The National Ignition Facility: Exploring Matter Under Extreme Conditions

Edward I. Moses Principal Associate Director, NIF & PS Presented to: Plenary Talk Conference on Lasers and Electro-Optics (CLEO) and the International Quantum Electronics Conference (IQEC)

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Could We Build a Miniature Sun on Earth?

It Seems Likely! NIF Provider the Capabilities Necessary to Demonstrate Fusion

NIF is now operational

3

11

Ide letteri

This is the largest scientific construction project successfully completed by DOE

بقق لل

13 × 0 3 30

NIF-2008-Aerial L58

E (

ES

NIF is by far the largest and most complex optical system ever built

اللق الله

192 Pulsed Laser Beams Energy 1.8 MJ 3ω Power 500 TW

150 m

NIF-0307-13432 L4

- 350,000 m³ building
- 8,000 large optics
- · 30,000 small optics
- 60,000 control points
- 3,600 m² total optics area
 - 22 m² total beam area

NIF will be begin the full physics ignition experimental campaign in 2010

 192 Beams delivered to Target Chamber Center 1.1 MJ March 10, 2009

E

NIF-0409-16244

Building NIF has been a challenging and exciting journey

NIF's Conceptual Design Report was issued in March, 1994

NIF-0509-16312r1-lay1

Laser Bay infrastructure

Read

THE R

0

1.11

42 21

NIF-0409-16233 23EM/al THEFT

111

KONECRANES *

25/2T

Plasma Electrode Pockels Cell

The Final Optics Assembly (FOA) combines a number of critical functions into a single compact package

Achieving a small focal spot at high peak power is a necessary precursor to focal spot smoothing

1.8 MJ ignition point design, energy, power, pulse shape & smoothing were achieved simultaneously

B34 was synchronized to 14ps RMS with an 88ps 50J 3ω impulse (N080602-002-999)

We have met our 30ps synchronization requirement with

NIF-1208-15830.p

а

technique that is straight forward to apply to all bundles

Pointing stability was measured on 96 beams (plus 6 fiducial beams) delivered to a flat target with two SXIs

800 microns between focal spots Shot N090114-002-999

- 8 beam (single bundle) pointing shot completed 12/08
- 96 beam pointing shot series completed 1/09

 Beam to target pointing was 58µm rms

NIF shots to date have thoroughly explored the design operating space at 1ω and 3ω

★ =NIC Rev3.1 Be 1ω, 12.2kJ/beam, 2.6TW/beam

★ =NIC Rev3.1 Be 3ω, 6.4kJ/beam, 1.88TW/beam

One quad of the laser was used to demonstrate the full NIF energy at 3ω delivered to TCC with the designer-specified focal spot and all smoothing methods used simultaneously

Energy and power on Q34B are multiplied by 48 quads to obtain FNE

NIF Partners: National Laboratories, Academia, Industry, and the International Community

Partners in NIF Enterprise: \$1.8B Contracted

NIF is ready for ignition experiments

We have demonstrated

- All beam conditioning techniques required for ignition simultaneously at 1.8 MJ, 500 TW FNE in PDS and for a NIF quad TCC
- NIC power balance levels and synchronization requirements (B34)
- RMS pointing of 64 µm, significantly better than the 100µm RMS point design requirement
- Wavelength tuning between the inner and outer cones
- NIF operation at 3ω at > 1.1 MJoule

National Ignition Campaign goals

Layered implosion, THD or DT

Demonstrate a reliable and repeatable ignition platform for use in stockpile stewardship experiments by 4Q FY2012

NIF will access density and temperature conditions required for ignition

Tuning strategy

The path to NIF ignition experiments

Ultimately, yields well in excess of 100 MJ may be possible on NIF

Yields versus laser energy for NIF geometry hohlraums

Indirect Drive Fast Ignition has higher gains at a given laser energy and relaxed symmetry requirements

NIF Laser Beams

Achieving ignition at the National Ignition Facility can be a defining moment for the world's energy future

We are developing "LIFE," a compelling approach for carbon-free baseload power

30EIM/dj · NIF-0808-15127r4

Moses Technical Symposium presentation

Clean energy: Humankind's challenge

Global Factors Population increase Developing countries Resource depletion Climate change Gigatons of This challenge must be resolved and

solved today...Not

50 years from now

Developing Asia Middle East, Africa & Former Soviet Union **Developed countries** 2000 2010 2020 2040 2050 2030

30

25

15

10

There are two major approaches for fusion energy

Challenges include making it safe, reliable, and cost effective

A LIFE engine comprises a NIF-like laser system and a point source of neutrons

NIF-like Laser

30EIM/bc • NIF-0908-15403r7L01

NIF-like

Target Chamber

LIFE divides naturally into a Fusion and Fission engine with different and distinct challenges

LIFE: Laser Inertial Fusion-based Energy

- Sustainable carbon-free energy
- Burns depleted uranium, SNF and excess weapons grade plutonium
- Always subcritical and passively safe
- Minimizes need for repositories
- No enrichment
- Significant non-proliferation advantage

More importantly, it closes the nuclear fuel cycle

CERN

Chandra x-ray Observatory

NIF will be a Premier International Center for Experimental Science

Compelling scientific questions for NIF

Can we demonstrate laboratory ignition?

ARC 10⁴⁹Wiles² 400 kJ compressed in time and then focused to 40 fs

How are elements with Z>26 created?

What chemistry occurs at millions to billions of atmopheres?

Supernovae come in two general categories

Supernovae come in two general categories

Fe, Si, etc. are ejected from type II supernova explosions, leading to heavy element formation: how does this happen?

Type II supernovae result from the death of a massive star

Turbulence mixes core (blue) into the overlying He mantle (green) and H envelope (red). Some fraction of the core, carrying the synthesized heavy elements, gets ejected.

[Hillebrandt, Sci. Am., 43 (Oct. 2006)]

Simulations with low degree of hydrodynamic mixing do not agree with measurements

- Does He shell breakup allow core spikes to escape?
- Are differences in 3D vs 2D spike velocities important?
- How do 3D perturbations on multiple interfaces interact?
- How does the initial perturbation spectrum affect the late-time evolution?
NIF has sufficient energy to test multi-interface simulations of core-collapse supernovae turbulent hydrodynamics

OMEGA experiments at University of Rochester Laboratory for Laser Energetics- proof of principle

NIF hemisphere target and simulationsufficient energy for multi-interface, diverging, scaled SN experiment

[Courtesy of Paul Drake et al.]

NIF experiments are planned to start in 2011-2012

Understanding planetary structure requires knowledge of the Equation of State (EOS) at extreme conditions

NIF can produce pressures exceeding 1 Gbar, allowing exploration of entirely new regimes

NIF is an integral part of a growing community of large-scale HED facilities world-wide

Growing these NIF user communities and associated funding are key to establishing NIF as a National User Facility

University and lab scientists

Steady growing interest in the popular press

Simulating

Scientists at a nuclear-weapor mimic huge stellar explosions

Supernovae

A Telescopic Tour of the Andromeda Galaxy S&T Test Report: Celestron's Ultima 2000

24 Hours on Mars

WHY CAN'T SCIENTISTS DO A BETTER JOB OF PREDICTING THE WEATHER? REALLY, REALLY SMART COMPUTERS MUMMIES OF THE SAINTS

JUNE 2001

Astronomers Finally Figure Out How to Re-create the Violence of Space—in a Lab

[Article by Keay Davidson]

Supernova in a Can

----e by Adam Frank]

HOW MOUNTAIN LIONS **DEVELOP A TASTE** FOR PEOPLE

life on Earth a billion years from

HOW ASTRONOMERS TRACK THOUSANDS OF ASTEROIDS p.40

erts answer your questions

[Article by Steve Nadis]

SCIENCE AND TECHNOLOGY NEWS THE WEEK'S BEST IDEAS US JOBS IN SCIENCE ewScientist

October 25-31, 2008

Old killer, new hope A kinder, smarter way to curb cancer

Article by Stuart/Clark]

STAR MAKERS To create a mini-supernova first find a mega-laser

Building NIF has been a challenging and exciting journey

NIF's Conceptual Design Report was issued in March, 1994

NIF-0509-16312r1-lay1

The National Ignition Facility: Exploring Matter Under Extreme Conditions

Edward I. Moses Principal Associate Director, NIF & PS Presented to: Plenary Talk Conference on Lasers and Electro-Optics (CLEO) and the International Quantum Electronics Conference (IQEC)

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344