Plasmonics: optics at the nanoscale

Albert Polman

Center for Nanophotonics FOM-Institute AMOLF Amsterdam, The Netherlands

Martin Kuttge Ernst Jan Vesseur Ewold Verhagen Joan Penninkhof René de Waele Femius Koenderink Sébastien Bidault Kylie Catchpole Kobus Kuipers Jen Dionne Julie Biteen Luke Sweatlock Henri Lezec Harry Atwater

Alfons van Blaaderen Ruud Schropp

Javier Garcia de Abajo

Surface plasmons: electromagnetic resonances in the visible

Metal nanoparticle resonance

Resonance tunable by particle diameter

Dark field image

Field enhancement

Metal shell colloids

Plasmon resonance tunable by core and shell dimensions

Core radius: 180 nm Au shell thickness: 46 nm

Synthesis Refs: Halas et al., Xia et al. Van Blaaderen et al.

J. Phys. Chem C. **112**, 4146 (2008) Joan Penninkhof

Gold shell nanocavities

Joan Penninkhof, Luke Sweatlock

Shape anisotropy in metal shell cavities

J. Phys. Chem C. **112**, 4146 (2008) Joan Penninkhof, Luke Sweatlock

Splitting of radiative and dark modes

- ELOM

Phys. Rev. B **75**, 115123 (2007) *Hans Mertens*

Polarized emission from LEDs: Er, Si QDs

Nano Lett. **6**, 2622 (2006), J. Phys. Chem. C **111**, 13372 (2007) Appl. Phys. Lett. **89**, 211107 (2006) *Hans Mertens, Julie <u>Biteen</u>*

More complex nano-geometries

Plasmonic nanolens: First proposed by Li, Stockman & Bergman, PRL (2003)

JACS **130**, 2750 (2008)

Sébastien Bidault

DNA-templated Au nanospheres

JACS **130**, 2750 (2008) Sébastien Bidault

Plasmon tuning range: 400 - > 3000 nm Applications:

- Sensing (SERS, ...)
- medical diagnostics
- medical therapy
- LEDs (directional emission, polarization control) Scattering ~ r³
- nanocavities
- Photovoltaics

Plasmonic solar cells: light scattering from metal nanoparticles

Enhanced light coupling into thin-film solar cells

Kylie Catchpole, Ruud Schropp

Fraction of light scattered into thin-film solar cell substrate

FDTD results

Kylie Catchpole

Metal particle arrays as nanoscale antennas

10 MHz – 10 GHz range 1 active, several passive dipole

Dipole chains as antennas:

- Many dipoles couple
- Interference effects
- Retardation effects

-Stom

Nano Lett. **7**, 2004 (2007) René de Waele, Femius Koenderink

Metal nanoparticle antenna: confocal imaging

LOM

Nano Lett. 7, 2004 (2007) René de Waele, Femius Koenderink

Dispersion: Quasistatic approximation

Quinten et al., Opt Lett (1998), Brongersma et al., PRB (2000) Weber & Ford, PRB (2004), Citrin, Opt. Lett. (2006)

René de Waele, Femius Koenderink

Metal nanoparticle waveguide: dispersion relation

Include retardation, radiation & Ohmic damping

- Splitting into polariton-like bands
- Lower branch: loss time > 100 optical periods
- Propagation length > 10 μ m

Phys. Rev. **B 74**, 033402 (2006) René de Waele, Femius Koenderink Measure dispersion relation of nanochains

Phys. Rev. B. **76**, 201403 (2007) Femius Koenderink, René de Waele

Extinction spectra

Ag, r=50, d=150 nm

Extinction minimum \rightarrow plasmon coupling

Phys. Rev. B. 76, 201403 (2007)

Femius Koenderink, René de Waele

Compare to dispersion relation

Phys. Rev. B **74**, 033402 (2006) Phys. Rev. B. **76**, 201403 (2007)

Femius Koenderink, René de Waele

Surface plasmons: electromagnetic resonances in the visible

Localized plasmon oscillation

Propagating surface plasmon polariton (SPP)

Dispersion of surface plasmon polaritons

SPP dispersion designed by geometry

Two-dimensional optics with SPPs

Nanoscale plasmonic integrated circuits

Plasmonic lens

Negative refraction

And much more

Plasmonic toolbox: $\omega, \varepsilon(\omega), d \text{ engineer } \lambda(\omega)$

Surface plasmon nanofocusing

• Focusing in tapered metal cylinder

Stockman, PRL 93, 137404 (2004)

- Strong confinement and field enhancement near taper tip
- Focusing of fundamental cylindrical SPP mode

Nanofocusing in tapered waveguides

- Infrared SPPs (λ_{exc} =1480 nm) excited along Au/Al₂O₃ interface
- Erbium ions in substrate as probe for plasmon propagation

Au film thickness: 100 nm apex diameter: ~60 nm

ref. Weeber et al., PRB 64, 045411 (2001)

SPP concentration in tapered waveguides

- ELOM

Nano Lett. 7, 334 (2007) Ewold Verhagen, Kobus Kuipers

FDTD Simulations: nanofocussing to < 100 nm

- Nanofocusing predicted: 100 x |E|² at 10 nm from tip
- 3D subwavelength confinement: 1.5 μ m light focused to 92 nm (λ /16)
- limited by taper apex (60 nm)

Optics Express **16**, 45 (2008) Ewold Verhagen, Kobus Kuipers

SPP modes in stripe waveguides

Field symmetry at tip similar to SPP mode in conical waveguide

Ewold Verhagen, Kobus Kuipers

Metal-Insulator-Metal (MIM) waveguides

Measuring the $\ensuremath{\mathsf{SPP}_{\mathsf{MIM}}}$ wave vector

Obtaining the MIM dispersion curve

Electron-beam excitation of SPPs: cathodoluminescence (30 keV)

Broadband excitation of SPPs at nanoscale resolution
Detection of far-field radiation with parabolic mirror

Marin Kuttge, Ernst Jan Vesseur

CL emission versus distance from grating

Martin, Kuttge, Ernst Jan Vesseur

Spectroscopic CL scan near grating: Probing the plasmonic density of states

theory

Martin Kuttge, Henri Lezec, Ernst Jan Vesseur

Focussed ion beam milling of plasmonic nanostructures; rapid prototyping

30 keV Ga ion beam

in-situ FIB and CL

Martin Kuttge, Henri Lezec, Ernst Jan Vesseur

Plasmonics optics at the nanoscale

0000000000

= 600 nm

For details/references visit: www.erbium.nl

