering and Computer Science, Northwestern Univ., USA. We compute a science of spatiallybroadband optical parametric amplifier with elliptical Gaussian pump and find compact representation of well-amplified modes by the space of the first few Laguerre- or Hermite-Gaussian modes of appropriate waist.

JThB78

Rigorous Quantification of Polarized Fiber Continuum Generation for Broadband Coherent Optical Sources, Haohua Tu¹, Yuan Liu¹, Utkarsh Sharma¹, Stephen A. Boppart¹; ¹Univ. of Illinois at Urbana-Champaign, USA. We develop a polarized coherent continuum source based on a dispersion-flattened dispersion-decreased all-normal dispersion fiber (DFDD-ANDiF). The rigorous quantification of continuum generation permits broadband ultrashort pulse shaping.

JThB79

Observation of symmetry-breaking beam dynamics in optically induced hexagonal photonic lattices, Sheng Liut¹, Yi Hu², Peng Zhang², Xuetao Gan¹, Jianlin Zhao¹, Cibo Lou², Daohong Song², Zhigang Chen^{2,3}, ¹School of Science, Northwestern Polytechnical Univ, China; ²TEDA Applied Physics and Astronomy, San Francisco State Univ., USA. We study symmetry-breaking of the multi-vortex Bloch modes in optically induced hexagonal lattices. Such symmetry-breaking results from either exciting with an anisotropic beam or inducing an anisotropic photonic lattice.

JOINT

JThB • Nonlinear and Quantum Science and Measurements Joint Poster Session—Continued

JThB80

Synthesis of flat and broadband parametric gain by idler loss in optical fiber, Hongyao Liu', Kun Xu', Jian Wu', Wei Li', Yan Li', Xiaobin Hong', Yong Zuo', Tong J. Lin', Yitang Dai', 'Beijing Univ. of Post and Telecommunication, China. Besides dispersion engineering, idler-band distributed loss provides a new synthesis freedom to flatten and broaden the gain spectrum for fiber-optic parametric amplifier. The pump-to-signal conversion efficiency is kept high in spite of the loss.

JThB81

Cascaded higher-order soliton compression, Qian Li¹, J. Kutz², Ping Kong Alex Wai¹; ¹The Hong Kong Polytechnic Univ., Hong Kong; ²Univ. of Washington, USA. We theoretically demonstrate high-degree and high-quality optical pulse compression using cascaded higher-order solitons in optical fiber.

JThB82

Non-axial-scanning Second Harmonic Microscopy, Chuan Yang¹, Kebin Shi¹, Haifeng Li¹, Qian Xu¹, Venkatraman Gopalar², Zhiwen Liu¹; ¹Electrical Engineering, The Pennsylvania State Univ, USA;²Material Science and Engineering, The Pennsylvania State Univ., USA. We demonstrate a chromatic second harmonic imaging technique that exploits the chromatic aberration of a Fresnel lens to focus different wavelengths into different axial positions to effectively realize axial scanning and improve imaging speed.

JThB83

Hyperfine aperiodic optical superlattice optimized by iterative domino algorithm for phasematching engineering, Cheng-Wei Hsu¹, Jui-Yu Lai¹, Shang-Da Yang¹; ¹Inst. of Photonics Technologies, National Tsing Hua Univ, Taiwan. We propose hyperfine aperiodic optical superlattice optimized by iterative domino algorithm to achieve arbitrary discrete and continuous phase-matching power spectra. This scheme improves the record overall efficiency by 9% and handles >10⁵ blocks.

JThB84

Noise Reduction of Supercontinua via Optical Feedback, Nicoletta Brauckmann, Michael Kues, Petra Gross, Carsten Cleff, Carsten Fallnich; Inst. of Applied Physics, Westfälische Wilhems-Univ. Münster, Germany. Noise reduction via optical feedback concerning the pulse energy and spectral amplitude of supercontinua is demonstrated experimentally and numerically by comparing the feedback system with a common single-pass supercontinuum generating system.

JThB85

Time-Domain Analysis of Pulse Propagation in High-Contrast Layered Structures with Resonant Nonlinearities, Peyman Sarrafi¹, Li Qian¹; 'Univ. of Toronto, Canada. We introduce a generalized time-domain transfer-matrix method, the only method to our knowledge that is capable of modeling high-index-contrast layered structures with non-analytical form of dispersion and slow resonant nonlinearities.

JThB86

Enhanced Two-Photon Absorption in Polycrystalline Silicon, Karan K. Mehta¹, Jason S. Orcutt¹, Rajeev J. Ram¹; ¹MIT, USA. We discuss measurements of the TPA coefficient (β) in polycrystalline silicon deposited in a scaled CMOS process; measurements in thin film, waveguides and microring resonators indicate β is over two orders of magnitude larger than in crystalline Si.

JThB87

Remote gas leak detection using a portable mini-Lidar, based on a doubly-resonant OPO, Bertrand Hardy¹, Myriam Raybaut¹, Antoine Godard¹, Ajmal K. Mohamed¹, Jean-Michel Melkonian¹, Michel Lefebrre¹, ¹DMPH, Onera, France. We report on remote gas leak detection using a portable mini-Lidar. The Lidar transmitter is based on a micro-laser pumped, entangled cavities, doubly-resonant optical parametric oscillator, allowing specific tuning procedures in the 3.8-4.3µm range.

JThB88

Non-Solitonic Extension of Supercontinua, Ben H. Chapman¹, John C. Travers¹, Sergei Popov¹, Arnaud Mussof², Alexandre Kudlinsk², J. R. Taylor¹; ¹Femtosecond Optics Group, Imperial College London, UK; ²Laboratoire de Physique des Lasers, Atomes et Molecules, IRCICA, Universite Lille 1, France. Four wave mixing of solitons and dispersive waves can extend supercontinua into the long-wavelength normal dispersion region in double zero-dispersion wavelength fibers, where extension through soliton Raman-self-frequencyshift is denied.

JThB89

Broadband, Rapidly Tunable, BiB₃O₆ Femtosecond Optical Parametric Oscillator Directly Pumped by a Ti:sapphire, Adolfo Esteban-Martin', V. Ramaiah Badarla', Valentin Petrov², Majid Ebrahim-Zadeh^{1,3}; ¹ICFO-Institut de Ciencies Fotoniques, Spain; ²Max-Born-Inst. for Nonlinear Optics and Ultrafast Spectroscopy, Germany; ³Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain. We report a femtosecond optical parametric oscillator based on BiB₃O₆ pumped directly by a KLM Ti:sapphire laser, providing broad, continuous, and rapid tuning in the near-infrared using cavity delay detuning with self-compressed signal pulses.

JThB90

Hybrid modal-phase-matched and bent-quasiphase-matched wavelength conversion in Al-GaAs/SiO₂ rib-type zigzag waveguides, Tomonori Matsushita¹, Takashi Kondo¹; ¹Materials Engineering, The Univ. of Tokyo, Japan. We propose a novel wavelength conversion device achieving both modal and quasi phase matching in straight and bent waveguides with the laterally inverted core structure. Numerical simulations reveal AlGaAs/ SiO, rib waveguides are highly efficient.

JThB91

Fiber-Laser-Pumped, High-Power, Continuous-Wave, Mid-Infrared Optical Parametric Oscillator Based on MgO:sPPLT, S. Chaitanya Kumar', Majid Ebrahim-Zadeh^{1,2}; 'Optical Parametric Oscillators, ICFO-The Inst. of Photonic Sciences, Spain; 'Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluis Companys 23, Spain. We report a continuous-wave singly-resonant optical parametric oscillator based on MgO:sPPLT pumped by a Yb-fiber-laser, generating up to 5.5W mid-infrared idler power tunable over 430 nm, with peak-peak power stability of 9.7% over 3 hours.

JThB92

Broadband Phase-Matched Backward Difference-Frequency Generation: A Novel Scheme for Spectral Optical Phase Conjugation, Yi Jiang', Da Li', Yujie J. Ding', Ioulia B. Zotova²; ¹Electrical & Computer Engineering, Lehigh Univ, USA; ²ArkLight, USA. We have observed broadband quasi-phase-matched backward differencefrequency generation in short-period periodicallypoled KTP, which can be used as a novel scheme for spectral phase conjugation.

JThB93

Sum Frequency Generation of 595nm ps-Pulses Based on Er-doped Fiber Amplifter Setup and Seeded by Gain-Switched Laser Diodes, Kristian Lauritsen', Thomas Schoenau', Sina Riecke', Shirley McNeil², ¹PicoQuant GmbH, Germany; ²AdvR Inc., USA. Yellow-orange picosecond pulses are generated via Sum Frequency Generation of 1529nm (pulsed) and 974nm (cw) radiation in a PPKTP waveguide. The p1-energy pulses around 595nm are freely triggerable up to 80MHz.

JThB94

2D PPLN for Simultaneous Laser Q-switching and Optical Parametric Oscillation in a Nd:YVO₄ Laser, Yen-Hung Chen¹, Wei-Kun Chang², Hsi-Hsiung Chang¹, Jui-Wen Chang², Shou-Tai Lin^{2,1}, Yen-Yin Lin^{2,1}, Yen-Chieh Huang^{2,1}, 'Dept. of Optics and Photonics, National Central Univ, Taiwan², ²Inst. of Photonics Technologies, National Tsinghua Univ., Taiwan. We report a tumbale pulsed optical parametric oscillator using a 2D PPLN as simultaneous an electro-optic Bragg Q-switch and a parametric generator in a Nd:YVO₄ laser. >650-W peak-power eye-safe light was obtained with this system.

JThB95

Generation of Continuous-Wave Raman Sidebands through Degenerate and Nondegenerate Intracavity Four-Wave Mixing, Shin-ichi Zaitsu^{1,2}, Totaro Imasaka^{1,3}, ¹Dept. of Applied Chemistry, Graduate School of Engineering, Kyushu Univ, Japan; ²PRESTO, Japan Science and Technology Agency, Japan; ³Division of Translational Research, Center for Future Chemistry, Kyushu Univ., Japan. The phase-matched intracavity four-wave mixing is controlled by the total dispersion of the optical cavity. Continuous-wave Raman sidebands are generated through three different pathways depending on the phase-matching conditions.

JThB96

Transforming Conventional PPLN-Based Frequency Converters to Cover 13-30 microns: Bridging Gap between Mid-Infrared and Terahertz Regions, Yujie J. Ding'; 'Electrical & Computer Engineering, Lehigh Univ., USA. Transverse-pumping geometry can be utilized for efficient generation of far-infrared radiation in 13-30 µm based on difference-frequency generation in periodically-poled LiNbO₃ at its polariton resonances. High conversion efficiencies are achievable.

JThB97

Supercontinuum generation in a sapphire fiber and comparison with a compact PCF based light source, Walter M. Nakaema^{1,2}, Zuoqiang Hao¹, Philipp Rohwetter¹, Eduardo Landulfo², Ludger Woeste¹, Kamil Stelmaszczyk¹, ¹Inst. of Experimental Physics, Free Univ. of Berlin, Germany; ²Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares, Brazil. A single crystal sapphire fiber pumped with ultrashort laser pulses was used to generate supercontinuum light. Its emission was next compared with this of the PCF based source in terms of the applicability to Multiwavelength-CRD-Spectrography.

JThB98

Geometrical Output Coupling Method of Harmonics in Enhancement Cavities, Johannes Weitenberg¹, Peter Russbueld², Ioachim Pupeza³, Hans-Dieter Hoffmann², Reinhart Poprawe¹²; ¹Lehrstuhl für Lasertechnik, RWTH Aachen Univ, Germany, Germany; ²Fraunhofer-Institut für Lasertechnik, Germany; ^{MAX-Planck-Institut für Quantenoptik, Germany: Geometrical access to an enhancement cavity is presented, that could be used for output coupling of harmonics. No dispersion or nonlinearity for the fundamental radiation is introduced. Small diffraction losses allow for a finesse >3000.}

JThB99

High Efficiency Quasi-Non-Critical Phase-Matched KTiOPO4 Optical Parametric Oscillation, Xiaodong Mu¹, Helmuth Meissner¹, Huai-Chuan Lee¹, Stephanie Meissner¹; ¹Onyx Optics Inc, USA. Quasi-non-critical phase-matched optical parametric oscillation has been achieved in periodically bonded KTiOPO₄ stack with a 1.064-µm pump laser. A slope efficiency of 65% has been measured for the total output power of signal and idler.

JThB100

Three-photon counting in a photomultiplier tube for ultrafast source characterization, Amir Nevet¹, Alex Hayat¹, Meir Orenstein¹; 'Electrical Engineering, Technion, Israel. We demonstrate experimentally ultrafast three-photon counting by three-photon absorption in a photomultiplier tube, which may serve as a unique tool for ultrafast quantum state characterization as well as for ultrasensitive temporal measurements.

JOINT

JThB • Nonlinear and Quantum Science and Measurements Joint Poster Session—Continued

CLEO: Science & Innovation 5: Terahertz Technologies and Applications

JThB101

Study of the Impedance Mismatch at the Endfacet of a Parallel Plate Waveguide Operating in the THz Regime, Marx Mbonye¹, Rajind Mendis¹, Daniel Mittleman¹; ¹ECE dept, Rice Univ., USA. We study the impedance mismatch for terahertz waves propagating in a parallel plate waveguide via the TEM mode. The impedance mismatch is found to be a strong function of the plate separation.

JThB102

Controlling THz Wave Transmission Through Organic Copper Phthalocyanine (CuPe) Films on Si by Optical Excitation, Hyung Keun Yoo¹, Chul Kang², Kiejin Lee¹, Chul-Sik Kee², Jong Wook Lee²; ¹Physics, Sogang Univ, Republic of Korea; ²APRI, GIST, Republic of Korea. We show that transmission of THz waves through an organic copper phthalocyanine (CuPc) film on a Si wafer can be controlled by optical excitation.

JThB103

Application of Metal-clad Antiresonant Reflecting Hollow Waveguides to Tunable Terahertz Notch Filter, JaYu Lu¹, Hao-Zai Chen¹, Borven You¹, Chih-Hsien Lai², Hung-Chun Chang², Tze-An Liu², Jin-Long Peng², ¹Inst. of Electro-Optical Science and Engineering, National Cheng Kung Univ., Taiwan; ²Graduate Inst. of Photonics and Optoelectronics, National Taiwan Univ., Taiwan; ³Center for Measurement Standards, Industrial Technology Research Inst., Taiwan. A tunable terahertz notch filter is demonstrated by using antiresonant hollow waveguides. The maximum frequency-tuningrange approached 50% of transmission bandwidth, and a 20dB notch-depth with 6GHz-linewidth was successfully achieved.

JThB104

Temperature dependence of closed mode Qfactor in terahertz metamaterial superlattice, J. H. Woo¹, Eun Sun Kim¹, Boyoung Kang¹, Eun-Young Choi¹, Hyun-Hee Lee¹, J. H. Kim¹, Y. U. Lee¹, Jeong-Won Wu¹, Jae H. Kim², Tae Y. Hong²; ¹Dept. of Physics & Quantum Metamaterials Research Center, Ewha Womans Univ., Republic of Korea; ²Dept. of Physics, Yonsei Univ., Republic of Korea; ²Dept. of Physics, Yonsei Univ., Republic of Korea; Terahertz metamaterial superlattice is fabricated with double-split ring resonators. By cooling down to the cryogenic temperature 4K, changes in Q-factor of closed mode resonance originating from coherent coupling in metamaterial are investigated.

JThB105

Terahertz spectroscopy with focused beams: Gouy shift correction for highly accurate refractive index retrieval, Christelle Kadlec¹, Hynek Nemec¹, Filip Kadlec¹, Petr Kuzel¹; ¹Inst. of Physics, Czech Acad. Sci., Czech Republic, THz measurements are usually performed in focused beam geometry while the standard extraction procedure of the sample refractive index assumes plane-wave approximation. We propose a new retrieval model for spatially limited Gaussian terahertz beams.

JThB106

Quasi-TEM Mode Propagation in Dual-wire THz Waveguide, Pamela Tannouri¹, Marco Peccianti¹², Tsuneyuki Ozaki¹, Roberto Morandotti¹; ¹INRS-EMT; Canada; ²IPCF-CNR, Italy. We demonstrated that Quasi-TEM modes in non-subwavelength dual wire THz waveguides (twin lead) can exhibit significant end-fire coupling (>10%) and broad band low dispersion below 1ps²/m.

JThB107

Narrow Bandgap Semiconductor Based THz-Emitters, Ingrid Wilke¹, Suranjana Sengupta¹, Partha Dutta²; ¹Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Inst., USA; ²Electrical & Computer & System Engineering, Rensselaer Polytechnic Inst., USA. The emission of THz-radiation pulses from binary and ternary narrow bandgap semiconductors is discussed. GaxIn1-xAs:Fe is a THz-emitter material for time-domain THz-systems with potentially ImW of average THz-radiation power at MHz repetition rates.

JThB108

Hybrid Terahertz-Wave Source with Ultrawideband Tunability utilizing Organic DAST and BNA Crystals, Takashi Notake¹; ¹RIKEN, Japan. Crystal quality of a new nonlinear organic material BNA was much enhanced successfully. A novel hybrid THz-wave source with extremely ultrawideband frequency tunability was proposed using new BNA and established DAST crystals.

JThB109

Observation of Slow Relaxation on Nano-Confined Water in Nanoporous MCM-41 by Terahertz Spectroscopy, Yu-Ru Huang¹, Kao-Hsiang Liu², Chung-Yuan Mou², Chi-Kuang Sun¹²; ¹Dept. of Electrical Engineering, Graduate Inst. of Photonics and Optoelectronics, Taiwan; ¹Dept. of Chemistry, Taiwan; ³Inst. of Physics and Research Center for Applied Sciences, Taiwan. Interfacial structural and condensed water in nanoporous MCM-41 were investigated by THz-TDS for the first time. A slow reorientation relaxation time of 30 and 100 ps were observed for condensed and structural water.

JThB110

Magnetically controlled broadband THz absorption in a multiferroic hexaferrite at room temperature, Eiichi Matsubara', Yohei Onishi', Taishi Ishikura', Tsuyoshi Kimura', Masaaki Ashida'a'; 'Osaka Univ., Japan; 'Japan Science and Technology Agency, Japan. THz time domain spectroscopy reveals the existence of a broad absorption band owing to electromagnons in a multiferroic polycrystal of Sr₃Co₂Fe_{2i}O₄₁. The absorption can be controlled by weak external magnetic fields.

JThB111

Millimeter-Wave-Band Pulse Formation Using Mach-Zehnder-Modulator-Based Flat Comb Generator, Isao Morohashi¹, Takahide Sakamoto¹, Tetsuya Kawanishi¹, Iwao Hosako¹; ¹National Inst. of Infromation and Communications Technology, Japan. Millimeter-wave-band pulse formation was demonstrated by mixing cw lights and optical pulses extracted from optical comb signals. Millimeter wave pulse with the carrier frequency of 130 GHz and 10 ps-width was observed.

JThB112

Intracavity Widely-Tunable Monochromatic Terahertz-Wave Generation with Organic BNA Crystal and KTP-OPO, Ming Tang¹, Takashi Notake¹, Yuye Wang¹, Kouji Nawata¹, Hiromasa Ito¹, Hiroaki Minamide¹; 'Tera-photonics Lab, RIKEN, Japan. We demonstrated an efficient intracavity terahertz-wave generation with organic BNA crystal inside a dual-wavelength KTP-OPO cavity. Widely tunable monochromatic terahertz-wave covering 0.9~20 THz has been generated with enhanced pump intensity.

JThB113

Terahertz endoscope based on anti-resonant reflecting hollow core waveguides, Borwen You', Hao-Zai Chen', JaYu Lu'; 'Inst. of Electro-Optical Science and Engineering, Taiwan. A terahertz endoscope utilizing a single plastic hollow-tube with low bending loss is demonstrated to identify molecular concentration and map out object surface-altitudes. The measurements are well consistent with the calculated results.

JThB114

Phase-Slope Measurement of Tunable CW-THz Radiation and Application for Distance Measurement of Optically Rough Object, Takeshi Yasui², Makoto Fujio¹, Ryotaro Nakamura¹, Shuko Yokoyama¹, Tsutomu Araki¹; ¹Grad. Sch. Engg. Sci., Osaka Univ, Japan; ²Inst. Tech. Sci., Univ. Tokushima, Japan, We demonstrate phase-slope measurement of tunable CW-THz radiation by photoconductive heterodyne detection with a photocarrier THz comb. Distance of optically rough object is determined from the measured phase-slope within accuracy of 100 µm.

JThB115

Optically Pumped Mixing at 100 GHz with Travelling-Wave Uni-Travelling Carrier Photodiodes, Efthymios Rouvalis', Martyn J. Fice', Cyril C. Renaud', Alwyn J. Seeds'; 'Electronic and Electrical Engineering, Univ. College London, UK. Frequency down-conversion Optically Pumped Mixing was performed at 100 GHz with a Travelling-Wave Uni-Travelling Carrier Photodiode. A conversion loss of 40 dB and 54 dB was obtained for fundamental and sub-harmonically pumped mixing respectively.

JThB116

Characterization of THz Beams, Robert Dickhoff, Christian Jastrow', Andreas Steiger', Ralf Müller', Thomas Kleine-Ostmann', Thorsten Schrader'; 'Physikalisch-Technische Bundesanstalt, Germany. Using THz radiation as reliable measurement tool requires the accurate knowledge of beam properties. We present approaches to scan beam profiles and measure the radiation power traceable to SI units between 0.1 and 2.5 THz.

JOINT

JThB • Nonlinear and Quantum Science and Measurements Joint Poster Session—Continued

CLEO: Science & Innovations 14: Optical Metrology

JThB117

3D in situ Mapping of Focused Cylindrical Vector Beam Using Trapped Rayleigh Nanoparticles, Liangcheng Zhou¹, Qiwen Zhan², H.Daniel Ou-Yang¹, 'Physics, Lehigh Univ., USA; 'Electro-Optics Graduate Program, Univ. of Dayton, USA. Optically trapped Rayleigh nanoparticles are used as nanoprobes to map in situ the 3D field distribution of a focused cylindrical vector beam. Intensities calculated from measured trapping energy shows good agreement with numerical simulations.

JThB118

Radial Polarization Interferometer, Gilad Lerman¹, Uriel Levy¹; ¹Applied physics, Hebrew Univ. of Jerusalem, Israel. We demonstrate an interferometer based on interference of radially and azimuthally polarized beams. The spatially varying intensity provides additional information improving phase-change measurements compared with a conventional interferometer.

JThB119

Generation and Tight Focusing of Hybridly Polarized Vector Beams, Gilad Lerman¹, Liron Stern¹, Uriel Levy¹; ¹Applied physics, Hebrew Univ. of Jerusalem, Israel. We demonstrate the generation of hybridly polarized beams. Tight focusing analysis show polarization distribution with 3D orientation and space variant ellipticity, which may be useful for particle orientation analysis, microscopy and atomic systems.

JThB120

Time-of-flight Measurement using Femtosecond Pulses, Joohyung Lee¹, Young-Jin Kim¹, Seung-Woo Kim¹; 'KAIST, Republic of Korea. We exploit femtosecond pulses for time-of-flight measurement of distances. Not only long distances but also short distances less than 10 m are measured with sub-micrometer precision beyond the traditional limit of time-of-flight measurement.

JThB121

Passive synchronization of repetition and offset frequency between two mode-locked Yb-doped fiber lasers, Naoya Kuse', Yutaka Nomura', Akira Ozawa', Makoto Kuwata-Gonokami', Yohei Kobayashi'; 'The Inst. for Solid State Physics, Univ. of Tokyo, Japan; ²Dept. of Physics, Univ. of Tokyo, Japan. We have demonstrated an injection locking of mode-locked Yb-fiber oscillator seeded by another mode-locked Pube train. As well as the repetition rate, the offset frequency of the slave laser was locked passively.

JThB122

High-resolution ¹³³Cs 6S-6D, 6S-8S two-photon spectroscopy using an intra-cavity scheme, You-Huan Chen¹, Tze-Wei Liu¹, Chien-Ming Wu¹², Ray-Kuang Lee², Wang-Yau Cheng¹, ¹IAMS, Academia Sinica, Taiwan, ²Inst. of Photonics Technologies, Natl. Tsing-Hua Univ, Taiwan. We demonstrate an intra-cavity scheme for diode laser based on two-photon spectroscopy. Three ¹³³Cs hyperfine transition groups of different wavelengths are shown.

JThB123

Achieving Sub-Rayleigh Resolution via Thresholding, Sara Mouradian', Franco Wong', Jeffrey H. Shapiro'; 'RLE, Massachusetts Inst. of Technology, USA. Sub-Rayleigh resolution by a factor proportional to $[\ln(N_{max}/N)]^{1/2}$ is demonstrated through unstructured scanning of a focused classical beam across an object and dynamic application of a threshold N less than the maximum count level N_{max} .

JThB124

Measurements of Pulse Dynamics in Modelocked Fiber Lasers, Andrew C. Funk¹, Dale E. Daubendiek¹, Steven Cundiff, Curtis Menyuk²; ¹JILA, Univ. of Colorado and National Inst. for Standards and Technology, USA; ²Dept. of Computer Science and Electrical Engineering, Univ. of Maryland, Baltimore County, USA. We present the measurement results of pulse dynamics in a mode-locked Er³⁺ fiber laser. The quantitative data will be useful for determining the noise-limits of optical frequency combs generated by modelocked fiber lasers.

JThB125

Optical Frequency Comb Using Polarization Maintaining Er-doped Ultrashort Pulse Fiber Laser with Carbon-Nanotube Polyimide Film, Norihiko Nishizawa¹, Youichi Sakakibara²⁻³, Emiko Itoga², Hiromichi Kataura²⁻³, ¹Electrical Engineering and Computer Science, Nagoya Univ., Japan; ²AIST, Japan; ³JST-CREST, Japan. Fiber based optical frequency comb was developed using polarization maintaining Er-doped ultrashort pulse fiber laser using polyimide film dispersed with single wall carbon nanotube. fceo was stable and locked with EO modulator and LD driver.

JThB126

Noise reduction of a Carbon Nanotube Fiber Laser Frequency Comb, Jinkang Lim¹, Brian R. Washburn¹; ¹Physics, Kansas State Univ., USA. We report the reduction of noise in a carbon nanotube fiber laser frequency comb using pump attenuation and phase-lead compensation. The measured f0 linewidth was decreased by a factor of four.

JThB127

Characterization of the RIN-to-Phase-Noise Conversion in the Microwave Synthesis from Mode-locked Lasers, Kan Wu¹, Chunmei Ouyang¹, Jia Huar Wong¹, Perry Shum¹; ¹Nanyang Technological Univ, Singapore. The noise conversion from the relative intensity noise to the phase noise in the microwave synthesis (photodetection process) from mode-locked lasers is investigated and is found to decrease as 1/f with the noise frequency.

JThB128

Picometer calibrator for precision linear encoder using a laser interferometer, Mariko Kajima', Kaoru Minoshima'; 'National Inst. of Advanced Industrial Science and Technology(AIST), Japan. A calibration system for precision linear encoders was developed. This system evaluated interpolation errors with an expanded uncertainty of 0.55 nm (k=2). A commercial laser interferometer was calibrated, and its cyclic error was evaluated.

JThB129

2THz Optical Waveform Measurement by Development of Digital Holographic Synthesizer & Analyzer of 400GHz Optical Frequency Comb, Toshiaki Yamazaki', Hiroshi Ono', Tatsutoshi Shioda'; Yagaoka Univ. of Technology, Japan. Optical complex electric field spectra of a 400 GHz optical frequency comb were controlled by a colorless optical synthesizer. The synthesized 2 THz high-speed optical waveform was measured by a proposed multi-heterodyne mixing method.

JThB130

Methods Towards Achieving Precise Birefringent Focusing, David Schmid¹, Shiraz Hazrat¹, Radhika Rangarajan¹, Onur Hosten¹, Stephan Quint², Paul Kwiat¹; ¹Physics, Univ. of Illinois at Urbana-Champaign, USA; ²Institut fuer Experimental physik, Austria. We present two independent schemes for the precise focusing of orthogonal polarizations of light at arbitrary relative locations. The first scheme uses a polarization Sagnac interferometer, the second a set of three birefringent elements.

JThB131

Generating an ultra-stable microwave in the drop tower, Andreas Resch¹, Claus Lämmerzahl¹, Sven Herrmann¹; ¹FB04, ZARM, Universität Bremen, Germany. In this work we present our efforts to build a drop tower compatible setup to generate an ultra-stable microwave signal, which is used for the Raman beams in an atom interferometer.

CLEO: Science & Innovations 13: Active Optical Sensing

Fiber-Based Sensors

JThB132

Ultracompact monolithic broadband in-line micro interferometric sensor based on multibeam interference, Nan-Kuang Chen^{1,2}, Kuan-Yi Lu¹, Jow-Tsong Shy³, Chinlon Lin⁴, Sien Ch²; 'Dept. of Electro-Optical Engineering, National United Univ., Taiwan; 'Optoelectronics Research Center, National United Univ., Taiwan; 'Bell Lab and Bellcore, Retired, USA; 'Dept. of Photonic Engineering, Yuan Ze Univ., Taiwan, 'We demonstrate broadband micro interferometric sensor based on multi-beam interference using a singlemode fiber end-spliced with an end-sphered hollow-core fiber lens. The length of sensor head is less than 240µm and displacement resolution is 0.8mm.

JThB133

High sensitivity temperature sensor based on Bragg grating in micro/nanofiber, Jianghai WG²¹, Ruibing Liang²¹, Qizhen Sun²¹, Deming Liu²¹; 'College of OptoelectronicScience and Engineering, Huazhong Univ. of Science and Technology, China; ²National Engineering Lab for Next Generation Internet Access System, Huazhong Univ. of Science and Technology, China. A novel temperature sensor based on fiber Bragg grating (FBG) in micro/ nanofiber (MNF) immerged in the refractive index oil with high thermo-optic coefficient is proposed and simulated. A sensitivity of 0.4168nm/C can be achieved.

JThB134

A distributed sensing system based on low-index Bragg reflective fiber gratings, Manliang Zhang', Zi Wang', Qizhen Sun'; 'College of Optoelectronic Science and Engineering, Huazhong Univ, of Science and Technology, China. A sensing scheme based on fiber low-index Bragg gratings is proposed, which utilizes tunable laser to demodulate the wavelength signal. Related experiment is done to investigate.

JThB135

Fiber-optic range sensing based on amplified spontaneous emission noise radar with Kramers-Kronig phase retrieval, David Mermelstein¹, Moran Bitori¹, Shmuel Sternklar¹, Erel Granot¹; ¹Ariel Univ. Center, Israel. Amplified spontaneous emission is used as an optical noise source for range sensing. A depth resolution of 30cm and detection of multiple targets is achieved at a range of 2km, using novel Kramers-Kronig algorithms.

JThB136

A Fast Response Photonic Crystal Fiber Grating Refractometer with a Side-opening Structure, Guanjun Wang¹, Jiansheng Liu¹, Zheng Zheng¹, Yi Yang², Jing Xiao¹, Yusheng Bian¹; ¹School of Electronic and Information Engineering, Beihang Uniw, China; ²College of Information Science and Technology, Donghua Uniw, China. A photonic crystal fiber grating refractometer with a sideopening structure is proposed and studied, which can achieve real time response, minimal refractive index resolution of 1.32x10⁵ R.I.U and high efficient grating writing.

JThB137

A Comparative Study of Raman Enhancement in Capillaries, Fatemeh Eftekhari¹, Amr S. Helmy¹; ¹Univ. of Toronto, Canada. This work reports on the comparative studies of Raman enhancement in hollow core photonic crystal fibers and conventional Teflon capillary tubes theoretically and experimentally.

Thursday, 5 May

NOTES

14:30–16:15 QThK • Tunable and Fluid Metamaterials

Hatice Altug, Boston Univ., USA, Presider

QThK1 • 14:30

Tuning the Resonance in Superconducting Terahertz Metamaterials, Hou-Tong Chen¹, Hao Yang¹, Ranjan Singh¹, Abul Azad¹, John F. O'Hara¹, Stuart Trugman¹, Quanxi Jia¹, Antoinette J. Taylor¹; ¹Center for Integrated Technologies, Los Alamos National Lab, USA. We report tunable resonances in terahertz metamaterials made from high-temperature superconducting films. Taking in account the temperature-dependent complex conductivity, we develop a theoretical model for correct interpretation of the observed resonance switching and frequency tuning.

QThK2 • 14:45

Reconfigurable Photonic Metamaterials, Jun-Yu Ou', Eric Plum', Liudi Jiang', Nikolay I. Zheludev'; 'Optoelectronic Research Centre, Univ. of Southampton, UK; 'School of Engineering Sciences, Univ. of Southampton, UK. We demonstrate the first temperature driven mechanically reconfigurable photonic metamaterials (RPMs) providing tunability at optical frequencies.

QThK3 • 15:00

Dynamic tunabality of the electric dipole resonance in highly photo-excited metamaterials, Ioannis Chatzakis¹, Liang Luo¹, Jigang Wang¹, Nianhai Shen¹, Thomas Koscny¹, Costas M. Soukoulis¹; ¹Physics and Astronomy, Iowa State Univ. and Ames Lab, USA. Using optical-pump THzprobe spectroscopy, we observe a non-monotonic variation in the electric dipole oscillator strength as function of pump fluence, revealing particularly, a partial recovery of the oscillator in highly-excited metamaterials.

QThK4 • 15:15

Terahertz superconducting plasmonics and metamaterials, Ranjan Singh^{2,1}, Zhen Tian^{2,3}, Jianqiang Gu^{2,3}, Judy Wu⁴, Jingwen W. Zhang⁵, Weili Zhang^{2,3}; ¹CINT, Los Alamos National Lab, USA; 2School of Electrical and Computer Engineering, Oklahoma State Univ., USA; 3Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin Univ., China; ⁴Dept. of Physics and Astronomy, Univ. of Kansas, USA; 5Dept. of Physics, Harbin Inst. of Technology, China. We demonstrate a superconductor array of subwavelength holes and split ring resonators with active thermal control over their resonant transmission. The arrays were lithographically fabricated on high temperature YBCO superconductor.

Room 321-323

CThQ • Nanophotonic Sensors

Photonic crystal enhanced fluorescence using a

quartz substrate to reduce limits of detection,

Anusha Pokhriyal¹, Meng Lu³, Vikram Chaudhery²,

Cheng-Sheng Huang², Stephen Schulz³, Brian T. Cunningham^{2,4}; ¹Dept. of Physics, Univ. of Illinois

at Urbana-Champaign, USA; 2Dept. of Electri-

cal and Computer Engineering, Univ. of Illinois

at Urbana-Champaign, USA; 3SRU Biosystems,

USA; ⁴Dept. of Bioengineering, Univ. of Illinois at

Urbana-Champaign, USA. Signal enhancement

factor of 7500× is shown for detection of LD-700

dye spin-coated upon a Photonic crystal surface. SNR improvement of 330× is shown for the detection of spotted Alexa-647 labeled polypeptide

High sensitivity miniature Mach-Zehnder-

interferometer using micro-abrupt-tapers in a

cladding-depressed strongly guiding fiber for

a picoliter-volume microsensing, Nan-Kuang

Chen^{1,2}, Zhi-Zheng Feng¹, Tsung-Hsun Yang¹, Yi-

Ning Chen^{1,2}, Chinlon Lin³; ¹Dept. of Electro-Optical

Engineering, National United Univ., Taiwan; 2 Opto-

electronics Research Center, Taiwan; 3Bell Lab and

Bellcore, Retired, USA. We demonstrate miniature

Mach-Zehnder-interferometer with device length

of 179.5µm using micro-abrupt-tapers in a

cladding-depressed strongly-guiding fiber. The

index variation of 0.002 from a 6.3 pL optical liquid

Optimization of Defect Hole Placement in

Resonant Cavity Sensors, Christopher Kang¹,

Christopher T. Phare¹, Yurii A. Vlasov², Solomon

Assefa², Sharon M. Weiss¹; ¹Vanderbilt Univ.,

USA; ²IBM T.J. Watson Research Center, USA. We

demonstrate the resonance wavelength and quality

factor dependence of 50nm defect-hole placement

within photonic crystal L3 microcavities. Proper

placement of defect-holes leads to a 12% increase

A Novel Mechano-Optical Sensor based on

Read-out with a Si₃N₄ Grated Waveguide, S.v.

Pham¹, M. Dijkstra¹, Henk van Wolferen², Markus

Pollnau¹, G.j.m. Krijnen², H.j.w.m. Hoekstra¹;

¹IOMS, MESA+, Univ. of Twente, Netherlands;

²TST, MESA+, Univ. of Twente, Netherlands. A

proof-of-concept study is reported on fabrication

and characterization of a novel and compact

integrated mechano-optical sensor based-on a

micro-bridge suspended above a Si₃N₄ grated

in photonic crystal sensor detection sensitivity.

can cause 1.6nm wavelength-shift.

CThQ3 • 15:00

CThQ4 • 15:15

waveguide.

Lan Yang, Washington Univ.,

14:30-16:15

USA, Presider

CThQ1 • 14:30

on the PC.

CThO2 • 14:45

Room 324-326

CLEO: Science & Innovations

14:30–16:15 CThR • Novel Applications of Nonlinear Optics Narasimha Prasad, NASA Langley Res. Ctr., USA, Presider

CThR1 • 14:30 Tutorial

Slow Light, Fast Light, and their Applications, Robert W. Boyd^{1,2}, ¹Dept. of Physics, Univ. of Ottawa, Canada, ²Inst. of Optics, Univ. of Rochester, USA. We provide a brief overview of the field of slow and fast light. We then describe some of the applications of slow light that have been and are currently being developed.

Robert Boyd received his undergraduate degree from MIT and his PhD from the Univ. of California at Berkeley under the supervision of Charles Townes. He joined the faculty of the Univ. of Rochester and in 2001 became the M. Parker Givens Professor of Optics and Professor of Physics. In 2010 he became Professor of Physics and Canada Excellence Research Chair in Quantum Nonlinear Optics at the Univ. of Ottawa. His research interests include studies of "slow" and "fast" light propagation, quantum imaging techniques, nonlinear optical interactions, studies of the nonlinear optical properties of materials, and the development of photonic devices including photonic biosensors.

14:30–16:15

CThS • CLEO Symposium on Broadband Spectroscopy: New Techniques and Sources II: Spectroscopic Experiments Nathan Newbury, NIST, USA,

Nathan Newbury, NISI, USA, Presider

CThS1 • 14:30 Invited

Broadband Direct Frequency Comb Spectroscopy in the Mid-Infrared, *Piotr Maslowski*', *Aleksandra Foltynowicz*', *Florian Adler', Kevin C. Cossel', Travis Briles', Ticijana Ban', Jun Ye', 'JILA*, *NIST, Univ. of Colorado, USA.* Frequency-combbased Fourier transform spectrometer operating in the 2100-3600 cm-1 range is presented. System allows rapid acquisition of broadband high resolution (120 MHz) spectra, detecting ppb-level concentrations of various molecules in 30s.

CThS2 • 15:00 Invited

Probing sensitivity limits by comb-based spectroscopic techniques, Paolo De Natale^{1,3}, Iacopo Galli^{1,3}, Davide Mazzotti^{1,3}, Giovanni Guzierdi^{1,3}, Pasquale Maddaloni^{2,3}, 'INO, CNR, Italy: ²INO, CNR, Italy: ³LENS, Italy: We report on new concepts of combbased coherent sources that we apply to highsensitivity measurements of physical quantities, e.g. trace gas concentration and mechanical strain, through different spectroscopic techniques.

Thank you for attending CLEO: 2011. Look for your post-conference survey via email and let us know your thoughts on the program.

Thursday, 5 May

Daniel Mittleman, Rice Univ.,

CLEO: Science & Innovations

14:30-16:15

CThT • **Gas Phase Sensing I** Thomas Reichardt, Sandia Natl. Labs, USA, Presider

CThT1 • 14:30 Invited

Low Cost Absorption Sensors for Networked Applications, Mark G. Allen¹; ¹Physical Sciences Inc., USA. This paper highlights recent work by the authors using mid-IR sources that target two emerging market segments for monitoring major atmospheric species.

14:30–16:15 CThU • Fiber Amplifiers and Lasers

Norihiko Nishizawa, Nagoya Univ., Japan, Presider

CThU1 • 14:30

Amplifier Similaritons in a Fiber Laser, William Renninger¹, Andy Chong¹, Frank Wise¹; ¹Applied Physics, Cornell Univ, USA. Parabolic self-similar pulses in an amplifier are realized within a fiber oscillator. In addition to its fundamental importance, this new mode-locking regime offers ultrashort pulse durations from highly normaldispersion sources.

CThV1 • 14:30

14:30–16:15 CThV • THz Imaging

USA, Presider

Towards a real-time electro-optical THz microscope using a demodulating optical detector array, Gunnar Spickermann¹, Peter Haring Bolívar¹; 'High Frequency and Quantum Electronics, Univ. of Siegen, Germany. We present an electro-optical THz-Microscope with parallel readout of 3072 pixels. The use of a demodulating detector array increases the efficiency of the setup enabling the use of a non-amplified fs-laser for electro-optic detection.

CThU2 • 14:45

Stimulated Raman Scattering in Chirped-Pulse Amplification: the Role of Vibrational Dephasing, Simon Lefrancois¹, Frank Wise¹; ¹Applied Physics, Cornell Univ, USA. We numerically study the properties of Raman Stokes pulses generated in fiber chirped-pulse amplification. Pulses are compressible for Raman dephasing times as short as a hundredth of the pump pulse duration.

CThT2 • 15:00

Ultra-sensitive Faraday Rotation Spectroscopy of O2: Model vs. Experiment, Stephen So¹, Oscar Marchat^{1,2}, Evan Jerg^{1,3}, Gerard Wysocki¹; ¹Eletrical Engineering, Princeton Univ., USA; ²Physics Dept., ETH Zurich, Switzerland; ¹Electrical Engineering, Stanford Univ., USA. We compare theoretical model simulations based on the HITRAN database with experimental data for the sensing of O2 using novel balanced Herriott multipass Faraday Rotation Spectroscopy. A detection limit of 10 ppm is achieved.

CThT3 • 15:15

Mid-infrared absorption microscopy with λ 100 spatial resolution using tunable quantum cascade lasers, Feng Lu¹, Mikhail Belkin¹; 'Dept. of Electrical and Computer Engineering, The Univ. of Texas at Austin, USA. Highly-sensitive mid-IR microscopy is reported. Subwavelength resolution is achieved by detecting absorption via local expansion. High sensitivity is obtained by moving laser pulses repetition rate in resonance with AFM cantilever eigenfrequency.

CThU3 • 15:00

High gain fiber optical parametric chirped pulse amplification of femtosecond pulses at 1 µm fiber, Damien Bigourd¹, Laure Lago^{1,2}, Arnaud Mussol², Alexandre Kudlinsk², Emmanuel Hugonnot¹; ¹Commissariat à l'Énergie Atomique et aux Energies Alternatives, CESTA, France; ²Université des Sciences et Technologies de Lille, IRCICA, FR CNRS 3024, Laboratoire PhLAM, UMR CNRS 8523, France. Fiber-based OPCPA is reported in the femtosecond regime at 1 µm. A highly stretched signal has been amplified in a microstructured fiber with more than 30 dB gain by an all-fiber pulsed pump.

CThU4 • 15:15

Fast Swept-Source Generation Based on Fiber Optical Parametric Amplifier, Chi Zhang', Kim K. Y. Cheung', Po Ching Chui', Kevin. K Tsia', Kenneth K. Y. Wong'; 'Dept. of Electrical and Electronic Engineering, The Univ. of Hong Kong, Hong Kong. We experimentally demonstrate a fast frequency swept-source using the dispersive Fourier transformation-based fiber optical parametric amplifier. The swept rate is as high as 78 MHz, with a linewidth of 0.135 nm.

CThV2 • 14:45

Space-time features of THz emission from optical rectification in sub-wavelength areas, Sze Phing Ho¹⁴, Marco Peccianti¹², Fabrizio Buccheri¹³, Matteo Clerici¹, Alessandro Busacca², Tsuneyuki Ozaki¹, Jalil Ali⁴, Roberto Morandotti¹; ¹INRS Énergie, Matériaux et Télécommunications, Canada, ²IPCF-CNR, UOS Rome, Italy; ³DIEET, Univ. of Palermo, Italy; ⁴Nanophotonics Research Alliance, Universiti Téknologi Malaysia, Malaysia. We present our investigation on the THz spacetime emission characteristic induced by the non-paraxial generation regime in highly localized THz generation via optical rectification on sub-wavelength areas.

CThV3 • 15:00

Characterization of Dodecane-Surfactant-Brine Emulsions Using THz Imaging, Daniel V. Nickel¹, Jonathan P. Laib¹, Daniel Mittleman¹, Reinaldo Navarrete², Jeremy Pearce³, Paul Tortorici², ¹Rice Univ., USA, ¹Shell, USA. We investigate the feasibility of using terahertz imaging to quantify the relative dodecane ($C_{12}H_{30}$) content and long-term stability of dodecane-surfactant-brine emulsions of varying salinity for their use in surfactantenhanced oil recovery.

CThV4 • 15:15

Imaging of Terahertz surface plasmon waves with a sub-wavelength aperture probe, Raimund Mueckstein¹, Oleg Mitrofanov¹; ¹Electronic & Electrical Engineering, Univ. College London, UK. We present imaging of THz surface plasmon polariton (SPP) waves with an integrated sub-wavelength aperture probe. Using detected SPP patterns, we explain the mechanism of SPP coupling into the probe. Room 327

CLEO: QELS Fundamental Science

14:30-16:15

QThL • Positioning, Coupling and Focusing in Nanophotonic Systems

Presider to Be Announced

QThL1 • 14:30

On-Chip Focusing of Light by Metallic Nanotip, *Boris Desiatov', Ilya Goykhman', Uriel Levy'; 'Applied Physics, Hebrew Univ., Israel.* We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide.

QThL2 • 14:45

Polymer Plasmonic Microring Resonators Based on Conductor-Gap-Dielectric Waveguides, Cameron Horvath¹, Daniel Bachman¹, Marcelo Wu¹, David Perron¹, Vien Van¹; ¹Electrical and Computer Engineering, Univ. of Alberta, Canada. We report the first experimental realization of conductor-gap-dielectric plasmonic waveguides based on a SU-8 material system with propagation length of 62µm. Compact plasmonic microring resonators are also demonstrated with high intrinsic Q-factor.

QThL3 • 15:00

Using Local Fields to Tailor Hybrid Quantum Dot-Metal Nanoparticle Systems: Connecting the Dots, Garnett W. Bryant¹, Ryan D. Artuso², Aitzol Garcia-Etxarri², Javier Aizpurua², 'Joint Quantum Inst. and Atomic Physics Division, NIST, USA; 'Joint Quantum Inst. and Dept. of Physics, Univ. of Maryland, USA; 'Donostia International Physics Center and Centro de Fisica de Materiales, Spain. We study systems of metal nanoparticles (MNP) coupled with semiconducting quantum dots (SQD). Hybrid behavior can be tailored by the MNP shape and the exciton resonance of SQDs which determine the local fields.

QThL4 • 15:15

Optical Forces in Scanning Probe Microscopy, Dana Kohlgraf-Owens¹, Sergey Sukhov¹, Aristide Dogariu¹; ¹CREOL, Univ. of Central Florida, USA. We demonstrate that the mechanical action of light can be detected by a scanning probe microscope. The conservative and nonconservative electromagnetic forces can be directly measured and they affect the perceived topography. **Room 336**

CLEO: Science & Innovations

14:30–16:15 CThW • Advances in Biological Microscopy

Siavash Yazdanfar, GE Global Res., USA, Presider

CThW1 • 14:30

Nomarski Serial Time-Encoded Amplified Microscope for High Throughput Imaging of Transparent Media, Ali Fard^{1,2}, Ata Mahjoubfar^{1,2}, Keisuke Goda^{1,2}, Bahram Jalali^{1,2}; ¹Dept. of Electrical Engineering, Univ. of California Los Angeles, USA; ²California NanoSystems Inst., USA. We report a new method of high-contrast imaging of unstained and transparent objects at ~1000 times higher frame rates than conventional methods. As a proof-of-concept, we demonstrate enhanced image-contrast in 2D imaging of a transmission grating.

CThW2 • 14:45

Multiplexed Fluorescence Lifetime Microscopy by Frequency-Sweeping Fourier Spectroscopy, Ming Zhao¹, Leilei Peng¹; 'College of Optical Sciences, The Univ. of Arizona, USA. We developed a multiplexed fluorescence lifetime confocal microscopy method based on frequency sweeping Fourier fluorescence lifetime spectroscopy. It simultaneously obtains nanosecond fluorescence lifetime images at multiple excitation wavelengths.

CThW3 • 15:00 Invited

Fluorescence Nanoscopy: Eluding the Diffraction Limit by Switching Markers, Andreas Schoenle', Stefan W. Hell'; 'NanoBiophotonics, MPI for Biophysical Chemistry, Germany. By transiently confining adjacent emitters to different states the diffraction limit in light microscopy can be overcome. We will discuss this fundamental concept underlying all current far-field nanoscopy approaches and present recent applications.

CThW4 • 15:30

Double-Helix 3D Photo-activation Localization Microscopy with a Phase Mask for Efficient Photon Collection, Ginni Grover', Sean Quirin', Rafael Piestun'; 'Dept. of Electrical, Computer and Energy Engineering, Univ. of Colorado, Boulder, USA. We demonstrate 3D photo-activation localization microscopy of 4µm thick samples with efficient photon collection using a phase mask fabricated by gray-level lithography. The performance limits of the system in the presence of noise are analyzed.

CLEO: QELS Fundamental Science

14:30–16:15 QThM • Quantum Optics in Cavities and Waveguides Glenn Solomon, Joint Quantum Inst., USA, Presider

QThM1 • 14:30

Optomechanically Induced Transparency, Albert Schliesser^{1,2}, Stefan Weis^{1,2}, Samuel Deléglise^{1,2}, Rémi Rivière², Emanuel Gavartin¹, Olivier Arcizet³, Tobias Kippenberg^{1,2}; ¹Ecole Polytechnique Fédérale de Lausanne, Switzerland; ²Max-Planck-Institut für Quantenoptik, Germany; ³Institut Neél, France. In analogy to electromagnetically induced transparency observed in atomic systems, we demonstrate that the transmission of a probe laser beam through an optomechanical device can be modulated all-optically using a second, "control" laser beam.

QThM2 • 14:45

Measuring nanomechanical motion with an imprecision below that at the standard quantum limit, Georg Anetsberger², Pierre Verlot¹, Emanuel Gavartin¹, Olivier Arcizet³, Ouirin Unterreithmeier⁴, Eva M. Weig⁴, Michael L. Gorodetsky⁵, Jörg P. Kotthaus⁴, Tobias Kippenberg¹; ¹Sciences de base, EPFL, Switzerland; ²Max-Planck-Institut für Quantenoptik, Germany; ³Institut Néel, France; ⁴Fakultät für Physik and Center for NanoScience (CeNS),, Ludwig-Maximilians-Universität (LMU), Germany; 5Dept. of Physics, Moscow State Univ., Germany. We report an optomechanical near-field coupling detection scheme which enabled the first optical measurement of nanomechanical motion with an imprecision 3 dB below that at the standard quantum limit at room temperature.

QThM3 • 15:00

Resolved Sideband Laser Cooling of a Cryogenic Micromechanical Membrane, Andrew Jayich¹, Jack Sankey¹, Andrei Petrenko¹, Jack Harris^{1,2}; ¹Physics Dept., Yale Univ., USA; ²Applied Physics Dept., Yale Univ., USA. We have implemented an optomechanical system consisting of a high finesse cavity centered on a low reflectivity, high mechanical quality factor SiN membrane at a temperature of 400 mK.

QThM4 • 15:15

On-Chip Single Crystal Diamond Resonators, Birgit J. Hausmann¹, Jennifer Choy¹, Thomas Babinec¹, Qimin Quan¹, Murray W. McCutcheon¹, Patrick Maletinsky², Amir Yacoby², Marko Loncar¹, ¹SEAS, Harvard Univ., USA; ²Physics, Harvard Univ., USA. We present a fabrication method for diamond based resonators. Optical characterization of a diamond ring resonator on quartz substrate reveals cavity modes both in the telecom and the visible wavelength regime having with Q-factors ~8000.

Room 338

CLEO: Science & Innovations

14:30-16:15

CThX • Fiber Transmission Bert Basch, Verizon Labs, USA, Presider

CThX1 • 14:30

Frequency Domain PMD Monitoring and Compensation in High-Speed Coherent Systems with Digital Signal Processing, Junyi Wang¹, Xuan He¹, Kailu Gao¹, Zhongqi Pan¹; ¹EECE, Univ. of Louisiana at Lafayette, USA. We proposed a PMD monitoring/compensation method in frequency domain for coherent system. With 15 ps of average DGD, the PMD induced penalty for 100-Gbit/s QPSK system is reduced by 9 dB at symbol-errorratio of 10⁻³.

CThX2 • 14:45

Practical 4-Stage Optical PMD Compensator for Mitigating First- and Second-Order PMD on 40-Gbit/s RZ-D(Q)PSK, Jeng-Yuan Yang', X. Steve Yao², Jian Wang', X. Chen², Lei Dong², Leon Yao¹, Alan E. Willner', ¹Dept. of Electrical Engineering, Univ. of Southern California, USA; ²General Photonics, USA. A first practical 4-stage compensator with ~1-ms response-time is demonstrated for mitigating first/second order PMD on 40-Gbit/s RZ-D(Q)PSK. BER/DOP are significantly improved and <0.5-dB power-penalty is achieved under 25-ps-DGD and 400-ps²-SOPMD.

CThX3 • 15:00

Distance limitations on the entanglement distribution over optical fiber due to chromatic and polarization mode dispersion., Cristian Antonelli¹, Mark Shtaif², Misha Brodsky¹, ¹Univ. of ZAquila, Italy: ²Tel Aviv Univ., Israel; ³AT&T Labs, USA. We compare bounds to the reach of potential fiber-optic quantum cryptography systems based on entanglement distribution. We find that polarization mode dispersion limits the transmission for systems deployed over lower dispersion fibers such as NZDSE:

CThX4 • 15:15

A Chromatic Dispersion Estimation Method for Arbitrary Modulation Formats, John Zweck¹, Curtis Menyuk²; ¹Mathematics and Statistics, Univ. of Maryland Baltimore County, USA; ²Computer Science and Electrical Engineering, Univ. of Maryland Baltimore County, USA. Simulations show that a modulation-format-independent method for estimating chromatic dispersion from the phase of a coherently-received signal at four frequencies can estimate 3000 ps/nm of dispersion to within 2% at an OSNR of 10 dB.

& Innovations

CThY • Microwave Photonics

Keith Williams, NRL, USA,

CLEO: QELS-Fundamental Science

14:30-16:15

QThN • **Quantum Photonics** Bahaa Saleh, Univ. of Central Florida, USA, Presider

QThN1 • 14:30 Invited

NOON States, Yaron Silberberg Weizmann Inst. of Science, Israel. 'High-NOON' states were generated by multiphoton interference of 'quantum' downconverted light with a 'classical' coherent state. Super-resolving phase measurements with up to five entangled photons were demonstrated with a visibility higher than obtainable without entanglement.

14:30–16:15

QThO • Fundamental Topics in Quantum Science Dominic Berry, Univ. of Waterloo, Canada, Presider

QThO1 • 14:30

On the Optimal Choice of States for Process Tomography, Lee A. Rozema¹², Ardavan Darabi¹², Dylan Mahler¹², Robin Blume-Kohout³⁴, Aephraim Steinberg¹², ¹Physics, Univ. of Toronto, Canada; ²Centre for Quantum Information & Quantum Control and Inst. for Optical Sciences, Canada; ³Theoretical Division, Los Alamos National Lab, USA; ⁴Dept. of Physics and Astronomy, Univ. of New Mexico, USA. Quantum process tomography requires a set of input states sensitive to the unknown process. We experimentally generate a class of 4-photon states and compare their sensitivity to that of coherent states to a decohering process.

QThO2 • 14:45

Finding Decoherence Free Subspaces Without Process Tomography, Dylan Mahler^{1,2}, Lee Rozema^{1,2}, Aephraim Steinberg^{1,2}; ¹Physics, Univ. of Toronto, Canada; ²Centre for Quantum Information & Quantum Control and Inst. for Optical Sciences, Canada. Quantum process tomography (QPT) is a resource intensive task. We present an experiment in which a 3 dimensional decoherence free subspace is experimentally identified using 36 measurements, instead of the 256 measurements required for QPT.

CThY1 • 14:30

14:30-16:15

Presider

High-Saturation Current Uni-Traveling-Carrier Waveguide Photodiodes with Variable Optical Confinement, Jonathan Klamkin', Shannon Madison', Douglas Oakely', Antonio Napoleone', Frederick O'Donnell', Michael Sheehan', Leo Missaggia', Janice Caissie', Mark Hollis', Jason Plant', Paul Juodawlkis'; 'Lincoln Lab, Massachusetts Inst. of Technology, USA. Uni-traveling-carrier photodiodes with variable optical confinement waveguides are proposed and demonstrated. Two different photodiode designs are compared, both demonstrating state of the art saturation current for a waveguide photodiode.

CThY2 • 14:45

Low-Timing-Jitter Near-Infrared Single-Photon-Sensitive 16-Channel Intensified-Photodiode Detector, Michael Krainak¹, Wei Lu¹, Guangning Yang¹, Xiaoli Sun¹, Derek Sykora², Michael Jurkovic², Verle Aebi², Ken Costello², Richard Burns²; 'Laser & Electro-Optic Branch, NASA Goddard Space Flight Center, USA; ²Intevac, Inc., USA. We developed a 16-channel InGaAsP photocathode intensified-photodiode (IPD) detector with 78 ps (1-sigma) timing-jitter, < 500 ps FWHM impulse response, >15% quantum efficiency at 1064 nm wavelength with 131 kcps dark counts at 15 C.

Noise Reduction by Balanced Detection in

Microwave Photonic Filters Based on Optical

Broadband Sources, Xiaoxiao Xue¹, Xiaoping

Zheng¹, Hanyi Zhang¹, Bingkun Zhou¹; ¹State Key

Lab on Integrated Optoelectronics, Tsinghua Univ.,

China. We propose a microwave photonic filter

based on optical broadband source, of which the

optical intensity noise is significantly suppressed

through polarization-based balanced detection.

The signal-to-noise ratio was increased by 15dB

QThN2 • 15:00

Type-0 Spontaneous Parametric Down Conversion in AlGaAs Bragg Reflection Waveguides, Rolf Horn¹, Payam Abolghasem², Bhavin Bijlan², Amr S. Helmy², Gregor Weihs¹; ¹Dept. of Physics, Univ. of Waterloo, Inst. for Quantum Computing. Canada; ²The Edward S. Rogers Sr. Dept. of Electrical and Computer Engineering, Univ. of Toronto, Canada. By analyzing the time correlation between two single photon detector events, we demonstrate Spontaneous Parametric Down Conversion of a picosecond pulsed laser in an AlGaAs ridge Bragg Reflection Waveguide.

QThN3 • 15:15

Enhancement of two photon processes in quantum dots embedded in subwavelength metallic gratings, Moshe G. Harats', llai Schwarz', Ronen Rapaport', Adiel Zimrarä', Uri Banin', Gang Chen'; 'Racah Inst. fo Physics, The Hebrew Univ. of Jerusalem, Israel; 'Inst. of Chemistry and The Center for Nanoscience and Nanothechnology, The Hebrew Univ. of Jerusalem, Israel; 'Bell Laboratories, Alcatel Lucent, USA. A 20-fold enhancement of two-photon absorption and light upconversion in InAs nanocrystal quantum dots is achieved using resonant local field enhancements in subwavelength nanoslit arrays.

QThO3 • 15:00

Experimental Demonstration of Decoherence Suppression by Quantum Measurement Reversal, Jong-Chan Lee', Youn-Chang Jeong', Yong-Su Kim', Yoon-Ho Kim'; 'Physics, POSTECH, Republic of/Korea. We experimentally demonstrated that the decoherence due to amplitude damping can be suppressed using quantum measurement reversal. By implementing two partial measurements, we succeeded in preferentially selecting the cases without decoherence.

QThO4 • 15:15

Experimental implementation of the universal transpose operation using structural physical approximation, Hyang-Tag Lim', Young-Sik Ra', Yong-Su Kim', Joonwoo Bae', Yoon-Ho Kim', 'Physics, Pohang Univ. of Science and Technology, Republic of Korea; 'School of Computational Sciences, Korea Inst. for Advanced Study, Republic of Korea. We investigate approximating the universal transpose operation of quantum states of two-level systems using the method known as the structural physical approximation to positive maps. We also report its experimental implementation in linear optics.

experimentally.

CThY3 • 15:00

CThY4 • 15:15 Combining Multiple Semiconductor Laser Sources for Spectral Pulse Shaping, David Lemus¹, Mohammad Abtahi¹, Mchrdad Mirshafiei¹, Leslie Rusch¹, Sophie LaRochelle¹; ¹COPL, Dept. Electrical and Computer Engineering, Université Laval, Canada. We propose a low cost multiple semiconductor laser source for ultra-wideband pulse generation. The parallel configuration of gain-switched lasers, combined with an adjustable pulse shaper, increases the synthesized waveform resolution.

QThK • Tunable and Fluid Metamaterials—Continued

QThK5 • 15:30

Light-induced reflectance changes in a natural photonic structure and measurement of the opto-thermal coefficient of chitin, Alain Hachel; ¹Physics, Universite de Moncton, Canada, Chitinbased natural photonic structures are studied for light-induced refractive index changes. Strong effects are observed near the photonic band, and the opto-thermal coefficient measured in chitin (-4.7X10⁻⁴/°C⁻¹) is one of the largest reported.

Using Multi-Channel Spatial Detection, Ting Lei¹, Andrew W. Poon¹; ¹Electronic and Computer

Continued

CThO5 • 15:30

Engineering, the Hong Kong Univ. of Science and Technology, Hong Kong. We demonstrate the proofof-concept experiments of coupled-resonator optical waveguide sensors using multi-channel out-of-plane light scattering spatial detection. The sensor comprises eleven microdisks, which enables a sensitivity of 10-5 RIU.

Coupled-Resonator Optical Waveguide Sensors

CThR2 • 15:30 Invited Large Two-Photon Absorption Enhancement

with Extremely Nondegenerate Photons, Eric Van Stryland¹, Claudiu Cirloganu², Dmitry Fishman1, Scott Webster1, Lazaro Padilha3, David J. Hagan1; 1CREOL, The College of Optics and Photonics, Univ. of Central Florida, USA; 2The School of Electrical and Computer Engineering and Center for Organic Photonics and Electronics, Georgia Inst. of Technology, USA; ³Los Alamos National Labboratory, USA. Using extremely nondegenerate photons (energy ratios 10/1), we measure 2-4 orders of magnitude two photon absorption enhancement in semiconductors compared to the degenerate case. We demonstrate subfemtosecond gated detection using a GaN photodiode.

Room 324-326

CLEO: Science

& Innovations

CThS · CLEO Symposium on **Broadband Spectroscopy: New Techniques and Sources II:** Spectroscopic Experiments-Continued

CThS3 • 15:30 Invited

Molecular sensing with supercontinuum radiation, Clemens Kaminski^{1,2}, Ssegawa Kiwanuka¹, Toni Laurila¹; ¹Chemical Engineering and Biotechnology, Univ. of Cambridge, UK; ²SAOT School of Advanced and Optical Technologies, Univ. of Erlangen-Nuremberg, Germany. Novel applications in gas and liquid phase molecular sensing are presented, which make use of the unique properties of supercontinuum radiation. Challenges and future opportunities are discussed.

QThK6 • 15:45

Isotropic Lasing from Self-assembled Cholesteric Microdroplets, Matjaz Humar¹, Igor Musevic^{1,2}; ¹Jozef Stefan Inst., Slovenia; ²Faculty of Mathematics and Physics, Univ. of Ljubljana, Slovenia. Here we demonstrate highly tunable single mode lasing from self-assembled microdroplets of cholesteric liquid crystal. This is one of first lasers that emits light isotropically in all directions and thus acts as a point source of light.

OThK7 • 16:00

A Fluid Metamaterial With Tunable Anisotropy, Mohammad Mayy¹, Guohua Zhu¹, John Kitur¹, Natalia Noginova¹, Carl Bonner¹, Rama Bhattacharjee², Emmanuel P. Giannelis², Mikhail Noginov¹; ¹Center for Materials Research, Norfolk State Univ., USA; ²Materials Science and Engineering, Cornell Univ., USA. We demonstrate a fluid metamaterial consisting of gold nanorods coated with an organic molecular corona, whose anisotropy can be controlled by applied mechanical shear force.

CThQ6 • 15:45

Interactions of sub-wavelength light scatterers with a Whispering-Gallery-Mode optical microresonator, Jiangang Zhu¹, Sahin K. Ozdemir¹, Lina He¹, Lan Yang¹; ¹Electrical & Systems Engineering, Washington Univ. in St. Louis, USA. Investigation of the dynamics of mode splitting manipulated by two scatterers in an optical microresonator is presented. The phenomena are explained by a multiple-scatterer theory and the applications on nanoparticle sensing are discussed.

CTh07 • 16:00

High-Q Polymeric Microcavity for Biosensing, Torsten Beck¹, Mario Hauser¹, Tobias Grossmann Dominik Floess¹, Timo Mappes², Heinz Kalt¹; ¹Institut fuer Angewandte Physik, Karlsruhe Inst. of Technology (KIT), Germany; ²Institut fuer Mikrostrukturtechnik, Karlsruhe Inst. of Technology (KIT), Germany. We report on a new type of high-Q microresonator made of poly(methyl methacrylate)(PMMA) with a conical shape. First results on biosensing with proteins are presented.

CThR3 • 16:00

Optical Domain Wideband RF Spectrum Analysis Using Parametric Mixing, Joshua Kvavle¹, James Adleman¹, Christopher Huynh¹, Camille Bres², Sanja Zlatanovic², Andreas Wiberg², Bill Kuo², Evgeny Myslivets², Stojan Radic², Everett Jacobs¹; ¹SSC Pacific, USA; ²Electrical and Computer Engineering, Univ. of California San Diego, USA. We present the design of an optical domain staring RF spectrum analyzer based on parametric multicasting and spectral slicing with a periodic filter. An implementation covering an 18GHz band with 250MHz resolution bandwidth is presented.

CThS4 • 16:00

Hyperspectral Infrared Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser, Mark C. Phillips¹, Bruce E. Bernacki1; 1Pacific Northwest National Lab, USA. A hyperspectral infrared microscope using external cavity quantum cascade laser illumination and a microbolometer focal plane array is used to characterize nanogram-scale particles of the explosives RDX, tetryl, and PETN at fast acquisition rates.

16:15–16:45 Coffee Break, 300 Level Lobby

Room 321-323

CThQ • Nanophotonic Sensors— CThR • Novel Applications of Nonlinear Optics—Continued

CThV • THz Imaging—Continued

CLEO: Science & Innovations

CThT • Gas Phase Sensing I— Continued

CThU • Fiber Amplifiers and Lasers—Continued

CThT4 • 15:30

Chirped Laser Dispersion Spectroscopy with baseline-free 2nd harmonic detection, Michal Nikodem¹, Clinton J. Smith¹, Damien Weidmann², Gerard Wysocki¹, ¹Electrical Engineering, Princeton Univ., USA, ¹STFC Rutherford Appleton Lab, UK. A phase sensitive signal detection scheme for molecular spectroscopy (DLaDS) is presented. We demonstrate application to sensitive remote sensing of trace gases using a 5.2 µm quantum cascade laser.

CThU5 • 15:30

Influence of modulation of pump and seed signals on fiber amplification of broadband pulses, *Kutan Gurel¹*, *Parviz Elahi¹*, *Cagri Senel¹*, *Punya Paltani¹*, *Fathi Omer Ilday¹*, ¹*Physics Dept, Bilkent Uniw, Turkey.* We report on characterization of the transfer of pump and seed signal modulations, including noise, during fiber amplification. We demonstrate experimentally and theoretically that pump (signal) modulations are transferred only below (above) a cut-off frequency.

CThV5 • 15:30

High-sensitivity in vivo THz fiber-scanning mammography of early breast cancer in nude mice, Hua Chen¹, Tzu-Fang Tseng¹, Jen-Tang Lu¹, Chen Te-Hsuen², Chung-Chiu Kuo¹, Shih-Chen Fu³, Wen-Jeng Lee¹, Yuan-Fu Tsai¹, Yu-You Huang², Eric Y. Chuang³, Yuh-Jing Hwang⁵, Chi-Kuang Sun^{1,4}; ¹Graduate Inst. of Photonics and Optoelectronics, National Taiwan Univ., Taiwan; 2Graduate Inst. of Biomedical Engineering, National Taiwan Univ., Taiwan; 3Graduate Inst. of Biomedical Electronics and Bioinformations, National Taiwan Univ., Taiwan; 4Inst. of Physics and Research Center for Applied Sciences, Academia Sinica, Taiwan; 5Inst. of Astronomy and Astrophysics Sinica, Academia Sinica, Taiwan. We demonstrate an in vivo T-ray mammography for early breast cancer detection in an animal model. Compared to the sensitivity of X-ray mammography(Volume: 4.22mm3),T-ray achieved much earlier cancer detection(Volume: 0.5mm3).

CThT5 • 15:45

LED-based CO₂Sensor for Balloon Deployment, David Sonnenfroh¹, Krishnan Parameswaran¹; ¹Physical Sciences Inc., USA. We are developing a sensor for monitoring ambient CO₂ from unmanned aircraft and balloons. The sensor consists of a mid-IR LED coupled with a high dynamic range gated integrator. The measurement precision is 0.4 ppm vat 30 seconds.

CThT6 • 16:00

Monitoring of atmospheric ammonia in the greater Houston area using a 10.4 µm externalcavity quantum cascade laser, Rafal Lewicki¹, Longwen Gong³, Robert Griffin², Timothy Day³, Frank K. Tittel¹; ¹Electrical and Computer Engineering, Rice Univ., USA; ³Civil and Environmental Engineering, Rice Univ., USA; ³Daylight Solutions Inc., USA. Amplitude modulated photo-acoustic spectroscopy using a 10.4 µm EC-QCL source, targeting the NH₃ absorption line at 965.35 cm⁻¹, resulted in a sub-ppb ammonia detection limit. Atmospheric ammonia concentration levels from our study will be reported.

CThU6 • 15:45

Single-Frequency Photonic Bandgap Fiber Amplification, Akira Shirakawa', Meishin Chen', Yoshiaki Yamahara', Ken-ichi Ueda', Christina B. Olausson', Jens K. Lyngso', Jes Broeng'; Ilnst. for Laser Science, Univ. of Electro-Communications, Japan; ²NKT Photonics A/S, Denmark. Single-frequency operation in an ytterbium-doped photonic bandgap fiber amplifier is presented for the first time. 16W, 1178nm narrow linewidth radiation, free from amplified spontaneous emission and stimulated Brillouin scattering, was obtained.

CThU7 • 16:00

High power tandem pumped photonic crystal fiber amplifier, Christian Wirth¹, Oliver Schmidt¹, Thomas Schreiber¹, Ramona Eberhardt¹, Andreas Tünnermann¹,¹Fraunhofer IOF Jena, Germany. We report on a photonic crystal fiber amplifier tandem pumped by an industrial style thin-disk laser. Brightness enhancement with an output power of 1 kW and a slope of 74% has been obtained.

CThV6 • 15:45

Real-Time Line Projection for Fast Terahertz Computed Tomography, Emmanuel Abraham¹, Yoshiyuki Oghi², Tsutomu Araki², Takeshi Yasu²⁻²; ¹Centre de Physique Moléculaire Optique et Hertzienne, Bordeaux Univ, France; ²Graduate School of Engineering Science, Osaka Univ, Japan; ¹Inst. of Technology and Science, Univ. of Tokushima, Japan. We demonstrated fast terahertz computed tomography by use of real-time line projection of a terahertz beam. Cross-sectional images of selected samples have been measured in only a few seconds.

CThV7 • 16:00

Single-pixel coherent diffraction imaging with THz waves, Kang Hee Lee¹, Jaewook Ahn¹; ¹Physics, KAIST, Republic of Korea. We propose and demonstrate single-pixel coherent diffraction imaging with ultrafast THz waves, whereby all the spatial frequency components processed by a spatial phase retarder are simultaneously measured by a fixed-location single-pixel detector.

16:15–16:45 Coffee Break, 300 Level Lobby

Room 327

CLEO: QELS Fundamental Science

QThL • Positioning, Coupling and Focusing in Nanophotonic Systems—Continued

QThL5 • 15:30

Nanofocusing in Nonlinear Plasmonic Tapered Waveguides, Artur Davoyan¹, Ilya V. Shadrivov¹, Alexander Zharov², Dmitri Gramotnev³, Yuri S. Kivshar¹, ¹Nonlinear Physics Centre, Australian National Univ, Australia; ²Inst. for Physics of Microstructures, Russian Federation; ³Nanophotonics, GPO Box 786, Australia. We study propagation of surface plasmon polaritons in a nonlinear tapered slot waveguide and demonstrate taper-induced plasmon nanofocusing and the formation of a plasmon soliton.

QThL6 • 15:45

Slow-light enhanced absorption switches in metal-dielectric-metal plasmonic waveguides, Changjun Min', Georgios Veronis'; 'Louisiana State Univ., USA. We introduce slow-light enhanced absorption switches in subwavelength metaldielectric-metal plasmonic waveguides. Both decent modulation depth and moderate insertion loss can be achieved in such switches by small induced changes in refractive index.

QThL7 • 16:00

Deterministic Nano-manipulation of Single Photon Sources for Integration, Chad Ropp¹, Roland Probst², Zachary Cummins³, Rakesh Kumar⁴, Sijia Qin⁵, John T. Fourkas⁵, Srinivasa R. Raghavan,⁴, Benjamin Shapiro³, Edo Waks¹; ¹Dept. of Electrical and Computer Engineering, Univ. of Maryland, USA; ²Dept. of Aerospace Engineering, Univ. of Maryland, USA; ³Fischell Dept. of Bio-Engineering, Univ. of Maryland, USA; ⁴Dept. of Chemical and Biomolecular Engineering, Univ. of Maryland, USA; 5Dept. of Chemistry and Biochemistry, Univ. of Maryland, USA. Preselected single photon sources are positioned and immobilized to nanometer precision using flow control and local polymerization. This technique can be useful for integration of single photon sources within nanophotonic structures.

Room 336

CLEO: Science & Innovations

CThW • Advances in Biological Microscopy—Continued

CThW5 • 15:45

CThW6 • 16:00

are discussed.

Contrast Enhancement by Multi-Pass Phase-

Conjugation Microscopy, Nicolas C. Pégard¹, Ja-

son W. Fleischer¹; ¹Electrical Engineering, Princeton

Univ., USA. We demonstrate a non-invasive bright

field imaging technique that optically enhances

contrast for any weakly absorbing object. Results

are shown on microscopic biomaterial. All-optical

image processing and other filtering capabilities

Efficient schemes for adaptive optics in highresolution microscopy, Anisha Thayil¹, Alexander Jesacher¹, Martin Booth¹; ¹Dept of Engineering Science, Univ. of Oxford, UK. Aberrations affect image quality in high-resolution microscopes. We develop efficient adaptive optics schemes to correct aberrations in confocal and multiphoton microscopes. Image resolution and contrast is improved with minimal specimen exposure.

CLEO: QELS Fundamental Science

QThM • Quantum Optics in Cavities and Waveguides— Continued

QThM5 • 15:30

Ultra-High Finesse, Low Mode Volume Fabry-Perot Microcavity, Andreas Muller^{1,3}, Edward B. Flagg¹, John Lawall², Glenn Solomon^{1,2}, David Gershoni^{1,4}, ¹Joint Quantum Inst., National Inst. of Standards and Technology and Univ. of Maryland, USA; ²Atomic Physics Division, National Inst. of Standards and Technology, USA; ³Univ. of South Florida, USA; ⁴Physics Dept., Technion, Israel. We construct microcavities comprising ultralow-loss micromirrors fabricated by laser ablation and reflective coatings. With quality factors of 3.3e6 and finesses of 1.5e5, strong coupling or lasing with a single quantum emitter may be achieved.

QThM6 • 15:45

Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide, Ranojoy Bose^{1,2}, Deepak Sridharan^{1,2}, Edo Waks^{1,2}, Glenn Solomon², ¹Electrical Engineering, Univ. of Maryland, USA. We observe strong coupling in a waveguide-coupled photonic crystal-quantum dot system through a modification in the transmission spectrum of resonant light through the waveguide.

QThM7 • 16:00

Photon correlations in multi-cavity nonlinear systems, Dario Gerace¹, Hakan E. Tureci², Sara Ferretti¹, Lucio C. Andreani¹, Atac Imamoglu³, Vittorio Giovannetti¹, Rosario Fazio¹; ¹Dept. of Physics "A. Volta", Univ. of Pavia, Italy; ²Electrical Engineering, Princeton Univ., USA; ³Inst. of Quantum Electronics, ETH Zurich, Switzerland; ⁴Scuola Normale Superiore, Italy. Second-order photon correlation measurements are established not only as a probe of single-photon nonlinear behaviour of a single cavity, but as an effective probe of the out-of-equilibrium manybody state in multiple tunnel-coupled nonlinear cavities.

Room 338

CLEO: Science & Innovations

CThX • Fiber Transmission— Continued

CThX5 • 15:30 Invited

Demonstration of 10-40-Gbaud Baud-Rate-Tunable Optical Generation of 16-QAM from a QPSK Signal Using a Variable DGD Element, Zahra Bakhtiari', Jian Wang', Xiaoxia Wu', Jeng-Yuan Yang', Scott R. Nuccio, Robert Hellwarth', Alan E. Willner'; 'Univ. of Southern California, USA. We experimentally demonstrate a tunable optical generation of up to 40-Gbaud 16-QAM from a QPSK signal using a variable DGD belement based on vector addition between two orthogonal polarization states of the input QPSK signal.

CThX6 • 16:00

Radiation-driven phase drift in stochastic nonlinear Schrödinger equations, Daniel Cargilf, Richard O. Moore², Colin J. McKinstrie¹; 'Bell Laboratories, Alcatel-Lucent, USA; 'Mathematical Sciences, NJIT, USA. Soliton perturbation theory predicts an incorrect phase distribution for solitons of stochastically-driven nonlinear Schrödinger equations. We propose a simple variational model that accounts for radiation and produces the correct phase evolution.

16:15–16:45 Coffee Break, 300 Level Lobby

QThN • Quantum Photonics— Continued

QThN4 • 15:30

Generation and Verification of Traveling-wave Phase-sensitive Eigenmodes of an Optical Parametric Amplifier, Amar Bhagwat', Gideon Alon', Oo-Kaw Lim', Chao-Hsiang Chen', Prem Kumar', Muthiah Annamalai', Michael Vasilyev'; 'EECS Dept., Northwestern Univ., USA; 'Dept.of Electrical Engineering, Univ. of Texas at Arlington, USA. We investigate the eigenmodes of a traveling-wave phase-sensitive optical parametric amplifier. We observe gain (deamplification) of 11.4 dB (-7.9 dB) for a Laguerre-Gaussian LG₀₀ mode with >95% overlap with the fundamental eigenmode.

QThN5 • 15:45

Improvement of Image Resolution beyond Classical Limit by Phase-sensitive Optical Parametric Amplifier, Zun Huang', Douglas C. French?, Igor Jovanovic², Hsueh-Yuan Pao³; ¹ECE, Purdue Univ., USA; ²Mechanical and Nuclear Engineering, Pennsylvania State Univ., USA; ³Lawrence Livermore National Lab, USA. When an optical parametric amplifier (OPA) operated as a phasesensitive amplifier (OPA) is used for point source imaging, the angular resolution improvement can defeat the classical Rayleigh limit, and approach the de Broglie resolution.

QThN6 • 16:00

Single-Photon Tunneling Delay in a Nematic Liquid-Crystal Frustrated-Total-Internal-Reflection Structure, George M. Gehring¹, Andreas C. Liapis¹, Svetlana G. Lukishova², Robert W. Boyd¹⁻³, ¹Optics, Univ. of Rochester, USA; ¹Lab for Laser Energetics, Univ. of Rochester, USA; ³Physics, Univ. of Ottawa, Canada. We present a new theoretical treatment of photon tunneling delay in frustrated total internal reflection based on a dwell-time interpretation of the Hartman effect, as well as preliminary experimental measurements of single-photon delay. QThO • Fundamental Topics in Quantum Science—Continued

QTh05 • 15:30 Invited

OThO6 • 16:00

Quasiprobability representations of quantumness, Werner Vogel¹, Thomas Kiesel¹, Jan Sperling¹; ¹Physik, Universitaet Rostock, Germany. Quasiprobability representations of quantumness are developed, which include entanglement and spacetime dependent field correlations. General quantum effects are visualized by negativities of regular functions being accessible in experiments.

CLEO: Science & Innovations

CThY • Microwave Photonics— Continued

CThY5 • 15:30

Analysis of Spur-Free Dynamic Range of a Semiconductor Resonant Cavity Linear Interferometric Intensity Modulator, Nazanin Hoghooghi¹, Peter J. Delfyett¹; ¹CREOL, College of Optics and Photonics, Univ. of Centeral Florida, USA. Numerical simulation of spur-free dynamic range (SFDR) of an injection locked semiconductor resonant cavity interferometric intensity modulator is presented. Theoretically calculated values are in good agreement with experimental results.

CThY6 • 15:45

10GHz Waveguide Interleaved Femtosecond Pulse Train, Michelle Y. Sander¹, Hyunil Byun¹, Marcus Dahlem¹, David Chao¹, Ali R. Motamedi¹, Gale Petrich¹, Leslie Kolodziejski¹, Sergev Frolov², Hong Hao², Joseph Shmulovich², Erich P. Ippen¹, Franz X. Kaertner¹; ¹Massachusetts Inst. of Technology, USA; ²CyOptics, Inc., USA. We demonstrate a 10GHz fs-pulse train by external repetition rate multiplication in four phasetunable Mach-Zehnder interleavers implemented in planar waveguide technology. A minimum RF suppression ratio of -27dB can be achieved with thermal tuning.

CThY7 • 16:00

Integrated optical phase locked loop, Amir H. Nejadmalayeri¹, Hyunil Byun¹, Jungwon Kim¹, Douglas C. Trotter², Christopher DeRose², Anthony L. Lentine², William A. Zortman², Michael R. Watts¹², Franz X. Kaertner¹; IRLE, MIT, USA; ²Sandia National Laboratories, USA. A silicon photonics based integrated optical phase locked loop is utilized to synchronize a 10.2 GHz voltage controlled oscillator with a 509 MHz mode locked laser, achieving 32 fs integrated jitter over 300 kHz bandwidth.

16:15–16:45 Coffee Break, 300 Level Lobby

Extracting an entanglement signature from only

classical mutual information, David J. Starling¹,

John C. Howell1; 1Univ. of Rochester, USA. We use

classical mutual information to characterize two

photons measured in three mutually unbiased bas-

es. We theoretically and experimentally compare

entangled and separable states and find a bound

on the information capacity of the pair.

NOTES	

16:45-18:15

QThP • Hyperbolic and **Anistropic Metamaterial** Mikhail Noginov, Norfolk State

Univ., USA, Presider

QThP1 • 16:45

Optical Devices Based on Cylindrically Anisotropic Metamaterials, Huikan Liu¹, Kevin J. Webb¹; Purdue Univ., USA. By exploiting resonance cones inside cylindrically anisotropic materials, we present two optical devices, a multiplexer based on the dispersive properties of a metal-insulator stack metamaterial, and a far-field bilayer subwavelength imaging system.

QThP2 • 17:00

Transverse electro-magnetic modes in apertures filled with an extreme anisotropic meta-material, Peter B. Catrysse¹, Shanhui Fan¹; ¹Edward L. Ginzton Lab, Stanford Univ., USA. We demonstrate that in simply connected apertures containing a meta-material with extreme anisotropy all modes become purely transverse electro-magnetic, dispersion-free, and have no cutoff. We show a meta-material design using existing materials.

OThP3 • 17:15

Broadband Engineering of Quantum Dot Spontaneous Emission Using Flat Dispersion Metamaterial, Harish Krishnamoorthy^{1,2}, Vinod Menon^{1,2}, Zubin Jacob³, Evgenii Narimanov⁴, Ilona Kretzschmar⁵; ¹Dept. of Physics, Queens College of the City Univ. of New York (CUNY), USA; 2Dept. of Physics, Graduate School and Univ. Center of the City Univ. of New York (CUNY), USA; 3Dept. of Electrical and Computer Engineering, Univ. of Alberta, Canada; *School of Electrical and Computer Engineering, Purdue Univ., USA; 5Dept. of Chemical Engineering, City College of the City Univ. of New York (CUNY), USA. We report the broadband (~ 25 nm) control of radiative decay rate of colloidal quantum dots by exploiting the flat dispersion of a one-dimensional nonmagnetic metamaterial structure.

QThP4 • 17:30

Dipole Radiation Near Hyperbolic Metamaterials: Applicability of Effective Medium Approximation, Omar Kidwai¹, Sergei V. Zhukovsky¹, J. E. Sipe¹; ¹Dept. of Physics, Univ. of Toronto, Canada. Radiation rate of a dipole in close proximity to a hyperbolic metamaterial is theoretically investigated. Homogenized effective medium is found to overestimate the Purcell factor compared to real metal-dielectric subwavelength multilayers.

Room 321-323

CThZ • Novel Waveguides and

Carl Poitras, Cornell Univ., USA,

Smooth and ultra-precise silicon nanowires

fabricated by conventional optical lithography,

Robert Palmer¹, Luca Alloatti¹, Dietmar Korn¹,

Markus Moosmann^{2,3}, Klaus Huska⁴, Uli Lemmer⁴,

Dagmar Gerthsen⁵, Thomas Schimmel^{2,3}, Wolfgang

Freude¹, Christian Koos¹, Juerg Leuthold¹; ¹Inst. of

Photonics and Quantum Electronics, Karlsruhe Inst.

of Technology, Germany; ²Inst. of Nanotechnology,

Karlsruhe Inst. of Technology, Germany; 3Applied

Physics, Karlsruhe Inst. of Technology, Germany; ⁴Light Technology Inst., Karlsruhe Inst. of Technology, Germany; ⁵Lab for Electron Microscopy, Karlsruhe Inst. of Technology, Germany. We demonstrate that nanowire waveguides with nanoscale precision and ultra-smooth sidewalls can be fabricated with conventional optical lithography. The presented fabrication scheme exploits the combination of a special staggered lithographic design and preferential wet etching.

Nanoscale oxidation of silicon microring resona-

tors, Yiran Shen¹, Shayan Mookherjea¹; ¹Electrical

ad Computer Engineering, Univ. of California San

Diego, USA. The resonance frequency of a silicon

microring was permanently blue-shifted with 1.2

GHz resolution over more than 350 GHz, a full

free-spectral-range, by electrochemically chang-

ing the waveguide core (silicon) to the cladding

Vertical Chip-to-Chip Coupling Using Silicon

Strip Waveguide Cantilever Couplers, Peng Sun1,

Ronald M. Reano¹; ¹Electrical and Computer Engi-

neering, Ohio State Univ., USA. We demonstrate

vertical chip-to-chip light coupling using silicon

strip waveguide cantilever couplers. A chip-to-chip

coupling loss of 2.5 dB per connection is measured

for TE polarization at 1550 nm wavelength.

16:45-18:30

Resonators

CThZ1 • 16:45

CThZ2 • 17:00

(oxide) material.

CThZ3 • 17:15

Presider

Room 324-326

CLEO: Science & Innovations

16:45-18:30 CThAA • Mode-Locked Solid State Lasers

and JILA, Univ. of Colorado, USA, Presider

CThAA1 • 16:45 Invited

Carbon Nanotube Saturable Absorbers for Bulk Solid-State Laser Mode-Locking, Fabian Rotermund¹; ¹Division of Energy Systems Research, Ajou Univ., Republic of Korea. Single-walled carbon nanotube-based saturable absorbers have been successfully applied for passive mode-locking bulk solid-state lasers operating in the spectral range between 800 nm and 2 $\mu m.$ In this talk, the recent progress will be presented.

16:45-18:15 CThBB • CLEO Symposium on **Broadband Spectroscopy: New Techniques and Sources III:** Sources Ian Coddington, NIST, USA,

CThBB1 • 16:45 Invited

Presider

Frequency Divide-and-Conquer Approach to Producing Ultra-broadband Mid-IR Combs, Konstantin Vodopyanov¹; ¹Stanford Univ., USA. We introduce a new approach for producing mid-IR frequency combs using degenerate sync-pumped optical parametric oscillation. Octave-wide frequency combs centered at 3.1µm, frequencyand phase-locked to the pump fiber laser, were demonstrated.

CThAA2 • 17:15 Femtosecond Pulses Generation from Chromium-doped Cunyite Laser, Michelet Jeanty², Vladimir Kartazaev1, Mikhail Sharonov1, Alexei Bykov1, Robert Alfano1,2; 1Physics Dept., City College of New York, USA; ²Electrical Engineering, City College of New York, USA. Femtosecond pulses as short as

365 fs were generated from a Cr4+: Cunvite laser

using a combination of a broadband semiconduc-

tor saturable absorber mirror (SESAM), chirped

mirrors, and passive mode locking.

CThBB2 • 17:15 ZBLAN supercontinuum generation - detailed

comparison between measurement and simulation, Christian Agger¹, Christian Petersen³, Sune Dupont³, Henrik Steffensen¹, Jens Kristian Lyngsø², Carsten Thomsen², Søren Keiding³, Ole Bang¹; ¹DTU Fotonik, Dept. of Photonics Engineering, Technical Univ. of Denmark, Denmark; 2NKT Photonics, Denmark; ³Dept. of Chemistry, Aarhus Univ., Denmark. We present a detailed comparison between modeling and experiments on supercontinuum generation in a ZBLAN fiber. Good agreement is obtained when pumping both in the normal and anomalous dispersion regimes.

CThZ4 • 17:30

Hollow-Core-Waveguides using Adiabatically Chirped High-Contrast-Gratings for a >10× Loss Reduction, Yang Yue¹, Lin Zhang¹, Xue Wang¹, Hao Huang¹, Weijian Yang², James Ferrara², Vadim Karagodsky², Christopher Chase², Moshe Tur³, Connie J. Chang-Hasnain², Alan E. Willner¹; ¹1. Dept. of Electrical Engineering, Univ. of Southern California, USA; ²Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA; 3School of Electrical Engineering, Tel-Aviv Univ., Israel. Chirped high-contrast-grating hollow-core waveguide demonstrates a >10× loss reduction. Simulation shows that a propagation loss as low as 0.04 dB/ cm can be achieved with a nonlinear coefficient on the order of 10⁻⁵ /W/m.

CThAA3 • 17:30

Picosecond Tunable Mode-Locking of a Cr²⁺ :ZnSe Laser with a Frequency-Doubling Nonlinear Mirror, Jean-Baptiste Dherbecourt¹, Adrien Denoeud¹, Jean-Michel Melkonian¹, Myriam Raybaut¹, Antoine Godard¹, Michel Lefebvre¹, Emmanuel Rosencher¹; ¹ONERA - the French Aerospace Lab, France. We report on a nonlinear mirror based on a fan-out PPLN crystal that enables tunable mode-locking of a Cr2+:ZnSe laser in the picosecond regime. More than 100 nm tunability is demonstrated.

CThBB3 • 17:30

3-octave high-energy supercontinuum from visible to mid-IR, Francisco Silva¹, Dane R. Austin¹, Arnaud Couairon², Philip K. Bates¹, Jens Biegert^{1,3}; ¹ICFO-Institut de Ciencies Fotioniques, Spain; ²Centre de Physique Theorique, Ecole Polytechnique, CNRS UMR, France; 3ICREA-Institució Catalana de Recerca i Estudis Avançats, Spain. We demonstrate a 3-octave supercontinuum with spectral density ranging from 10 pJ/nm to 25 nJ/nm over 500 nm to above 4.5 µm, generated through filamentation in bulk by CEP-stable 30 fs pulses centered at 2.1 μm.

Henry Kapteyn, Dept. of Physics

CThEE • THz Spectroscopy

State Univ., USA, Presider

Daniel Grischkowsky, Oklahoma

CLEO: Science & Innovations

CThDD • Pulsed Fiber Lasers

John Minelly, Coherent, Inc., USA,

16:45-18:30

CThCC • **Gas Phase Sensing II** Sukesh Roy, Spectral Energies, LLC_USA_Presider

LLC, USA, Presider

CThCC1 • 16:45 Invited

Laser Induced Fluorescence for Quantitative Temperature and Concentration Measurements in Internal Combustion Engines, Frank Beyrau¹; ¹Mechanical Engineering, Imperial College London, UK. Laser induced fluorescence is used to acquire quantitative temperature and concentration images from optical engines. The quantification strategy using two wavelengths excitation, calibration results and exemplary results are presented.

CThDD1 • 16:45

16:45-18:30

Presider

Coherent Ultrashort Pulse Generation from Incoherent Light by Trapped Pulse Amplification in Birefringent Fibers, Eiji Shiraki¹, Norihiko Nishizawa¹; ¹Electrical Engineering and Computer Science, Nagoya Univ., Japan. 48 pJ, 413 fs, chirpfree, sech²-shaped, coherent, ultrashort pulse was generated from an incoherent light of super luminescent diode using pulse trapping and amplification by an ultrashort soliton pulse in a 400 m-long birefringent fiber.

CThEE1 • 16:45

16:45-18:30

High Resolution THz-TDS using Flare Coupled Metal Parallel-Plate Waveguides, Michael Theuer', S. Sree Harsha², Alisha J. Shutler², Rene Beigang¹, Daniel R. Grischkowsky²; ¹Dept. of Physics, Univ. of Kaiserslautern, Germany; ²Dept. of Electrical Engineering, Oklahoma State Univ,, USA. We report on the microwave approach of coupling terahertz radiation into metal parallelplate waveguides. The coupling ratio is compared to the quasi-optic coupling using Si lenses. High resolution THz spectroscopy of crystalline films is presented

CThDD2 • 17:00

High-energy temporally-shaped nanosecondpulse MOPA based on Ytterbium-doped single-mode microstructured flexible fiber, Laure Lago^{1,2}, Damien Bigourd¹, Arnaud Mussot², Marc Douay², Emmanuel Hugonnot¹; CEA, France; ²Université des Sciences et Technologies de Lille -PhLAM/IRCICA, France. We present a versatile MOPA system at 1053nm in the few nanoseconds regime. Thanks to temporal shaping, more than 1.5 mJ pulse energy at 1 kHz is obtained in a singlemode 40 µm core flexible fiber.

CThDD3 • 17:15

Tunable nanosecond ytterbium-doped masteroscillator fiber amplifier system, Romain Royon', Jerome Lhermite', Guillaume Machinet', Laurent Sarger', Eric Cormier', 'Laboratoire CELIA, France; 'CCPMOH, France. We report a sub-nanosecond fiber laser tunable between 1040-1100 nm and delivering 5 W average output power corresponding to 0,25 mJ energy per pulse and peak power of 280 kW.

CThEE2 • 17:00

Nonlinear Optical Response of Graphene to an Ultrashort Intense Terahertz Pulse, Kenichi L. Ishikawa'; 'Photon Science Center, Graduate School of Engineering, The Univ. of Tokyo, Japan. The optical response of graphene to an ultrashort intense terahertz pulse is described by the extended optical Bloch equations. The interplay of intraband and interband dynamics is important in the nonlinear optical response.

CThEE3 • 17:15

Terahertz Spectroscopy of Ni-Ti Alloy Thin Films, Andrew D. Jameson¹, Joseph L. Tomaino¹, Joshua Kevek¹, Meghan Hemphill-Johnston², Justin Ong², Milo D. Koretsky², Ethan D. Minot¹, Yun-Shik Lee¹; Physics, Oregon State Univ., USA; 'School of Chemical, Biological & Environmental Engineering, Oregon State Univ., USA. Using THz spectroscopy, we obtained the resistivity of Ni-Ti alloy thin-films as a function of Ti concentration. The resistivity sharply increases near the phase transition boundaries, Ti concentrations of 22%, 44% and 62%.

CThCC2 • 17:15

CH Fluorescence Imaging at High Repetition Rates, Joseph D. Miller¹, Sascha R. Engel²⁻³, Terrence R. Meyer^{1,3}, Thomas Seeger^{3,4}, Alfred Leipertz^{2,3}; ¹Mechanical Engineering, Iowa State Univ., USA; ²Engineering Thermodynamics, Univ. of Erlangen-Nuremberg, Germany; ⁴SAOT - Erlangen Graduate School in Advanced Optical Technologies, Univ. of Erlangen-Nuremberg, Germany; ⁴Engineering Thermodynamics, Univ. of Siegen, Germany. We introduce a novel strategy to acquire CH PLIF images at high repetition rates. A multi-mode pumped optical parametric oscillator (OPO) which produces signal at 431 nm is used for direct excitation of the CH radical.

CThCC3 • 17:30

Local Composition and Temperature Determination in Laminar Flames by Laser-Induced Plasma Diagnostics, Johannes Kiefer^{1,2}, Johannes W. Troeger^{3,2}, Thomas Seeger^{3,2}, Alfred Leipertz², Zhongshan Li⁴, Marcus Alden⁴, ¹School of Engineering, Univ. of Aberdeen, UK; 2Inst. of Engineering Thermodynamics and Erlangen Graduate School in Advanced Optical Technologies, Univ. Erlangen-Nuremberg, Germany; 3Inst. of Engineering Thermodynamics, Univ. Siegen, Germany; 4Division of Combustion Physics, Lund Univ., Sweden. We utilize laser-induced breakdown spectroscopy for measuring mixture composition and temperature in flames. Spectroscopy of the plasma emission yields concentration information, while temperature is derived from the breakdown threshold pulse energy

CThDD4 • 17:30

A Tunable Fiber Laser For The 2µm Wavelength Range Based on Narrow Band Optical Parametric Amplification And An Intra-Cavity Thulium Doped Fiber Active Filter, Alexander Gershikov¹, Jakov Lasri², Sacks Zachary³, Gadi Eisenstein¹; ¹Electrical Engineering, The Technion - Israel Inst. of Technology, Israel; ²OptiSiv Ltd, Israel; ³Elbit Systems, Israel. We describe a tunable fiber laser operating at 2µm and beyond based on narrow band parametric amplification and a Tm doped intracavity fiber filter. Nanosecond pulses at ~1MHz with a 20W peak power are demonstrated.

CThEE4 • 17:30

Terahertz Imaging and Spectroscopy of Large-Area Single-Layer Graphene, Joseph L. Tomaino', Andrew D. Jameson', Joshua Kevek', Michael J. Paul', Arend M. van der Zande', Robert A. Barton', Ethan D. Minot', Paul L. McEuen^{2,4}, Yun-Shik Lee', 'Physics, Oregon State Univ, USA; 'Lab of Atomic and Solid-State Physics, Cornell Univ, USA; 'School of Applied and Engineering Physics, Cornell Univ, USA; 'Kavli Inst. at Cornell for Nanoscale Science, Cornell Univ, USA. THz imaging and spectroscopy using broadband THz pulses map out the THz carrier dynamics of a large-area graphene-on-Si sample, showing that the local sheet-conductivity varies across the sample from $\sigma_c = 1.7x10^3 to 2.4x10^3 \Omega^1$.

16:45–18:30 QThQ • Plasmon Optics *Harry Atwater, Caltech, USA, Presider*

QThQ1 • 16:45 Invited Off-axis and multi-directional plasmonic lenses, Romain Blanchard¹, Jean-Philippe Tetienne¹, Nanfang Yu¹, Patrice Genevet¹, Mikhail A. Kats¹, Jonathan Fan¹, Tadataka Edamura², Shinichi Furuta², Masamichi Yamanishi², Federico Capasso¹; ¹School of Engineering and Applied Sciences, Harvard Univ, USA; ²Research Lab, Hamamatsu Photonics K. K., Japan. We introduce a new class of plasmonic lenses generating one or several free-space beams in arbitrary directions from a point source of surface waves and demonstrate such plasmonic lenses on the facet of semiconductor lasers.

QThQ2 • 17:15

Gold Nanoslit Lenses, Satoshi Ishii', Alexander Kildishev¹, Vladimir Shalaev¹, Kuo-Ping Chen¹, Vladimir P. Drachev¹; ¹Purdue Univ, USA. We experimentally demonstrate the focusing properties of arrays of parallel subwavelength-wide nanoslits in a gold film. The lenses are designed to focus either TM- or TEpolarized light and diverge the light of the orthogonal polarization.

QThQ3 • 17:30

Tailoring Polarization State of Spoof Surface Plasmons with Chiral Metal Surfaces, Alexander B. Khanikaev¹, Hossein Mousavi¹, Burton Neuner III¹, Genmady Shvets¹; ¹Physics, The Univ. of Texas at Austin, USA. Spoof surface modes with engineered polarization state are predicted to exist at the structured conducting surfaces with planar chirality. We confirm experimentally that excitation of these modes by incident light results in polarization rotation. **Room 336**

CLEO: Science & Innovations

16:45–18:30 CThFF • Filamentation *Gary Catella, Gooch and Housego, USA, Presider*

CThFF1 • 16:45

Triggering, guiding and deviation of long spark discharges with femtosecond laser filament, Benjamin Forestier', Aurélien Houard', Magali Durand', Yves-Bernard Andre', Bernard Prade', André Mysyrowicz', Marc Le Nevé', Jean-Claude De Miscault', Ivan Revel', Denis Chapuis'; 'LOA, ENSTA ParisTech, Ecole Polytechnique, CNRS, France; ²CILAS, France; ³EADS France Innovation Works, France. We show for the first time that filaments are able to divert electric discharges from their normal path. Comparison between negative and positive discharge polarities reveals important differences in the guiding mechanism.

CThFF2 • 17:00

Characterization of laser-induced air plasmas via third harmonic generation, Cristina Rodriguez!, Zhenwei Wang!, Zhanliang Sun!, Wolfgang Rudolph!; 'Physics and Astronomy, Univ. of New Mexico, USA. Third harmonic generation by a femtosecond probe intersecting a laser-induced air plasma is measured and a general model developed to describe such signal. The electron density distribution and nonlinear coefficient of the plasma are determined.

CThFF3 • 17:15

Kilometer range filamentation: effects of filaments on transparent and non-transparent materials at long distances, Magali Durand^{1,2}, Aurélien Houard¹, Bernard Prade¹, André Mysyrowicz¹, Anne Durécu², Didier Fleury², Bernard Moreau², Olivier Vasseur², Harmut Borchert³, Karsten Diener³, Rüdiger Schmitt³, Françis Théberge⁴, Marc Chateauneuf⁴, Jacques Dubois⁴; ¹Laboratoire d'Optique Appliquée, ENSTA ParisTech, Ecole Polytechnique, CNRS, France; ²Département d'Optique Théorique et Appliquée, ONERA, France; ³Institut franco-allemand de recherches de Saint-Louis, France; ⁴Defence Research and Development (DRDC), Canada. We observe filamentation of a Terawatt laser beam after 1 km propagation in atmosphere. The white light generated was strong enough to saturate a CCD camera and damages on material were characterised.

CThFF4 • 17:30

High-Order Surface Harmonics Generated from Nanometer-Thick Foil Targets using a 40 TW Laser, Crina A. Popovici¹, Sylvain Fourmaux¹, Ludovic Lecherbourg², Sebastien Buffechoux¹, Semen Gnedyuk¹, Francois Vidal¹, Jean-Claude Kieffer¹, Robin Marjoribanks², Tsuneyuki Ozaki¹; ¹EMT, INRS, Canada; ²Dept. of Physics, Univ. of Toronto, Canada. We study the effect of energy of the pump laser on high-order harmonic generation (HHG) from foil targets as thin as 30 nm. We see that thinner targets generate harmonics with less background emission.

Room 337

CLEO: QELS-Fundamental Science

16:45–18:30 QThR • Quantum Optics with Quantum Dots Edo Waks, Univ. of Maryland, USA, Presider

QThR1 • 16:45

Optically induced rotation of a quantum dot exciton spin, Eilon Poem¹, Yaron Kodriano¹, Yael Benny¹, Stanislav Khatsevich¹, Oded Kenneth¹, Joseph Avron¹, David Gershoni¹; ¹rechnion, Israel. A polarized picosecond laser pulse, which couples the bright exciton states to biexciton resonant states, is used to manipulate the exciton spin. We directly demonstrate this novel knob in a picosecond time-resolved two pulses experiment.

QThR2 • 17:00

Strong Interaction between Quantum Dot Exciton Spin States and a Photonic Crystal Cavity, Hyochul Kim', Thomas C. Shen', Deepak Sridharan', Glenn Solomor², Edo Waks'; ¹ECE Dept., Univ. of Maryland, USA; ²National Inst. of Standards and Technology, USA. We apply a magnetic field to photonic crystal cavity devices with embedded Indium Arsenide (InAs) quantum dots (QDs), and demonstrate strong coupling between individual QD exciton spin states and a photonic crystal cavity.

QThR3 • 17:15

Off-resonant quantum dot-cavity interaction, Arka Majumdar¹, Erik Kim¹, Yiyang Gong¹, Andrei Faraon², Dirk Englund², Jelena Vuckovič¹, ¹Stanford Univ, USA; ²Hp Labs, USA; ³Columbia Univ, USA. Off -resonant quantum dot -cavity coupling is studied both experimentally and theoretically. A theoretical model is proposed to explain the observations.

QThR4 • 17:30

Intensity damping of Rabi-oscillations and renormalization of the Rabi frequency in InGaAs/GaAs quantum dots, Timothy M. Godden¹, Andrew J. Ramsay¹, Stephen J. Boyle¹, Erik M. Gauge², Ahsan Nazir³, Brendon Lovett²⁴, Mark Fox¹, Maurice Skolnick¹; ¹Physics and Astronomy, Univ. of Sheffield, UK; ²Dept. of Materials, Univ. of Oxford, UK; ³Chool of Engineering and Physical Sciences, Heriot-Watt Univ., UK. The source of intensity damping of Rabi-oscillations in quantum dots has long been in question. Here we identify acoustic phonons as the principal source of dephasing and demonstrate the re-normalization of the Rabi-frequency.

Room 338

CLEO: Science & Innovations

16:45–18:15 CThGG • Spatial Multiplexing and Crosstalk

René-Jean Essiambre, Bell Labs, Alcatel-Lucent, USA, Presider

CThGG1 • 16:45

Multiple-Input Multiple-Output with Predistortion and Signal Processing for Multimode Fiber Links, Kumar Appaiah¹, Sriram Vishwanath¹, Seth R. Bank¹; 'Electrical and Computer Engineering, The Univ. of Texas at Austin, USA. We demonstrate a multiple-input multiple-input multimode fiber optical link, where signal processing for dispersion compensation achieves a rate of 11.38 Gb/s over a 3 km fiber, exceeding the rated fiber bandwidthlength product by 15 times.

CThGG2 • 17:00

Propagation of Laguerre-Gaussian mode light through multi-core fiber at telecom wavelength, Yoshinari Awaji¹, Naoya Wada¹, Yasunori Toda², Tetsuya Hayashi³; 'National Inst. of information and communications technology, Japan; 'Hokkaido Univ, Japan; 'Sumitomo Electric Industries, Ltd., Japan. We observed phase preservation of Laguerre-Gaussian light after propagation through multi-core fiber (7-core). We showed the possibility of mode-division multiplexing transmission in principle. Denser core promises higher degree of multiplexing.

CThGG3 • 17:15 Invited

Ultrafast and High-Spectral-Density Optical Communications Systems, Masataka Nakazawa¹; 'Research Inst. of Electrical Communication, Tohoku Univ, Japan. Recent progress on ultrafast coherent optical transmission toward 1 Tbit/s is overviewed, with a special focus on 640 Gbaud OTDM, 512 QAM with > 10 bit/s/Hz spectral density, and ultrafast, spectral-efficient transmission with an OTDM-RZ/QAM scheme.

184

CLEO: Science

& Innovations

Brian Koch, Intel, USA, Presider

CThHH • Waveguides and

Passive Components

CLEO: QELS-Fundamental Science

16:45-18:30

QThS • Linear and Nonlinear Wave Propagation

Alexander Szameit, Technion Israel Inst. of Technology, Israel, Presider

QThS1 • 16:45

Abruptly autofocusing waves, Nikolaos K. Efremidis¹, Demetrios Christodoulides², Ioannis Chremmos³, Zhigang Cheri; 'Applied Mathematics, Univ. of Crete, Greece; ²CREOL/College of Optics, Univ. of Central Florida, USA; ³School of Electrical and Computer Engineering, National Technical Univ. of Athens, Greece; ⁴Dept. of Physics and Astronomy, San Francisco State Univ., USA. We introduce a new classes of waves that tend to autofocus in an abrupt fashion. These waves can be generated through the use of radially symmetric Airy waves.

QThS2 • 17:00

Demonstration of a Second-Order Nonlinear Silica Fiber Taper with Self-Assembled Organic Surface Layers, Chalongrat Daengngam', Matthias Hofmann², Zhiwen Liu³, Anbo Wang², Yong Xu², James R. Heflin¹; ¹Physics, Virginia Tech, USA; ²Electrical & Computer Engineering, Virginia Tech, USA; ³Electrical Engineering, Pennsylvania State Univ., USA. We present experimentally a novel technique to generate significant and thermodynamically stable second-order nonlinearity into a silica fiber taper by using nanoscale self-assembly of nonlinear molecules on a fiber surface.

QThS3 • 17:15

18-fold power reduction using Bragg gratingbased switch in highly-nonlinear bismuth-oxide fiber, Irina Kabakova', Dan Grobnic², Stephen Mihailov², C. Martijn de Sterke¹, Ben Eggleton'; 'Univ. of Sydney, Australia; ²Communications Research Centre Canada, Canada. We experimentally demonstrate a Bragg grating-based all-optical switch in a highly nonlinear Bi2O3 fiber. We achieve 18-fold power reduction for a 6.5 dB switching ratio compared with previous demonstrations in silica fibers. 16:45-18:30

QThT • Quantum Communication and Multipartite Entanglement *Timothy Ralph, Univ. of Queensland, Australia, Presider*

QThT1 • 16:45 Invited

Continuous Variable Quantum Communication and Computation, Ulrik L. Andersen¹, Ruifang Dong¹, Miroslav Jezek¹, Amine Laghaout¹, Mikael Lassen¹, Lars Madsen¹, Anders Tipsmark¹, ¹Physics, Technical Univ. of Denmark. Denmark. We use squeezed states of light to implement a robust continuous variable quantum key distribution scheme and an optical Hadamard gate based on coherent state qubits.

QThT2 • 17:15

Preparation and Local Manipulation of Photonic W States Using Expansion and Fusion Gates, Sahin K. Ozdemir^{1,2}, Toshiyuki Tashima¹, Takashi Yamamoto¹, Masato Koashi¹, Nobuyuki Imoto¹; ¹Osaka Univ, Japan; ²Washington Univ. in St. Louis, USA. We report experimental demonstration of an optical gate that increases the size of polarizationentangled W-states by accessing only one qubit, and discuss strategies of local expansion and fusion to prepare large scale W-state networks.

CThHH1 • 16:45

16:45-18:30

Low-loss Silicon-on-Diamond Optical Waveguides, Di Liang⁴, Marco Fiorentino¹, Shane T. Todd², Geza Kurczveil², Raymond G. Beausoleil¹, John E. Bowers²; ¹Intelligent Infrastructure Lab, HP Labs, USA; ²Dept. of Electrical and Computer Engineering, Univ. of California, USA. Low-loss optical rib waveguides (2.5 micron x 700 nm) have been fabricated on a silicon-on-diamond (SOD) substrate. 0.74 dB/cm propagation loss is measured. Benefits to heat dissipation for active photonic devices are studied.

CThHH2 • 17:00

Low-Loss Polysilicon Waveguides Suitable for Integration within a High-Volume Electronics Process, Jason S. Orcutt', Sanh D. Tang', Steve Kramer', Hanqing Li', Vladimir Stojanović, Rajeev J. Ram'; ¹Massachusetts Inst. of Technology, USA; ²Micron Technologies, USA. Polysilicon waveguides are fabricated in a 300 mm wafer process representative of a complete high-volume electronic memory process. 6.2 dB/cm end-of-line loss is measured for narrow waveguides with a confinement factor scaling of 5.1 cm⁻¹.

CThHH3 • 17:15

Suppression and control over the decay of a leaky mode through a transverse refractive index gradient, Yonatan Plotnik', Or Peleg', Nimrod Moiseyev', Mordechai Segev', 'physics, Technion - Israel Inst. of Technology, Israel, 'chemistry, Technion - Israel Inst. of Technology, Israel. We demonstrate that the decay of leaky modes can be reduced by orders of magnitude, and controlled in a robust fashion, using a transverse refractive index gradient.

QThS4 • 17:30

Sub-natural Raman linewidth and high power CW Raman-Stokes laser in hydrogen filled HC-PCF, Meshaal O. Alharbi¹², Anton Husakou¹³, Fetah Benabid'; ¹Dept. of Physics, Univ. of Bath, UK; ¹Dept. of Physics and Astronomy, King Saud Univ., Saudi Arabia; ³Max-Born-Inst. for Nonlinear Optics and Short Pulse Spectroscopy, Germany. We report on several tens of Watts CW Raman-Stokes in hydrogen gas with linewidth as low as 80 KHz. This represents a narrowing of the Raman-linewidth by a factor of more than 4 orders of magnitude.

QThT3 • 17:30

Layered Architectural Design with Photonic Qubit Topological Cluster State Computation, Bhaskar Roy Bardhan¹, Manish K. Gupta¹, Jonathan P. Dowling¹; ¹LSU, USA. We study the modular and layered framework to develop large scale quantum computer architecture with photonic qubits. A chip-based photonic module is integrated with the TCQC as depicted in [2] along with detailed analysis of resources.

CThHH4 • 17:30

Novel Three-dimensional Hollow-core Waveguide Using High-contrast Sub-wavelength Grating, Weijian Yang', James Ferrara', Karen Grutter', Anthony Yeh', Christopher Chase', Vadim Karagodsky', Devang Parekh', Yang Yue', Alan E. Willner², Ming Wu', Connie J. Chang-Hasnain'; 'Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, USA; 'Dept. of Electrical Engineering, Univ. of Southern California, USA. A novel hollow-core waveguide using high-contrast sub-wavelength grating (HCG) is experimentally demonstrated for the first time. The waveguide is formed by two HCG planar structures and shows both transverse and lateral light confinement.

QThP • Hyperbolic and Anistropic Metamaterial— Continued

OThP5 • 17:45

Spontaneous emission near hyperbolic metamaterials, Zubin Jacob¹, Igor Smolyaninov², Evgenii Narimanov3; 1Univ. of Alberta, Canada; 2Univ. of Maryland, USA; 3Purdue Univ., USA. We show that there is an infinite local-density-of-states in the near-field of a hyperbolic metamaterial. This leads to spontaneous emission into metamaterial resonance cones opening the route to quantumoptics with metamaterials.

QThP6 • 18:00

Effect of Metallic and Hyperbolic Metamaterial Surface on Electric and Magnetic Dipole Emission, Xingjie Ni¹, Gururaj V. Naik¹, Alexander V. Kildishev¹, Yuri A. Barnakov², Alexandra Boltasseva1.3, Vladimir Shalaev1; 1Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue Univ., USA; ²Center for Materials Research, Norfolk State Univ., USA; 3DTU Fotonik, Technical Univ. of Denmark, Denmark. Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces.

Room 321-323

CThZ • Novel Waveguides and

High Index Contrast Polymer Optical Wave-

guides, Asael adler¹, Dan M. Marom¹; ¹Applied

physics Dept., Hebrew Univ. of Jerusalem, Israel.

We present the design of passive optical devices

constructed with polymer platform, its fabrication

and characterization. PFCB and Cytop polymers

were chosen to offer low losses and high index

Characterization of Polymer Microtoroid

Resonators Fabricated by Two-Photon Stereo-

lithography Process, Jee Soo Chang^{1,2}, Seung Hoon

Lee¹, Yong Son¹, Prabhakaran Prem³, Kwang-Sup

Lee³, Namkyoo Park², Dong-Yol Yang¹, Bumki

Min1; 1KAIST, Republic of Korea; 2Seoul National

Univ., Republic of Korea; ³Hannam Univ., Republic

of Korea. We report on the fabrication and charac-

terization of high-Q microtoroid resonators made

of low-loss modified polymers by the two-photon

stereolithography. We found that resonators can be

fabricated in a high-speed process with maximum

Resonators—Continued

CTh75 • 17.45

contrast.

CThZ6 • 18:00

CLEO: Science & Innovations

CThAA • Mode-Locked Solid State Lasers—Continued

CThAA4 • 17:45

High power, 60MHz, cryogenically cooled, mode-locked, Yb:YAG oscillator, Michael Gerrity¹, Susannah Brown¹, Tenio Popmintchev¹, Ming-Chang Chen¹, Stefan Witte¹, Margaret M. Murnane¹, Henry C. Kapteyn¹, Sterling Backus²; ¹Univ. of Colorado, USA; ²Kapteyn-Murnane Laboratories, USA. We demonstrate a 60MHz, cryogenically cooled, mode-locked Yb:YAG oscillator with up to 12W average output power. Mode-locking is achieved via a SESAM, an intracavity SHG crystal, and an iris near focus for spatial mode filtering.

CThAA5 • 18:00

Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy, Andy Steinmann¹, Bernd Metzger¹, Robin Hegenbarth¹, Harald Giessen¹; ¹4th Physics Inst. and Research Center SCOPE, Univ. of Stuttgart, Germany. We present a passively mode-locked two-crystal Yb:KGW oscillator delivering 7.4 W average power at a repetition rate of 41.7 MHz and 425 fs pulse duration and demonstrate the generation of high-power supercontinua in tapered fibers.

CThAA6 • 18:15

Efficient Gigahertz Femtosecond Yb:KGW Laser with 2.2-W Average Power Generates Octave-Spanning Supercontinuum, Selina Pekarek¹, Christian Fiebig², Katrin Paschke², Götz Erbert², Thomas Südmeyer¹, Ursula Keller¹; ¹Dept. of Physics, Inst. of Quantum Electronics, ETH Zürich, Switzerland; ²Ferdinand-Braun-Institut für Höchstfrequenztechnik, Germany. We present a 1-GHz Yb:KGW laser with 2.2-W average power and 38% optical- to-optical efficiency. The 290-fs pulses with 6.7-kW peak power generate an octave-spanning supercontinuum in a photoniccrystal-fiber.

Room 314

CThBB • CLEO Symposium on **Broadband Spectroscopy: New Techniques and Sources III:** Sources—Continued

CThBB4 • 17.45

Characterization of a difference-frequency based mid-infrared comb source, Tyler W. Neely¹, Todd Johnson¹, Scott Diddams¹; ¹NIST, USA. We characterize a broad bandwidth mid-IR comb source generated through difference frequency mixing of a Yb femtosecond fiber laser. The relationship between amplitude noise, timing jitter, and output power is explored.

CThBB5 • 18:00

Tunable Coherent Raman Soliton Generation with a Tm-Fiber System, lie liang¹, Axel Ruehl¹, Ingmar Hartl¹, Martin E. Fermann¹; ¹IMRA America, Inc., USA. We demonstrate wavelength tunable coherent Raman soliton generation in a Tm fiber amplifier seeded with a passively mode locked Tm fiber oscillator and subsequent octave spanning continuum generation in highlynonlinear fibers.

Q=2.8×105.

CThZ7 • 18:15 Ultra-high-Q triangular cross-section nanobeam photonic cavities in single crystal diamond, Igal Bayn¹, Boris Meyler¹, Joseph Salzman¹, Rafi Kalish²; ¹Dept. of Electrical Engineering, Technion, Israel; ²Dept. of Physics, Technion, Israel. A single crystal diamond nanobeam with a triangular cross-section and 1D-Bragg reflectors is reported. Modeling shows Q $\approx 2.5 \times 10^6$, Vm=1.06×(λ/n)³. A low-Q cavity version was fabricated by Focused-Ion-Beam, exhibiting a clear mode confinement spectrum.

18:30–20:00 Dinner Break

20:00-22:00 CLEO: 2011 Postdeadline Paper Sessions, Rooms 316, 217 and 318-320

CThEE • THz Spectroscopy—

CLEO: Science & Innovations

CThCC • Gas Phase Sensing II— Continued CThDD • Pulsed Fiber Lasers— Continued

CThCC4 • 17:45

Shot-Noise Limited Sensitive Detection of OH Radicals by Faraday Rotation Spectroscopy at 2.8 µm, Weixiong Zhao^{1,2}, Gerard Wysocki³, Weidong Chen¹, Eric Fertein¹, David Le Coq¹, Denis Petitprez⁴, Weijun Zhang²; ¹Université du Littoral Côte d'Opale, France; ²Anhui Inst. of Optics and Fine Mechanics, China; ³Princeton Univ., USA; ⁴Université des Sciences et Technologies de Lille, France. We report on the development of a Faraday rotation spectroscopy instrument using a DFB diode laser operating at 2.8 µm for the hydroxyl (OH) radical detection with a 1 o detection limit of 8.2×10⁶ OH radicals/cm³.

CThDD5 • 17:45

Rapidly tunable, wavelength agile, visible fiber based light source exploiting Raman scattering of multi-step pulses, Shaif-ul Alam¹, Peh S. Teh¹, Dejiao Lin¹, Kangkang Chen¹, David J. Richardson¹; 'Optoelectronics Research Centre, Univ. of Southampton, UK. We report a rapidly-tunable, wavelength-agile fiber laser exploiting stimulated Raman scattering of multi-step pump pulses which generates complex sequences of pulses of different wavelength.

CThEE5 • 17:45

Continued

Long Path (167 m) Broad-Band THz Transmission through the Atmosphere, Yihong Yang', Mahboubeh Mandegar', Daniel R. Grischkowsky'; 'Electrical Engineering, Oklahoma State Univ., USA. We have transmitted low-power repetitive broad-band THz pulses the record distance of 167m through the atmosphere at 50% RH and have observed the broadened transmitted pulses with a S/N ratio greater than 200.

CThCC5 • 18:00

Effect of Speed of Sound on Quartz-Enhanced Photoacoustic Spectroscopy Trace Gas Sensor Performance, Lei Dong¹, Kun Liu¹, Anatoliy A. Kosterev¹, Frank K. Tittel¹, ¹Kice Univ., USA. The effect of speed of sound (SoS) on the performance of quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor was investigated. Methods to correct QEPAS signal and to minimize effect of SoS by the carrier gas was studied.

CThDD6 • 18:00

Single Frequency Actively Q-Switched 2 µm Fiber Laser by Using Highly Tm-doped Germanate Fiber, Wei Shi¹, Eliot B Petersen^{1,3}, Nick Moor^{1,3}, Arturo Chavez-Pirson¹, Naser Peyghambarian^{1,3}, 'NP Photonics, Inc., USA; ²Physics Dept., Univ. of Arizona, USA; ³College of Optical Sciences, Univ. of Arizona, USA. We report a unique all-fiber singlefrequency actively Q-switched laser operating at ~1920 nm by using a piezo to press the fiber in the fiber Bragg grating cavity and modulate the fiber birefringence, enabling Q-switching.

CThEE6 • 18:00

Long Tube Precise THz-TDS Measurement of the Transmission of the Atmosphere from 0.2 to 2 THz, Yihong Yang¹, Alisha J. Shutler¹, Daniel R. Grischkowsky¹; 'Electrical Engineering, Oklahoma State Univ., USA. The attenuation of the atmosphere in the range from low frequencies up to 2 THz is caused by water vapor. Here we report the most accurate measurement of this attenuation to date.

CThCC6 • 18:15

Probing of Multi Component Gas Samples by Means of Supercontinuum CRD-Spectrography, Kamil Stelmaszczyk¹, Walter M. Nakaema¹, Zuoqiang Hao¹, Philipp Rohwetter¹, Ludger Woeste¹; 'Physics, Free Univ. Berlin, Germany. The ringdown decay inside a high optical bandwidth cavity was excited by using the white light supercontinuum emitted from a photonic fiber to determine absorption properties of atmospheric air between 610-730 nm by means of the CRD-Spectrography.

CThDD7 • 18:15

Rapid, Wideband, Wavelength Tunable Narrow Linewidth Source by Spectral Compression of Ultrashort Soliton Pulses, Norihiko Nishizawa¹, Koji Takahash²; ¹Electrical Engineering and Computer Science, Nagoya Univ, Japan; ²Advanced Science and Biotechnology, Osaka Univ, Japan. Rapid, wideband, wavelength tunable narrow linewidth source was demonstrated by spectrum compression of Raman shifted ultrashort soliton pulses with comb profile fiber. High-speed near infrared absorption spectroscopy was demonstrated with it.

CThEE7 • 18:15

Long Path THz Detection of Small Molecule Vapors in the Atmospheric Transparency Windows, Joseph S. Melinger¹, Yihong Yang², Alisha J. Shutler², Daniel R. Grischkowsky²; 'Electronics Science and Technology Division, Naval Research Lab, USA; 'School of Electrical and Computer Engineering, Oklahoma State Univ., USA. We demonstrate the first phase of a long path THz-TDS apparatus to remotely detect the THz spectrum of small vapor phase molecules with rotational transitions that fall within the atmospheric transparency windows.

18:30–20:00 Dinner Break

20:00–22:00 CLEO: 2011 Postdeadline Paper Sessions, Rooms 316, 217 and 318-320

QThQ • Plasmon Optics— Continued

QThQ4 • 17:45

Optically Controlled Ultrafast Enhanced Transmission from a Sub-wavelength Aperture in a Planar Metal Film, Mohamed A. Swillam¹, Nir Rotenberg¹, Henry M. van Driel¹; 'Dept. pf Physics, Univ. of Toronto, Canada. We theoretically propose an ultrafast optical technique to control light emerging from a sub-wavelength aperture in a planar metal film through surface plasmon excitation by a transient-thermal grating.

QThQ5 • 18:00

Polychromatic nanofocusing of surface plasmons, Wei Liu¹, Dragomir N. Neshev¹, Andrey E. Miroshnichenko¹, Ilya V. Shadrivov¹, Yuri S. Kivshar¹; ¹Nonlinear Physics Centre, The Australian National Univ, Australia. We introduce the concept of polychromatic plasmonics and demonstrate a broadband lens for nanofocusing of surface plasmons. This lens has a bandwidth more than an optical octave thus opening opportunities for broadband plasmonic applications.

QThQ6 • 18:15

Generation and Near-Field Imaging of Airy Plasmons, Alexander Minovich¹, Angela E. Klein², Norik Janunts², Thomas Pertsch², Dragomir N. Neshev¹, Yuri S. Kivshar¹; ¹NPC, Australian National Univ, Australia; ²Inst. of Applied Physics, Friedrich-Schiller-Universität, Germany. We demonstrate experimentally the generation and near-field imaging of propagating Airy plasmon beams. These self-accelerating plasmons exhibit selfhealing properties and enable novel applications of plasmonics and surface optical tweezers.

Room 336

CLEO: Science & Innovations

CThFF • Filamentation— Continued

CThFF5 • 17:45

Self-Accelerating Self-trapped Beams, Ido Kaminer¹, Mordechai Segev¹, Demetrios Christodoulides²; ¹Physics Dept. and Solid State Inst., Technion, Israel; ²CREOL - College of Optics & Photonics, Univ. of Central Florida, USA. We present self-accelerating self-trapped beams in selffocusing and self-defocusing Kerr and saturable media. Such beams off-shoot solitons under strong self-focusing while their main lobe continues accelerating, and are stable otherwise.

CThFF6 • 18:00

Efficient third harmonic generation by two crossing filaments, Magali Durand¹², Yi Liu¹, Aurélien Houard¹, Arnaud Couairon³, André Mysyrowicz¹; ¹Laboratoire d'Optique Appliquée, ENSTA Paris Tech, Ecole Polytechnique, CNRS, France; ²Département d'Optique Théorique et Appliquée, ONERA, France; ³Centre de Physique Théorique, Ecole Polytechnique, CNRS, France: Enhanced third harmonic by two crossing filaments is studied as function of pulse polarization, time delay, and interacting position. These systematic results point to the substantial role of the Gouy phase shift in the filament.

CThFF7 • 18:15

Digital Reverse Propagation in Focusing Kerr Media, Alexandre Goy¹, Demetri Psaltis¹; ¹Ecole Polytechnique Fédérale de Lausanne, Switzerland. We report experimental image reverse propagation in focusing Kerr media. These results are compared with a linear Zernike filter operation. A method for the measurement of the nonlinear coefficient is derived from these results.

CLEO: QELS-Fundamental Science

QThR • Quantum Optics with Quantum Dots—Continued

QThR5 • 17:45

Fast high fidelity hole spin initialization in a single InGaAs quantum dot, Timothy M. Godden¹, Stephen J. Boyle¹, Andrew J. Ramsay¹, Mark Fox¹, Maurice Skolnick¹; ¹Physics and Astronomy, Univ. of Sheffield, UK. A hole spin trapped in a quantum dot is a potential qubit. We demonstrate near unit fidelity initialization of a single hole spin in a InGaAs/GaAs Quantum dot.

QThR6 • 18:00

High-speed electrical control of a solid-state photonic quantum interface, Antoine Boyer de la Giroday^{1,2}, Anthony J. Bennett¹, Matthew A. Pooley^{1,2}, Mark Stevenson¹, Niklas Skold¹, Raj B. Patel^{1,2}, lan Farrer², David A. Ritchie², Andrew J. Shields¹; ¹Toshiba Research Europe Ltd., UK; ²Cavendish Lab, Univ. Of Cambridge, UK. We demonstrate high-fidelity transfer of the polarisation of a photon into the spin-state of an electron-hole pair. Spins are then electrically manipulated on subnanosecond timescales and near-unity phase-shift and spin-flip gates are demonstrated.

QThR7 • 18:15

Optically generated 2-dimensional photonic cluster state from coupled quantum dots, Sophia Economou¹, Netanel Lindner², Terry Rudolph³; 'Naval Research Lab, USA; 'Caltech, USA; ³Imperial College London, UK. We propose a deterministic approach for the generation of a 2D photonic cluster state from optically manipulated quantum dots. Our scheme can be implemented with existing technology. Error localization allows for quantum error correction.

Room 338

CLEO: Science & Innovations

CThGG • Spatial Multiplexing and Crosstalk—Continued

CThGG4 • 17:45

Improving tolerance toward optical in-band crosstalk by employing a high pass filter, *Jeong Hwang'*, *Joon-Young Kim'*, *Hoon-Keun Lee'*, *Chang-Hee Lee'*; *'KAIST*, *Republic of Korea*. We propose a guideline of HPF (high pass filter) for improving tolerance toward optical in-band crosstalk in WDM-PON. A cut-off frequency of HPF should be higher than five times of linewidth for effectively reducing crosstalk.

CThGG5 • 18:00

Dual Functional Optical Amplifier with Electrooptic Gain Medium of Er³⁺ Doped PLZT Ceramics, Jingwen W. Zhang¹, Haibin Sun¹, Hua Zhao¹, Yingyin Zou², Kewen Li², Hua Jiang², ¹Physics, Harbin Inst. of Technology, China; ²Boston Applied Technologies, Inc., USA. A novel dual functional device combining optical filtering and amplification by taking advantage of excellent electrooptic property in the gain medium was designed and demonstrated in covering both C- and L-bands.

18:30–20:00 Dinner Break

20:00-22:00 CLEO: 2011 Postdeadline Paper Sessions, Rooms 316, 217 and 318-320

188

CLEO: Science

& Innovations

A Platform for Three-dimensional On-chip

Photonics: Multi-bonded Silicon-On-Insulator

wafers, Amir Hosseini¹, Babak Fallahazad¹, David

Kwong¹, Yang Zhang¹, Emanuel Tutuc¹, Ray T.

Chen¹; ¹ECE, Univ. of Texas at Austin, USA. We propose a novel platform for three dimensional

photonics. A double layer 1x12 multimode in-

terference coupler is fabricated on a double-

bounded Silicon-on-insulator wafer. Optical characterizations confirm low insertion loss and

Integrated Temporal Fourier Transformer

Based on Chirped Bragg Grating Waveguides,

Ksenia Dolgaleva¹, Antonio Malacarne², Pamela

Tannouri², Luis A. Fernandes^{1,3}, Jason R. Grenier¹,

J. Stewart Aitchison¹, Jose Azana², Roberto Mo-

randotti², Peter R. Herman¹, Paulo V. Marques³;

¹Electrical and Computer Engineering, Univ. of

Toronto, Canada; ²Institut National de la Recherche

Scientifique, Canada; ³Departamento de Fisica e Astronomia, Universidade do Porto, Portugal. We experimentally realized an integrated temporal Fourier transformer based on a linearly-chirped Bragg grating waveguide written in silica glass with a femtosecond laser. The device operates in reflection and has a 10-nm bandwidth.

CThHH • Waveguides and

Passive Components-

Continued

CThHH5 • 17:45

uniform outputs.

CLEO: QELS-Fundamental Science

QThS • Linear and Nonlinear Wave Propagation—Continued

QThS5 • 17:45

Interferometry with Vacuum-amplified Waveforms, Utsab Khadka¹, Huaibin Zheng¹, Min Xiao¹; ¹Physics, Univ. of Arkansas, USA. Coexisting fourwave-mixing processes are observed via atomic coherence. The controllable phase and interference between these vacuum-amplified radiations look promising for applications including waveformshaping and high-resolution metrology.

QThS6 • 18:00

Time-reversed Lasing and Control of Absorption in a Two-channel Coherent Perfect Absorber, Wenjie Wan¹, Yidong Chong¹, Li Ge¹, Heeso Noh¹, A Douglas Stone¹, Hui Cao¹; ¹Applied Physics, Yale Univ., USA. We demonstrate a novel mechanism for controlling absorption of coherent light bytwo orders of magnitude. By varying the phase of incident laser light in a two-port geometry, the absorption is greatly enhanced or reduced.

QThS7 • 18:15

Observation of auto-focusing radially symmetric Airy beams, Peng Zhang', Jai Prakash', Ze Zhang^{2,1}, Yi Hu's, Nikos Efremidis', V. Kajorndejnukul', Demetrios Christodoulides', Zhigang Chen^{1,2}; ¹Dept. of Physics and Astronomy, San Francisco State Univ, USA; ²CREOL/College of Optics, Univ. of Central Florida, USA; ³TEDA Applied Physics School, Nankai Univ, China; ⁴Dept. of Applied Mathematics, Univ. of Crete, Greece. We demonstrate optical beam auto-focusing without the need of a focusing lens or nonlinearity. Radial Airy beams with inward and outward accelerations are used and an abrupt transition between Airy and Bessel behavior is observed.

OThT6 • 18:15

Two-way Secure Communication Using Quantum Illumination, Maria Tengner¹, Tian Zhong¹, Franco Wong¹, Jeffrey H. Shapiro¹; ¹Research Lab of Electronics, Massachusetts Inst. of Technology, USA. A two-way entanglement-based communication protocol resilient to high loss and noise is implemented. Even though the entanglement is lost during transmission, efficient communication that is secure against passive eavesdropping is possible.

QThT • Quantum Communication and Multipartite Entanglement— Continued

QThT4 • 17:45

Projection of Two Biphoton Qutrits onto a Maximally Entangled State, Assaf Halevy⁺, Eli Megidish⁺, Tomer Shacham⁺, Liat Dovrat⁺, Hagai S. Eisenberg⁺; 'Racah Inst. of Physics, The Hebrew Univ. of Jerusalem, Israel. We propose and demonstrate the projection of two quantum three state systems (qutrits) onto a maximally entangled state. The qutrits are represented by the polarization of biphotons - pairs of indistinguishable photons.

QThT5 • 18:00

Conservation of Vacuum in an Interferometer, Dominic W. Berry¹, Alexander I. Lvovsky²; ¹Inst, for Quantum Computing, Univ. of Waterloo, Canada; ²Inst. for Quantum Information Science, Univ. of Calgary, Canada. We provide a systematic method of quantifying the amount of loss a multimode optical state has experienced. We show that it is not possible to concentrate the non-vacuum components via linear optics.

CThHH7 • 18:15

Add-Drop Filter Incorporating a Mode-Conversion Cavity, Marcel W. Pruessner¹, Jacob B. Khurgin², Todd H. Stievater¹, Robert Bass¹, William S. Rabinovich¹, John B. Boos¹, Vincent J. Urick¹; ¹Naval Research Lab (NRL), USA; ²Electrical & Computer Engineering, Johns Hopkins Univ. (JHU), USA. We demonstrate a new add-drop filter architecture combining an asymmetric Y-branch mode conversion waveguide and a high index contrast shifted grating mode-conversion cavity. Measurements show add-drop functionality in a linear Fabry-Perot filter.

18:30–20:00 Dinner Break

20:00–22:00 CLEO: 2011 Postdeadline Paper Sessions, Rooms 316, 217 and 318-320