EXHIBIT HALL, 100 LEVEL

JOINT

8:00 a.m. - 10:30 a.m. CLEO/QELS PLENARY SESSION, BALLROOMS III/IV

10:00 p.m. – 5:00 p.m. EXHIBIT HALL OPEN

10:00 a.m. – 12:00 p.m. EXHIBIT ONLY, EXHIBIT HALL, 100 LEVEL

10:30 a.m. - 12:00 p.m. COFFEE BREAK, EXHIBIT HALL, 100 LEVEL

11:00 a.m. – 12:00 p.m. LUNCH BREAK (concessions available on show floor)

JOINT

12:00 p.m. – 1:30 p.m. JWA • Poster Session II

IWA1

Weak Coupling Interactions of Silicon Photonic Crystals with Lead Sulphide Nanocrystals at Room Temperature, Ranojoy Bose, Rohit Chatterjee, Xiaodong Yang, Jie Gao, Chee Wei Wong; Columbia Univ., USA. We demonstrate weak coupling interactions of silicon photonic crystals with PbS nanocrystals at room temperature. Coupling is verified through cold-cavity integrated waveguide measurements, with polarization extinction of 1.7 and emission enhancements that match simulations.

TWA 2

Semiclassical Theory of the Hyperlens, Zubin Jacob, Leonid V. Alekseyev, Evgenii Narimanov; Princeton Univ., USA. We study ray dynamics inside the Hyperlens, a device recently demonstrated as capable of sub-diffraction-limited far-field imaging. The obtained semiclassical result of spiraling rays is confirmed by numerical simulations of gaussian beam scattering from the hyperlens.

TWA3

Exciton Dressing and Capture by a Photonic Band Edge, Shengjun Yang, Sajeev John; Dept. of Physics, Univ. of Toronto, Canada. We demonstrate electromagnetically-induced anomalous quantum dynamics of an exciton in a PBG OW heterostructure. The exciton can be captured in wavevector space by emission and reabsorption of virtual photons near a photonic band edge.

TWA4

Directional Output from GaAs Micro-stadium Lasers, Wei Fang^{1,2}, G. Alon², Glenn Solomon¹, Hui Cao²: ¹NIST, USA, ²Northwestern Univ., USA. We observed the directional output from GaAs micro-stadium lasers at low temperature, by the scatted emission on a ring enclosure structure. Our numerical simulation shows the directionality of the laser emission fit classical ray dynamics.

IWA5 Experimental Observation of Modulational Instability in the 1st and 2nd Band of a Self-Defocusing Nonlinear Waveguide Array, Christian E. Rüter, Jürgen Wisniewski, Detlef Kip; TU Claustbal, Germany. We observed experimentally discrete modulational instability within the first two bands in a permanent nonlinear waveguide array fabricated in an iron-doped

photorefractive lithium niobate crystal. TWA6

All-Optical Bistable Switching in a Metal-Dielectric Multilayer Structure Due to Intensity-Dependent Sign of the Effective Dielectric Constant, Anton Husakou, Joachim Herrmann; Max Born Inst., Germany. We numerically study light propagation through a nonlinear metal-dielectric multilayer structure, and predict all-optical bistable switching due to change of the effective dielectric constant from negative (low-transmission state) to positive (high-

transmission state) values.

IWA7

has no cutoff.

TWA11

of motional narrowing.

Ning2; 1NASA Ames Res. Ctr., USA, 2Ctr. for

Nanophotonics and Dept. of Electrical Engi-

neering, Arizona State Univ., USA. We in-

vestigate how the asymmetry of surface

potential affects the Shockley surface states

in photonic crystals and demonstrate the

transformation of the Shocklev surface states

into the Tamm states for the first time.

TWA10

Explicit Formulae for the Medium Parameters of Optically-Active Molecules and Crystals from the Microscopic Theory, G. Hugh Song, S. Nam; GIST, Republic of Korea. Dvadic formulae for the medium parameters of the electromagnetic point-localized constitutive relations from the microscopic theory of optically-active molecules and crystals have been newly found, which clears out long-held controversy on reciprocity and equivalence.

IWA12

Exact Modeling of Generalised Defect Interaction of Counterpropagating Dis-Modes in Photonic Crystals, Lindsay C. crete Solitons and Nonlinear Surface Botten¹, Kokou B, Dossou¹, Ara A, Asatrvan¹, Tamm States in 1-D Waveguide Arrays, Stewart Wilcox², Ross C, McPbedran², C, Eugene Smirnov, Christian E. Rüter, Milutin Martijn de Sterke²; ¹Univ. of Technology, Stepic, Detlef Kip; TU Clausthal, Germany. Sydney, Australia, ²Univ. of Sydney, Austra-We investigate interaction of lia. We present an exact method for modelcounterpropagating solitons and nonlinear ing modes of general defects with infinite surface Tamm states in a waveguide array cladding. It handles the pathological case in photorefractive lithium niobate. For sufof highly extended modes and establishes ficient input power a growing instability the fundamental mode of a conventional PCF results in discrete lateral shifting of solitons.

IWA13

Superradiance and Motional Narrowing Control of Photon Tunneling Decay in of Exciton-Polaritons in J-Aggregate Engineered Optical Waveguide Arrays, Stefano Longhi; Politecnico di Milano, Italy. Thin Films, M. Scott Bradley, Jonathan R. Tischler, Yasubiro Shirasaki, Vladimir Acceleration and deceleration of photon Bulovic; MIT, USA. We investigate dispersion tunneling decay is theoretically demonstrated in an engineered waveguide-array of J-aggregate thin films of varying thickness. Reflectance measurements and simustructure, which provides an optical reallations suggest a "superradiance" effect in ization of quantum mechanical decay conthick films similar to that observed in multrol proposed for macroscopic quantum tuntiple-quantum wells in addition to evidence neling.

TWA14

Interaction-Induced Localization of Self-New Gap Solitons in Two-Dimensional Defocusing Discrete Solitons, Yoav Linzon¹, Yonatan Sivan¹, Shimshon Barad¹, Photonic Lattices, Zuoqiang Shi¹, Jianke Yang^{1,2}, Cibo Lou^{3,4}, Zhigang Chen^{3,4}; Michael Zaezjev², Roberto Morandotti², Boris ¹Tsingbua Univ., China, ²Univ. of Vermont, Malomed³; ¹School of Physics and As-USA, ³San Francisco State Univ., USA, tronomy, Tel Aviv Univ., Israel, 2INRS-Energie ⁴Nankai Univ., China. We theoretically preet Materiaux, Univ. of Quebec, Canada, dict and experimentally demonstrate new 3School of Engineering, Tel Aviv Univ., Istypes of gap solitons in 2-D photonic latrael. Tilted beams, propagating in the selftices such as dipole-array gap solitons. These defocusing regime of a waveguide array. solitons bifurcate from a superposition of away from a soliton, are shown to refocus Bloch modes at edges of higher Bloch bands. due to the nonlinear interaction, emerging in intermediate sites as function of the relative phase.

Transformation of Surface States from Shocklev-like to Tamm-like in Photonic IWA15 Crystals, Natalia Malkova^{1,2}, Cun-Zheng

Negative Index Bands in Sub-Wavelength Metallic Gratings, Mihaela Dinu, Howard R. Stuart: Bell Labs, Lucent Technologies, USA. We describe negative group index surface plasmons in nano-structured metallic gratings. The periods and amplitudes of silver gratings exhibiting negative group index, as well as the attenuation lengths of the negative-index surface waves, are derived.

IWA16

Slow-Light Trapping in a Photonic Crystal Slab, Frédéric Bordas¹, Christian Seassal², Michael J. Steel^{1,3}, Adel Rahmani²; ¹Inst. des Nanotechnologies de Lyon, France, France, ²Macauarie Univ., Australia, ³RSoft Design Group, Inc., Australia. We present a general scheme to trap slow-light in a photonic crystal slab and achieve high O/V ratio with a fabrication tolerant design, well suited for low-threshold microlasers and cavity quantum electrodynamics.

IWA17 Periodic Surface Plasmon-Enhanced Diffraction in Cholesteric Liquid Crystal Grating, Wen-Chi Hung1, Ming-Shan Tsai2, Yi-Chung Juan², I-Min Jiang³, Wood-Hi Cheng1; 1Electro-Optical Engineering, Taiwan, 2Dept. of Applied Physics, Natl. Chiayi Univ., Taiwan, ³Natl. Sun Yat-Sen Univ., Taiwan. Periodic surface plasmon-enhanced diffraction effect in cholesteric liquid crystal (CLC) grating is demonstrated.

IWA18 Hollow Nano-Magnetic Resonators Mediated by Photo-Thermal Effects: Towards the Realization of Highly-Tunable Mid-Infrared Negative Permeability, Nikolaos J. Florous, Kunimasa Saitob Kuniaki Maeda, Masanori Koshiba: Div. of Media and Network Technologies, Hokkaido Univ., Japan. Using a rigorous-coupled-wave analysis combined with a thermo-optical sensitivity prediction scheme, we show that nano-engineered magnetic resonators exhibit strong tunable magnetic response in mid-infrared, which can be effectively used for realizing a negative magnetic permeabilitv.

JWA19

Localization by Random Apertures in a Metal Film, Matthew C. Hughes, Reuven Gordon; Univ. of Victoria, Canada. The transmission through random subwavelength rectangular apertures in a gold film is studied. Enhanced loss is shown to arise from localization of light at the surface of the film, which increases with aperture density

IWA20

Saturable Absorption in Nanocomposite Gold-Silica Materials with High Gold Fill Fraction, Giovanni Piredda¹, David D. Smith², Youngkwoon Yoon¹, Robert W. Boyd¹, Rongfu Xiao³, Bettina Wendling⁴; ¹Inst. of Optics. USA. ²NASA Marshall Space Flight Ctr., USA, ³Dept. of Physics, Hong Kong Univ. of Science and Technology, Hong Kong, ⁴Inst. of Physics, Univ. of Stuttgart, Germany. We present frequency-resolved measurements of the nonlinear absorption coefficient in gold-silica nanocomposite

materials with high gold fill fraction.

IWA21

substrate.

IWA23

Second Harmonic Generation in AlGaAs/AlO, Random Structures, Marco Centini¹, Didier Felbacq², Diederick S. Wiersma³, Concita Sibilia¹, Michael Scalora⁴, Mario Bertolotti1; 1Dept. di Energetica, Univ. di Roma-La Sapienza, Italy, ²Groupe d'Etude des Semi-Conducteurs, France, ³European Lab for Non-linear Spectroscopy (LENS) and INFM-Matis. Italv. ⁴Charles M. Bowden Res. Ctr., AMSMI-RD-WS-ST RDECOM, Redstone Arsenal, USA. We applied our theoretical results to design, realize and experimentally verify the predicted second harmonic enhanced efficiency on a sample made of

IWA22 High Repetition Rate Two-Color Pump-

AlGaAs/AlO, random layers grown in a GaAs

Probe System Based on Optical Parametric Generation in PPLN Crystals, Marco Marangoni¹, Roberto Osellame¹, Dario Polli¹, Roberta Ramponi¹, Uwe Morgner², Giulio Cerullo1; 1Politecnico di Milano, Italy, 2Univ. of Hannover. Germany. By exploiting optical parametric generation in PPLN crystals driven by a cavity-dumped Yb:KYW modelocked laser, we realized a two-color pumpprobe system tunable in the near-infrared with 1-MHz repetition rate and 100-fs temporal resolution.

Theoretical and Experimental Study of Third Order Difference Frequency Generation, Fabien Gravier, Benoît Boulanger: Inst. Néel-CNRS. France. We performed several experimental validations of a model

based on Jacobi elliptic functions describing collinear phase-matched Third Order Difference Frequency Generation without spatial and temporal walk-off. The experiments used KTP crystals and sub-nanosecond laser beams

IWA24

IWA25

IWA26

dex Change on Multi-Pump Raman-Assisted Four-Wave Mixing, S. H. Wang¹, Lixin Xu1,2, P. K. A. Wai1; 1Hong Kong Polytechnic Univ., Hong Kong, ²Univ. of Science and Technology of China, China. We investigated the contribution of Raman-induced refractive index change on the conversion efficiency bandwidth in Raman-assisted fourwave mixing. The contribution of the Raman-induced refractive index change can be significant when multi-Raman pumps are used

Tunable Single-to-Single and Single-to-

Dual Channel Wavelength Conversions

of Ps-Pulses Using PPLN-Based Double-

Ring Fiber Laser, Jian Wang, Junqiang

Sun, Oizhen Sun; Huazhong Univ. of Sci-

ence and Technology, China. We propose

and demonstrate a novel scheme of tunable

single-to-single and single-to-dual channel

wavelength conversions using a double-ring

fiber laser incorporating a periodically poled

lithium niobate waveguide. No external

Mid-Infrared Optical Upconversion by

Integrating an InAsSb Photodetector

with a GaAs Light Emitting Diode,

Boucherif Abderraouf¹, Davan Ban¹, Hui

Luo², Emmanuel Dupont², H.C Liu², Z. R.

Wasilewski², Yossi Paltiel³; ¹Dept. of Electri-

cal and Computer Engineering, Univ. of

Waterloo, Canada, ²Inst, for Microstructural

Sciences, Canada, ³Electro-Optics Div., Soreq

NRC. Israel. We report the fabrication and

experimental results of a midinfrared opti-

wafer fusion technology. Midinfrared opti-

pump and control sources are required.

IWA27

Effect of Raman-Induced Refractive In-Time-Resolved Third Harmonic Generation from Laser-Melted Semiconductors, Will Grigsby, Michael C. Downer, Todd Ditmire; Texas Ctr. for High Intensity Laser Science, USA. To develop shock melting diagnostics, we are studying laser melted semiconductors using nonlinear optical probes. We find a rapid response in THG from Si and GaAs, with both linearly and circularly polarized incident radiation.

IWA28

IWA29

Mid-IR Entangled-Cavity Doubly Resonant OPO with Back-Conversion Minimization and Automated Tuning, Antoine

Berrou, Antoine Godard, Michel Lefebvre; ONERA, France. Entangled cavity optical parametric oscillators are known as powerful devices to fulfill requirements for high resolution spectroscopy. We demonstrate here that output performances can be strongly improved by using a partial pump beam reflection.

conductor Amplifier, Mingjun Chi¹, Søren Blaaberg Jensen¹, Jean-Pierre Huignard², Paul Michael Petersen1; 1Risø Natl. Lab, Denmark, ²Thales Res. and Technology, France. The two-wave mixing in the broad-area semiconductor amplifier was investigated, both theoretically and experimentally. The experimental results obtained in an 810 nm. 200 µm wide GaAlAs amplifier show good agreement with the theory.

IWA30

Nonlinear Optical Properties of Stimulated Brillouin Scattering to Submerged Objects Detecting, Lu Yuelan; Harbin Encal up-converter that was fabricated using gineering Univ., China. Nonlinear Optical Properties of Stimulated Brillouin scattering cal upconversion from 4.0 to 0.84 µm was demonstrated at temperatures up to 200 K. to submerged objects detecting are analyzed. The delay time of echo signal to pump signal can give the location of submerged ob-

ject.

Two-Wave Mixing in a Broad-Area Semi-

Ne

EXHIBIT HALL, 100 LEVEL

JOINT

JWA • Poster Session II—Continued

TWA31

Ti:Sapphire-Pumped Infrared Femtosecond Optical Parametric Oscillator Based on BiB₃O₆, Masood Ghothi, Adolfo Esteban-Martin, Majid Ebrahim-Zadeh: ICFO, Spain. A femtosecond optical parametric oscillator based on the nonlinear material BiB₃O₆ pumped by a Kerr-lensmode-locked Ti:sapphire laser is reported. Continuous tuning across the spectral range of 1.2-1.6 um is demonstrated.

JWA35

to rubidium D2 line.

Optical Flip-Flop Operation Using an AR-

coated Distributed Feedback Laser Di-

ode, Koen Huybrechts, Wouter

D'Oosterlinck, Geert Morthier, Roel Baets;

Dept. of Information Technology, Ghent

Univ. - IMEC, Belgium. A new concept for

all-optical flip-flops is introduced using a

single DFB laser diode. When injecting ex-

ternal light into the laser, two stable states

can be obtained. We show numerically that

Tunable Polarization and Power Anti-

Stokes Line Generation in Birefringent

Photonic Crystal Fiber, Bing Zbou,

Yongliang Jiang, Yuxin Leng, Ruxin Li,

Zhizhan Xu; State Key Lab of High Field

Laser Physics, Shanghai Inst. of Optics and

Fine Mechanics, China. By changing the

polarization of less than 7fs input pulses,that

was coupled into the single mode birefrin-

gent photonic crystal fiber, we achieved both

polarization and power modulation of the

anti-stokes line simultaneously.

JWA38

optical pulses allow switching.

IWA36

IWA32

Transient Fluorescence Excited by Oscillating Interference Pattern in Er-Doped Fiber, Serguei Stepanov, Eliseo Hernández: CICESE, Mexico, Experiments on transverse detection of transient fluorescence excited by oscillating interference pattern in Er-doped fiber in spectral range 1480-1600nm are reported. This technique is used for evaluation of local amplitude of the recorded population grating.

IWA33

Wednesday, May 9

Evaluation of a 486 nm Single Frequency Source Using an MgO:PPLN Waveguide Doubled Semiconductor Laser. Ali Khademian, David C. Shiner: Univ. of North Texas, USA. A 972 nm semiconductor butterfly laser is stabilized with a fiber grating to single frequency (600 mW) and doubled in a MgO:PPLN waveguide (90 mW) for characterization as a simple laser source for precision spectroscopy.

TWA34

Simultaneous Generation of Two Pairs of Entangled Photons in Periodically Poled Lithium Niobate Crystals, Shiming Gao, Ying Gao; Ctr. for Optical and Electromagnetic Res., Zhejiang Univ., China. We propose that two pairs of entangled photons will be generated simultaneously through spontaneous parametric down-conversion pumped by a monochromatic light only in periodically poled lithium niobate crystals without more complex crystal structures.

TWA39

Internal Second Harmonics of an Injec-Multimode Silicon Raman Amplifier. tion-Locked Laser Diode and Its Appli-Varun Raghunathan¹, Hagen Renner², Robcation to Laser Frequency Stabilization, ert Rice3, Michael Krauss2, Ernst Che-Chung Chou, Chia-Hung Sun, I-Hao Brinkmever², Babram Ialali¹: ¹Univ. of Cali-Chien, Tyson Lin; Dept. of Photonics, Feng fornia at Los Angeles, USA, ²Technische Univ. Hamburg-Harburg, Germany, ³Northrop Chia Univ., Taiwan, Features of internal second harmonics (ISH) originated from a Grumman Space Technology, USA, We prolaser diode injection-locked by a distribupose a novel multimode silicon Raman amtion feedback laser were experimentally plifier consisting of collinearly propagating observed. As an application of this injecpump and amplified Stokes beams with selftion-locked ISH, its frequency was locked imaging of Stokes beam due to Talbot effect. Application of this device as image preamplifier is discussed.

TWA40

Experimental Demonstration of a L-Band to S-Band Wavelength Conversion, David Méchin¹, Richard Provo¹, Douglas A. Reid¹, John D. Harvey¹, Colin J. McKinstrie²; ¹Dept. of Physics, Univ. of Auckland, New Zealand, ²Lucent Technologies, USA, 50nm optical wavelength conversion based on the potentially noise-free Bragg Scattering process in an optical fiber is demonstrated experimentally, 2.5-Gb/s output waveforms and eye diagrams for the initial and converted signal are presented.

TWA41

Fast Light Using Multiple Cascaded Quantum-Well Semiconductor Optical Amplifiers, Piotr K. Kondratko, Hui Su, Shun-Lien Chuang; Univ. of Illinois at Urbana-Champaign, USA, We demonstrate variable fast light at room temperature using multiple cascaded quantum-well semiconductor optical amplifiers. Controllable delay is achieved both electrically and optically, or by varying the number of amplifiers or amplifier-to-amplifier attenuation.

Plasma Density inside Femtosecond La-

ser Filaments in Air, Jens Bernhardt¹,

Weiwei Liu¹, Francis Théberge¹, Marc

Châteauneuf², Jacques Dubois², See Leang

Chin1; 1Ctr. d'Optique, Photonique et Laser

(COPL), Univ. Laval, Canada, ²Defense Res.

and Development Canada, Valcartier,

Canada. We present a spectroscopic way

to measure the plasma density of

femtosecond laser filaments in air by using

Stark broadening of the oxygen atomic fluorescence line. This method could also be applied to multiple filamentation.

Green and Ultraviolet Pulse Generation

TWA42

Using a Low-Repetition-Rate Mode-Locked Yb-Doped Fiber Laser, Janet W. Lou^{1,2}, Marc Currie¹: ¹NRL, USA, ²SFA, Inc., USA. Using a compact 1-µm mode-locked fiber source, we demonstrate 2nd harmonic generation (540 nm) of 0.4 W and 4th harmonic generation (270 nm) of 0.1 W with subpicosecond pulse durations.

JWA43

Enhanced Cascade γ^2 SHG+DFG Interactions Based on Chirp Period Quasi-Phase-Matched Waveguide, Shib-Chiang Lin¹, Nai-Hsiang Sun²: ¹Dept, of Communication Engineering, I-Shou Univ., Taiwan, ²Dept. of Electrical Engineering, I-Shou Univ., Taiwan, A theoretic study about a 170% conversion efficiency enhancement of cascade γ^2 SHG+DFG interactions by using a chirp period quasi-phase-matched waveguide.

TWA44 Powerful High Repetition Rate Nanosec-

ond Optical Parametric Generator in MgO:PPLN Tunable from 3.5 µm to 4.6 um, Martin Nittmann¹, Thorsten Bauer¹, Jobannes L'Huillier¹, Gregor Anstett², Patric von Löwis of Menar³, Juergen Bartschke³, Michael Raab⁴: ¹Univ. of Kaiserslautern, Germany, ²FGAN-FOM, Germany, ³Xiton Photonics GmbH. Germany, ⁴Diebl BGT Defence, Germany, We report on a nanosecond MgO:PPLN OPG tunable in the MIR from 3.5 to 4.6 µm with an average output power of 600 mW at 3.8 µm and more than 100 mW at 4.6 um.

JWA45

Generation of Simultaneous Red. Green and Blue Light in Periodically Poled Lithium Niobate with Broad Quasi-Phase Matching Band, Hwan-Hong Lim, Oc-Yeub leon. Byoung-loo Kim. Krishnamoorthy Pandivan, Myoungsik Cha; Pusan Natl. Univ., Republic of Korea, We demonstrated simultaneous red, green and blue light generation in periodically poled lithium niobate pumped with single picosecond laser. The primary color peaks were temperature-insensitive owing to broadband optical parametric generation of participating infrared frequencies.

JWA46 Tunable Repetition-Rate Ultrawideband Monocycle Pulse Generation by Using Optical Parametric Amplifier, Bill P. P. Kuo, P. C. Chui, Kenneth K. Y. Wong: Univ. of Hong Kong, Hong Kong. We demonstrate a novel technique for generating ultrawideband monocycle pulse with repetition-rate tuning capability based on fiber optical parametric amplifier. High quality monocycle pulse with repetition rate up to 4.2GHz is successfully generated.

IWA47 A Scheme to Realize Class B Slow Light

Buffer in Semiconductor Optical Amplifiers, Ming Xin, Minghua Chen, Hongwei Chen, Shizhong Xie; Tsinghua Univ., China. We proposed a scheme to realize Class B slow-light buffer in semiconductor optical amplifiers. With three electrical control signals, good characteristics of Class B buffer can be approached in SOA.

TWA48 Investigation of Fast Light in Long Optical Fibers Based on Stimulated Brillouin

Scattering, Kai-Uwe Lauterbach¹, Thomas Schneider¹, Ronny Henker¹, Markus Junker¹, Max James Ammann², Andreas Thomas Schwarzbacher²: ¹Deutsche Telekom Fachbochschule Leipzig, Germany, ²Dublin Inst. of Technology, Ireland. A simple method to generate a negative time delay in SBS-based fast-light systems using Brillouin gain and loss is shown. We achieved a maximum negative time delay of 32.4 ns in one long fiber segment.

TWA49 Wideband SBS Slow Light in a Single

Mode Fiber Using a Phase-Modulated Pump, Alan Cheng, Mable P. Fok, Chester Shu; Dept. of Electronic Engineering and Ctr. for Advanced Res. in Photonics, Chinese Univ. of Hong Kong, Hong Kong. Using a 10-Gb/s PRBS phase-modulated pump, we achieve SBS slow light of 10-GHz, 26.6-ps pulses by 10.6 ps. The correlation between the pulse width and the amount of phase modulation is reported.

JWA50

Reciprocating Optical Modulation on Erbium Doped LiNbO₂ for Harmonic Generation, So Kogahara¹, Satoshi Shinada², Shinya Nakajima², Tetsuya Kawanishi², Hirochika Nakajima¹, Masayuki Izutsu²; ¹Waseda Univ., Japan, ²Natl. Inst. of Information and Communications Technology, Japan. We demonstrated reciprocating optical modulation with Erdoped LiNbO, for high-order sideband generation, where reciprocating modulation process can be selectively amplified. The sideband component of 50 GHz was successfully enhanced. The gain was 8 dB.

IWA51 Low Power Optical Bistability in 1550

nm VCSOAs, Douglas R. Jorgesen, Christopher F. Marki, Haijiang Zhang, Pengyue Wen, Sadik Esener; Univ. of California at San Diego, USA, Clockwise and counterclockwise bistability is demonstrated in 1550 nm VCSOAs at input powers two orders of magnitude lower than previously reported. Butterfly bistability is also observed for the first time in VCSOAs.

IWA52 Highly Efficient Two-Photon Absorption

Cross-Sections and Their Frequency Dependence in Small Organic Molecules, Joshua C. May¹, Ivan Biaggio¹, Filip Bures², François Diederich²; ¹Lehigh Univ., USA, ²ETH Zürich, Hönggerberg, Switzerland. We report on the frequency dependence of the high two-photon absorption (TPA) cross-sections (σ_{m_1}) measured in small organic molecules. The best molecule has a $\sigma_{TPA} = 9 \pm 3 \times 10^{-48} \text{ cm}^4 \text{s/photon, up to 10 times}$ that of AF-50.

JWA53 Nonlinear Switching in a Bragg Grating

with Periodic $\chi^{(3)}$, Jacques M. Laniel, Nicolas Bélanger, Alain Villeneuve; INRS Énergie, Matériaux et Télécommunications, Canada. We demonstrate numerically the nonlinear switching in a Bragg grating with a periodically modulated nonlinearity. Improved functionalities can be obtained through a π phase-shift between the linear and nonlinear gratings.

JWA54 Designing Dispersion- and Mode-Area-

Compression, Ming-Leung V. Tse, Peter Horak, Francesco Poletti, David I. Richardson; Optoelectronics Res. Ctr., Univ. of Southampton, UK. We investigate numerically the adiabatic compression of solitons at 1.55 µm in holey fibers which exhibit simultaneously decreasing dispersion and effective mode area. Compression factors >10 are achieved for optimum fiber parameters.

Decreasing Holey Fibers for Soliton

IWA55

"Photon Emission by Photon" Model for Spontaneous Frequency Conversion in Dispersive Dielectric Microcavities, Alex Hayat, Meir Orenstein; Dept. of Electrical Engineering, Technion, Israel. We develop a quantum-field model for photon conversion in dispersive cavity, incorporating dispersion into spatial eigenmodes. Direct calculations of spontaneous photon-to-photon decay rates that cannot be done conventionally are reported.

IWA56 CEP Stabilization and Measurement in the Highly Nonlinear Regime, Samuel B

P Radnor, Paul Kinsler, Geoff H C New; Imperial College, UK. CEP stabilization of fewcycle pulses experiencing strong nonlinearities is investigated. Phase stable difference frequency generation is numerically demonstrated in the presence of SPM. Absolute CEP measurement via harmonic interference and sub-cycle CEP are also studied

IWA57

Light Emitting Diodes with Extremely High Extraction-Efficiency for Electroluminescence Refrigeration, Shuiqing Yu, Nicholas Rider, Ding Ding, Jiangbo Wang, Shane R. Johnson, Yonghang Zhang; Arizona State Univ., USA. InGaAs light emitting diodes with extremely high light extraction efficiency are fabricated by monolithically integrating the light emitting region with a suspended GaAs hemispherical lens. This design is being developed for electroluminescence refrigeration applications

JWA58

Stopping and Time Reversal of Light Pulses in Dynamic Coupled-Resonator Optical Waveguides via Bloch Oscillations, Stefano Longhi: Politecnico di Milano. Italy. The possibility to stop or time-reverse optical pulses in a dynamically-tuned CROW structure with broken translational-invariance is theoretically demonstrated. Pulse stopping and reversal exploits an optical analog of Bloch particle motion.

TWA59

Matrices and Necklaces of Solitons in Nonlocal Nonlinear Media, Daniel Buccoliero, Anton S. Desvatnikov, Wieslaw Krolikowski, Yuri S. Kivsbar: Australian Natl. Univ., Australia. We introduce novel classes of higher-order spatial optical solitons, analogous to Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) linear eigenmodes, and demonstrate numerically that modulational instability can lead to nontrivial transformations between solitons of different symmetries.

IWA60

New Collapsing Solutions of the Time-**Dispersive Nonlinear Schrodinger Equa** tion, Nir Gavish¹, Gadi Fibich¹, Luat Vuong², Alexander I. Gaeta^{2, 1}Tel-Aviv Univ Israel ²Cornell Univ., USA. We show that super-Gaussian pulses with anomalous dispersion collapse with a three-dimensional shell-type profile. These pulses undergo pulse splitting in space and time, and subsequently break into collapsing 3-D wavepackets.

JWA61

Controlling the Excited State Charge Transfer in DMABN Using Shaped Femtosecond Pulses, Christine L. Kalcic, D. Ahmasi Harris, Marcos Dantus; Michigan State Univ., USA. The ability of multiphoton intrapulse interference (MII) to regulate the formation of the twisted charge transfer state in DMABN upon three-photon excitation is explored and monitored via fluorescence.

JOINT

JWA • Poster Session II—Continued

JWA78

IWA62

Optical Field Enhancement in Tweezer Trapping, Mark J. Kendrick, Mark Blanding, David H. McIntyre, Oksana Ostroverkbova: Oregon State Univ., USA, Near-resonant light can be used to enhance optical trapping of particles with wavelength dependent optical responses. We present results from our study of optically enhanced forces acting on dielectric and metal nanoparticles in tweezers trapping.

TWA63

Light Grating Storage, Jose W. Tabosa¹ Arturo Lezama²; ¹Univ. Federal de Pernambuco, Brazil, ²Inst, de Física, Facultad de Ingeniería, Uruguay. Light grating storage and retrieval is reported in cold cesium atoms employing non-collinear beam configuration. The stored grating is retrieved in the forward and backward directions after a controllable storage time up to 4 us.

TWA64

Electron Spin Beat Nonlinear Susceptibility in Semiconductor Ouantum Wells. Nai H. Kwong, Stefan Schumacher, Rolf Binder; Univ. of Arizona, USA. We present a comprehensive theory of optically probing electron spin precession in low-density quantum well exciton populations. We trace the microscopic origins of features observed in differential transmission and Faraday rotation measurements to exciton interactions

TWA65

Incoherent Solitons in Fast and Local Nonlinear Media, Oren Coben¹, Henry C. Kapteyn¹, Margaret M. Murnane¹, LipFab Chong²; ¹JILA, Univ. of Colorado at Boulder, USA, ²Inst. of Material Res. and Engineering, Singapore. We predict randomly fragmented coherent breathers and partiallycoherent spatial solitons in instantaneous and local (e.g. Kerr) nonlinear media.

TWA66 Fast Photorefractive Self-Focusing in InP:Fe Semi-Conductor at Infrared Wavelengths, Naïma Khelfaoui¹, Delphine Wolfersberger¹, Cristian Dan¹, Hervé Leblond², Nicolas Fressengeas¹; ¹SUPELEC, LMOPS, France, ²Lab POMA, France. The fast self-trapping behaviour of an infrared beam in photorefractive InP:Fe is studied experimentally and theoretically versus the

Alexey Sukbinin², Alain Bourdier³, Daniel Mirell¹, Aleiandro Aceves², Jean-Claude Diels¹; ¹Ctr. for High Technology Materials, Univ. of New Mexico, USA, 2Dept. of Mathematics. Univ. of New Mexico, USA. 3CEA/ DAM, France. We present two simplified models for the propagation of a long pulse intensity. The laser is shown to be self-fo-UV filament in air, predicting the evolution cused in less than a millisecond at telecomof the beam diameter with distance, and the munications intensities. beam profile.

IWA70

linear fibers with linear gain.

IWA72

JWA71

Parametric Frequency Conversion of Optical Simulton Pulses, Matteo Conforti1. Fabio Baronio¹, Stefan Wabnitz², Antonio Degasperis³; ¹Universita di Brescia, Italy, ²Universite de Bourgogne, France, ³Univ. di Roma I, Italy. We present an analytical description of the parametric frequency conversion of short solitary wave optical pulses in quadratic nonlinear crystals controlled by

means of a continuous wave background.

retically. It is shown that the negative de-

fect can guide fundamental modes, dipole

sidered as an interesting alternative for the

development of miniaturized atomic fre-

quency references. Theoretical and experi-

mental results are presented.

Two-Dimensional Defect Modes in Op-Univ., USA. We investigated a power dependent laser linewidth broadening effect in a tically Induced Photonic Lattices, *lianke* Yang^{1,2}, Jiandong Wang¹, Zhigang Chen^{3,4}; sub-kHz single-longitudinal mode Er-doped ¹Dept. of Mathematics and Statistics, Univ. fiber ring laser using an intra-cavity of Vermont, USA, 2Tsinghua Univ., China, unpumped Erbium doped fiber loop. ³Dept. of Physics and Astronomy, San Francisco State Univ., USA, ⁴Nankai Univ., China, **IWA73** Localized linear modes due to bandgap guid-Laser Based Continuous-Wave Excitonic ance in two-dimensional photonic lattices Lyman Spectroscopy of Spin-Forbidden with a repulsive defect are investigated theo-Excitons in Cu.O. Kosuke Yoshioka, Takuro

modes and vortex modes. JWA69

JWA67

IWA68

Atomic Frequency References Based on Dark Resonances in Micrometric Thin

Lyman spectroscopy with a tunable CO₂ la-Cells, Lorenzo Lenci, Arturo Lezama, ser. The paraexcitons were found to have a lifetime of microseconds. Horacio Failache: Inst. de Física. Uruguay. Coherent population trapping resonances in pure alkaline micrometric thin cells are con-

Simulation of the Propagation of a UV Modeling Sub-Nanosecond Pulsed Laser Filament in the Air, Olivier J. Chalus1, Dynamics Using the Exponential Time Difference Method, Xin Liu, Ivan T. Lima, Orven F. Swenson: North Dakota State Univ.. USA. The authors show that the exponential time difference method is orders of magnitude faster than the standard finite difference time domain method to model the dynamics of longitudinally pumped subnanosecond pulsed dye lasers.

IWA75

IWA74

A High-Power, Single-Frequency Ti:Sapphire Laser for Water-Vapor DIAL, Analytical Dynamics of Optical Max Schiller, Gerd Wagner, Volker Similaritons, Stefan Wabnitz: Univ. de Wulfmeyer; Inst. of Physics and Meteorology, Bourgogne, France. We analytically describe Germany. A high-power Ti:Sapphire ring the attraction of parabolic pulses towards a laser with injection seeding at 820 nm is self-similar state in weakly dispersive nonpresented. Pumping a Brewster-cut crystal with 23-W pump power at 532 nm resulted in single-frequency operation with average power of 6 W.

Linewidth Broadening in Single-Mode Sub-kHz Fiber Ring Laser with IWA76

Unpumped Er-Doped Sagnac Loop, Jae-The Ouantum Noise Limits to Simulta-Ho Han, Yi Yang, Jin U. Kang; Johns Hopkins neous Intensity and Frequency Stabilization of Solid-State Lasers, Elanor Huntington¹, Charles C, Harb¹, M, Heurs², Timothy C. Ralph3; 1Univ. College, Univ. of New South Wales, Australia, ²Max-Planck-Inst. fur Gravitationsphysik (Albert-Einstein-Inst.) and Inst. fur Gravitationsphysik, Univ. Hannover, Germany, 3Univ. of Queensland, Australia. We incorporate the coupling between pump intensity and laser frequency noise into a quantum mechanical model for Ideguchi, Makoto Kuwata-Gonokami: Dept. a solid-state laser. A frequency feedback loop of Applied Physics, Univ. of Tokyo, and Socan reduce laser intensity noise to below lution-Oriented Res. for Science and Techthe quantum noise limit.

nology (SORST), JST, Japan. We developed a sensitive method to detect 1s paraexcitons IWA77

lasers.

in Cu₂O by using cw laser-based excitonic Theoretical Study of Mutual Injection Locking of Two Individual Lasers, Qiang Wang, Li Yan; Univ. of Maryland, Baltimore County, USA, Mutual Injection-locking of two individual lasers through an external combining section was theoretically studied. We found that larger lockable range can be

obtained with lower Q-factors for individual

Intracavity Beam Addition for Energy Scaling with a Six-Mirror Cavity, Ming Lei, Mali Gong, Qiang Liu, Yunxiang Wang; Tsinghua Univ., China, We present a novel and compact six-mirror cavity configuration to combine four beams intracavity for energy scaling. A single beam output exceeding 453mJ with 165µs duration is obtained, with the combination efficiency of 90,7%.

JWA79 Co²⁺:GSGG as a Saturable Absorber for Resonantly Laser Pumped 1.6 um Er:YAG Laser, Kelly L. Nash¹, Raylon M. Yow¹, John B. Gruber¹, Anmol S. Nijiar², Babram Zandi³, Milan R. Kokta⁴, Dhirai K. Sardar¹; ¹Univ. of Texas at San Antonio, USA, ²nLight Photonics, USA, ³ARL/Adelphi Lab Ctr., USA, ⁴Saint Gobain Crystals, USA. Co:GSGG has excellent spectroscopic properties as a saturable absorber for resonantly laser-pumped 1.6 um ErYAG at 1620 nm (RT). Absorption, emission cross sections, lifetimes, modeling results are reported for

3-level gain/4-level absorber. **IWA80** Minimizing Non-Radiative Losses in Erbium Laser Systems, Richard S. Quimby Nicholas I. Condon². Shawn P. O'Connor². Subrat Biswal², Steven R, Bowman²: ¹Worces-

ter Polytechnic Inst., USA, 2U.S. NRL, USA, Very low rates of excited-state absorption and upconversion were measured from the 4I12/2 level in Er3+ doped KPb2Cl2 crystals. Comparisons with other hosts suggest significant potential improvements in laser performance.

IWA81

Low Quantum-Defect Laser Oscillation by High Intensity Pumping at Room Temperature, Shinichi Matsubara¹, Kyousuke Uno¹, Yoshiaki Nakajima¹, Sakae Kawato¹, Takao Kobavashi¹, Akira Shirakawa²; ¹Fiber Amenity Engineering, Graduate School of Engineering, Japan, ²Inst. for Laser Science, Univ. of Electro-Communications, Japan, Ytterbium laser oscillations at 980.6 nm and 983.0 nm are observed by high intensity 978.1 nm pumping of around 1 MW/cm² at room temperature. Corresponding quantum defects are 0.26 %

and 0.50 %, respectively.

JWA82

Compact, 65 W, 10-30 kHz, TEM ...-Mode, **Q-Switched, Side-Diode-Pumped Yb:YAG** Laser, Mikhail A. Yakshin, Viktor A. Fromzel, Coorg R. Prasad: Science and Engineering Services, Inc., USA. We have developed a compact, side-diode-pumped, TEM_{oo}- mode Yb:YAG laser capable of delivering 65 W of Q-switched output power at 10-30 kHz. Induced lensing in the composite crystal is compensated by the choice of resonator.

IWA83

Optically Pumped Potassium Vapor Laser, Boris Zhdanov, Carl F. Maes, Thomas Ebrenreich, Andrew Havko, Nicholaus R. Koval, Edward T. Meeker, Ben Worker, Brian Flusche, Randall J. Knize; US Air Force Acad., USA. We present an optically pumped continuous wave Potassium vapor laser operating in a single longitudinal and a single transverse mode at 770 nm. The measured value of the slope efficiency was 20%.

IWA84 Rapidly Tunable, Narrow Linewidth, 1W, 1 kHz Ce:LiCAF Laser Pumped by the Fourth Harmonic of a Diode-Pumped Nd:YLF Laser for Ozone DIAL Measurements, Viktor A. Fromzel¹, Coorg R. Prasad¹, Karina B. Petrosyan¹, Yishinn Liaw¹, Shi

Wenbui¹, Mikhail A. Yakshin¹, Russell DeYoung2; 1Science and Engineering Services, Inc., USA, 2NASA Langley Res. Ctr., USA. A compact, rapidly tunable (282-315 nm), narrow line-width (0.2 nm) Ce:LiCAF laser pumped by the fourth harmonic of a diodepumped Nd:YLF laser is capable of delivering 1mJ/pulse at a pulse repetition frequency of 1 kHz

JWA85 Development of 50J Class Repetitive Laser Based on Nd-Doped Silica Glass, Takahiro Sato¹, Yasushi Fujimoto¹, Hajime Okada¹, Hidetsugu Yoshida¹, Masahiro Nakatsuka¹, Tetuji Ueda², Akira Fujinoki²; ¹Inst. of Laser Engineering, Osaka Univ., Japan, ²Res. and Application Lab, Shin-Etsu Ouartz Products Co., Ltd., Japan, We demonstrate a high energy laser oscillation (29 J) in Nd doped silica glass (Nd₂O₂: 1.34wt%, f30 mm x 300 mm) with high thermal shock parameter (12W/cm).

IWA86 2.5 MHz Line-Width High-Energy, 2um

Coherent Wind Lidar Transmitter, Mulugeta Petros¹, Jirong Yu², Bo Trieu², Yingxin Bai³, Paul Petzar³, Upendra N. Singh², Karl Reithmaier³; ¹Science and Technology Corp., USA, 2NASA Langley Res. Ctr., USA, 3SAIC, USA. The design of a diode pumped, injection seeded MOPA with a transform limited line width and diffraction limited beam quality is presented. This lidar transmitter produces over 300mJ energy at

10 Hz repetition rate.

IWA87 Thermo-Optical and -Mechanical Parameters of Nd:GdVO4 and Nd:YVO4, Yoichi Sato, Takunori Taira; Laser Res. Ctr. for Molecular Science, Inst. for Molecular Science, Japan. We measured thermal conductivity, thermal expansion coefficient, and thermal refractive index coefficient of Nd:GdVO, and Nd:YVO, Superiority comparisons of laser media under high power laser operations were also discussed from the viewpoints of thermal characteristics.

IWA88 100 mJ Q-Switched, High Efficiency, High Brightness Nd:YAG Oscillator: Wavefront Analysis, Demetrios Poulios¹, Paul Stysley¹, Richard Kay¹, Barry Coyle²; ¹American Univ., USA, ²NASA Goddard Space Flight Ctr., USA. A diode-pumped, 100 mJ/pulse, Nd:YAG oscillator employing a dual pump head design aligned orthogonally in an unstable resonator configuration producing aperture-free TEM beams is presented.

Gain Grating in a Nd:YVO, Microlaser, Aurélie Moreau¹, Qiong He¹, Isabelle Zaquine¹, Alain Maruani¹, Robert Frey^{2,3}; ¹GET/Telecom Paris, CNRS/LTCI, France, ²GET/Telecom Paris, France, ³CNRS/ LCFIO et Univ. Paris Sud. France. Intracavity gain gratings are theoretically demonstrated to exhibit diffraction efficiencies much larger than unity at pumping powers below lasing threshold. Experiments performed using a Nd-YVO, microlaser demonstrate huge enhancements of diffraction efficiency and angular selectivity.

TWA89

TWA90

Nd-Vanadate Thin-Disk Lasers under Diode Pumping into the ⁴F_{5/2} and ⁴F_{3/2} Levels, Nicolaie Pavel^{1,2}, Kai Lünstedt², Klaus Petermann², Günter Huber²: ¹Natl, Inst. for Lasers, Plasma and Radiation Physics. Romania. ²Inst. of Laser Physics. Univ. of Hamburg. Germany. We report on continuous-wave 532-nm Nd:YVO, thin-disk lasers with powers of 6.4 W and 4.4 W with pumping at 808 nm and 880 nm, respectively. Deep-blue emission in the watt-regime was achieved from Nd-doped vanadates

IWA91

Gain Dynamics and Frequency Pulling in Mode-Locked Lasers, Curtis R. Menyuk¹, Jared K. Wahlstrand², John T. Willits², Rvan P. Smith². Thomas R. Schibli². Steven T. Cundiff²; ¹Univ. of Maryland, Baltimore County, USA, 211LA, USA, Observations of the response of a mode-locked Ti:sapphire laser to an abrupt change in pump power show that gain dynamics should be included in a complete theory of its response to perturbations

Wed

Development of a Sodium Laser Guide

Star for Astronomical Adaptive Optics Systems, Thomas P. Rutten, Peter J. Veitch, Jesper Munch; Univ. of Adelaide, Australia. We describe a new laser design for a 50 W laser guide star source, suitable for large telescopes employing MCAO systems. Design verification experiments will be presented showing bandwidth control and progress towards power scaling.

IWA93

IWA92

Temporal Dynamics of Optical-to-Terahertz Conversion in Electro-Optic Crystal, Michael I. Bakunov^{1,2}, Sergey B. Bodrov^{1,2}, Alex V. Maslov³; ¹Dept. of Radiophysics, Univ. of Nizhny Novgorod, Russian Federation, ²Inst. of Applied Physics, Russian Acad. of Sciences, Russian Federation. ³Ctr. for Nanotechnology, NASA Ames Res. Ctr., USA, We developed a theory of the optical-to-terahertz conversion of a femtosecond laser pulse with finite width in a slab of nonlinear crystal. This theory explains previous experiments and reveals new schemes for terahertz generation.

EXHIBIT HALL, 100 LEVEL

JOINT

JWA • Poster Session II—Continued

JWA107

TWA94

THz-Wave Fiber Generator for 1-15THz Band, Yoshie Ohta, Tomoyu Yamashita, Yuji Matsuura, Hiromasa Ito; Toboku Univ., Japan. We demonstrated ultra wideband terahertz (THz) transmission through inner silver-coated hollow fiber using widely tunable THz-wave generator. The inner diameter of 304mm long silver-coated hollow fiber was 1mm. THz-wave transmission in 1-15THz was almost uniform.

IWA95

Efficient Terahertz Generation from Nanolayers to Microlayers of InN, Xiaodong Mu¹, Yujie J. Ding¹, Kejia Wang², Debdeep Jena², Yuliya B. Zotova³; ¹Lehigh Univ., USA, ²Univ. of Notre Dame, USA, ³ArkLight, USA. Efficient terahertz pulses have been generated based on resonant optical rectification using sub-picosecond laser pulses at 790 nm from nanolayers to microlavers of InN with the laver thicknesses in the range of 25-1270 nm.

IWA96

Wednesday, May 9

Optimal Cd Molar Fraction in Zn₁, Cd, Te Terahertz Emitters, Minwoo Yi1, Kyeongjin Jang¹, Jaewook Ahn¹, Inhee Maeng², Joo-Hiuk Son2; 1KAIST, Republic of Korea, 2Univ. of Seoul, Republic of Korea. The influence of Cd molar fraction on the terahertz generation from Zn1-xCdxTe has been studied. The optimal Cd compositions have been obtained as x=0.10 at λ=820nm and x=0.65 at λ=850nm.

IWA97

Design and Simulation of a Terahertz Negative Permeability Metamaterial with Connected Metallic Discs, Zhongyan Sheng; Wheaton College, USA. A negative permeability metamaterial is designed with 2 connected metallic discs inside a unit cell. It can be fabricated through thin-film processes. A negative permeability at ~1 THz is shown in the simulation result

Narrow-Line, High-Repetition-Rate THz-Wave Generation from Collinearly Phase-Matched Difference-Frequency Mixing in Periodically Poled Lithium Niobate, Tsong-Dong Wang, Han-Lung Chang, Shou-Tai Lin, Yen-Yin Lin, An-Chung Chiang, Yen-Chieb Huang, Huei-Lung Lu, Fan-Yi Lin; Natl. Tsingbua Univ., Taiwan. We report difference frequency generation of THz waves from collinearly phase-matched, periodically poled lithium niobate crystals. Transform-limited THz-

JWA98

repetition rate.

A fast, accurate technique for the three-dimensional characterisation of terahertz beams is presented. Using gold-on-glass resolution targets the beam profile, depth of focus and astigmatism of a quantum cascade laser-based imaging system have been wave pulses with a wavelength range bemeasured. tween 190~210 µm were generated at a kHz

IWA102

IWA101

IWA99 Optical-Pump-THz-Probe Studies of Carrier Dynamics in Hg-Based High-Temperature Superconducting Thin Films, Xia Li¹, Xuemei Zbeng², Paul Cunningham², L.Michael Havden², M. Valerianova^{3,4}. Stefan Chromik³, V. Štrbík³, P. Odier⁴, D. De Barros⁴, Roman Sobolewski¹: ¹Univ. of Rochester, USA, ²Univ, of Marvland, Baltimore Clausthal Laser Anwendungs Centrum, Ger-County, USA, ³Slovak Acad. of Science, many, ³Technische Univ. Braunschweig, Slovakia, ⁴Lab de Cristallographie-CNRS, Germany, 4Fraunbofer Inst. für Angewandte France. We report time-resolved carrier dy-Festkörperphysik, Germany, 5Physikalischnamics in Hg-Ba-Ca-Cu-O high-temperature Technische Bundesanstalt, Germany. superconductors using optical excitation and Photomixing is performed with a novel two-THz probe femtosecond spectroscopy. Picolor Nd:LSB laser that simultaneously emits cosecond quasiparticle dynamics observed at 1061.3 nm and 1063.9 nm in LT-GaAsSb in our experiments suggests that Hg-based antennas materials are attractive candidates for highspeed photodetectors. **IWA103**

IWA100 Radially Polarized Terahertz Beam Emission by Difference Frequency Generation in GaAs, Yuri H. Avetisyan, Karo Khachatryan; Yerevan State Univ., Armenia. It is shown that using quasi-phase-matched GaAs crystal in the scheme of Cherenkovtype difference frequency generation allows controlling the direction of terahertz emission and by that way achieving significant increase in the output power.

IWA104

Three-Dimensional Characterisation of Scaling of Line Excitation THz Array the Non-Gaussian Focused Beam from a Source, Joong H. Kim¹, Doug Denison², Terahertz Quantum Cascade Laser, Paul Michael Knotts², Stephen E. Ralph¹; ¹Geor-Dean, Muhamed U. Shaukat, Edmund H. gia Tech. USA. ²Georgia Tech Res. Ctr., USA. Linfield, Alexander G. Davies; Inst. of Mi-A new THz array method is proposed based crowaves and Photonics, Univ. of Leeds, UK. on the photoconductive line excitation. We present experimental demonstration of the scalability of the radiated THz power based on the number of antenna elements illuminated.

TWA105

Low Loss, Low Dispersion T-Ray Transmission in Microwires, Shahraam Afshar, Shaphik Atakaramians, Bernd M. Fischera, Heike Ebendorff-Heidepriemb, Tanya LT-GaAsSb Photomixer for THz Genera-Monro, Derek Abbott; Univ. of Adelaide, tion with a Two-Color Nd:LSB Microchiplaser, Ulrike Willer^{1,2}, Rafal Australia. We present low loss, < 0.01 1/ Wilk³, Wolfgang Schippers¹, Stefan Böttger¹, cm, and dispersion, < 10 ps/(km.nm), properties of microwires for terahertz transmis-Dirk Nodop¹, Tobias Schossig¹, Wolfgang Schade¹, Martin Mikulics³, Martin Koch³, sion. These wires have diameters smaller Martin Waltber⁴. Henning Niemann⁵. Bernd than the operating wavelength, resulting in Güttler⁵; ¹Inst. für Physik und Physikalische the propagation of enhanced evanescent Technologien, Germany, ²Technische Univ.

JWA106

plied field.

Observation of Long-Lived Screening in Low-Temperature-Grown GaAs Photoconductive Switches, Gabriel Loata, Torsten Löffler, Mark D. Thomson, Alvydas Lisauskas, Hartmut G. Roskos; Johann Wolfgang Goethe-Univ., Frankfurt, Germany. A subgroup of photoexcited carriers in biased few-mm-sized LT-GaAs switches is shown to recombine on a time scale of nanoseconds. This can induce field screening amounting to tens of percent of the ap-

Revisiting Chirped Probe Pulse Electro-Optic Terahertz Detection, Balakishore Yellampalle, Kiyong Kim, George Rodriguez, James H. Glownia, Antoinette J. Taylor; Los Alamos Natl. Lab, USA. The correct equa-

tion for terahertz pulse detection schemes employing a chirped optical probe pulse is derived and experimentally verified. The derived equation differs from the conventional expression through a phase factor.

Subwavelength THz Fibers, Hung-Wen Chen1, Ja-Yu Lu1, Li-Jin Chen1, Yu-Tai Li2, Ci-Ling Pan², Chi-Kuang Sun³: ¹Graduate Inst. of Electro-Optical Engineering, Natl. Taiwan Univ., Taiwan, 2Dept. of Photonics and Inst. of Electro-Optical Engineering. Natl. Chiao Tung Univ., Taiwan, 3Dept. of Electrical Engineering and Graduate Inst. of Electro-Optical Engineering, Natl. Taiwan Univ., Taiwan. From the spectral loss characteristics of subwavelength-diameter THz

fibers, our study supports the recent theory proposed by M. Sumetsky that diametervariation-induced-radiation is a dominant loss mechanism for subwavelength fibers which limits the lowest guidable frequency. **IWA108**

Single-shot THz Pulse Characterization with Dual Echelons, Ki-Yong Kim. Balakishore Yellamballe, Antoinette I, Tavlor, George Rodriguez, James H. Glownia; Los Alamos Natl. Lab. USA. Dual echelon optics is implemented to enable single-shot terahertz pulse characterization. This reported embodiment produces sequentially delayed multi-beamlets allowing two-dimensional electro-optic imaging with a time window of >10 ps and <25 fs temporal step size

IWA109

Limits of Strong Mode Confinement in Microdisk Terahertz Quantum-Cascade Lasers, Gernot Fasching¹, Alexander Benz¹, Aaron Maxwell Andrews¹, Karl Unterrainer¹, Reinhard Zobl², Tomas Roch², Werner Schrenk², Gottfried Strasser², Vincas Tamosiunas3,4; 1Photonics Inst. and Ctr. for Micro- and Nanostructures, Vienna Univ., Austria, ²Solid-State Electronics Inst. and Ctr. for Micro- and Nanostructures. Vienna Univ., Austria, 3Semiconductor Physics Inst., Lithuania, ⁴Vilnius Gediminas Technical Univ., Lithuania. We present microdisk terahertz quantum-cascade lasers with dimensions comparable to the spatial mode distribution inside the microcavity and present 3-D Finite-Difference Time-Domaine simulations which are in good agreement with our experimental findings.

JWA110 Spectral Loss Characteristics of

Highly Accurate Material Parameter Extraction from THz Time Domain Spectroscopy Data, Ioachim Pupeza, Rafal Wilk, Frank Rutz, Martin Koch: Inst. fuer Hochfrequenztechnik, Germany. We present a novel optical parameter extraction algorithm for THz time domain spectroscopy signal processing. To demonstrate the potential of our algorithm we investigate thin low index samples and samples with sharp absorption features.

IWA111 Pressure-Broadening Coefficient of Water Vapor Measured with a High Resolution, Coherent Tunable THz-Wave Spec-

trometer, GUO Ruixiang¹, Hiroaki Minamide¹, Seigo Obno¹, Hiromasa Ito^{1,2}; ¹RIKEN Sendai, Japan, ²Res. Inst. of Electrical Communication (RIEC), Toboku Univ., Japan. We developed a table-top, coherent tunable THz-wave spectrometer based on an injection-seeded THz-wave parametric generator, which was employed to study the far-infrared rotational spectrum of water vapor, N2 collision-broadening coefficient of water vapor is measured.

JWA112 Time Domain Terahertz Non-Destructive Evaluation of Water Intrusion in Com-

Combining of Modes of Broad Area La-

ser Diode into Single Mode Spot, Nikolai M. Stelmakh; Univ. of Texas at Arlington, USA. Multi-mode laser diode emission is reshaped into single-mode circular spot with the help of grating spectrometer and amplitude/phase spatial modulator. Paper investigates optical design and shows results on lateral modes combining.

IWA117 Structural Dependence of Optical Gain

and Carrier Losses in InGaN Quantum

Well Lasers, Jorg Hader¹, Jerome V.

Molonev¹, Stephan W, Koch²: ¹College of

Optical Sciences, Univ. of Arizona, USA,

²Dept. of Physics, Philipps Univ., Germany.

Using fully microscopic models it is shown

that piezoelectric fields in InGaN/GaN quan-

tum well structures lead to complex struc-

tural dependencies of the optical gain and

carrier losses resulting in non-trivial minima

Diode Laser MOPA System for the Gen-

eration of 920 nm Femtosecond Pulses

with 65 W Peak Power, Thorsten Ulm,

Harry Fuchs. Richard Wallenstein: Techni-

cal Univ. of Kaiserslautern, Germany. A

master oscillator power amplifier (MOPA)

generates chirped 3ps pulses at 920nm with a repetition rate of 4GHz. Without requir-

ing CPA the pulses are compressed to 600fs

Detailed Comparison of Injection-

Seeded and Self-Seeded Performance of

a Gain-Switched Laser Diode, Khu T. Vu,

Andrew Malinowski, Michael A.F. Roelens,

with a peak power of up to 65W.

for the threshold current.

IWA118

JWA119

Growth Studies of Ouantum Cascade Lasers with Current-Blocking Structures, Liwei Cheng¹, Xiaoming Ji¹, Fow-Sen Choa¹, Zbijun Fan², Claire F, Gmachl², Jenvu Fan³, Xiaojun Wang³, Rich Leavitt⁴, John Bruno⁴, John Bradshaw4; 1Univ. of Maryland, Baltimore County, USA, ²Princeton Univ., USA, ³AdTech Optics, USA, ⁴Maxion Technologies Inc., USA, Buried-heterosturcture regrowths have very significant impact on quantumcascade-laser (OCL) threshold, output power, and reliability. We report detailed BH regrowth studies on OCLs along different crystal orientations. Low-leakage block-

ing layers were successfully developed for high-performance OCLs.

IWA115 Detection of Gold in the Facet of a Failed Semiconductor Laser Diode, John A. Chaney¹, Terence S. Yeoh¹, Neil A. Ives¹, Martin Leung¹, Zack Feinberg¹, James G. Ho²: ¹Aerospace Corp., USA, ²Northrop Grumman Corp., Space Technology, USA. We analyzed the damaged region of a failed

semiconductor laser diode using FIB nanotomography and 3-DTOF-SIMS. Gold, a deep level trap, was found between the antireflective coating and the semiconductor facet

JWA116

Closed-Loop Design and Demonstration of an 1178nm Multi-Watt VECSEL for a Sodium Guidestar Source, Jerome V. Moloney¹, Joerg Hader¹, Armis R. Zakharian¹, Li Fan², Chris Hessenius², Mahmoud Fallahi², Stephan W. Koch³, Wolfgang Stolz3; 1Nonlinear Control Strategies, USA, ²Univ. of Arizona, USA, ³Univ. of Marburg, Germany. The first closed-loop demonstration of a multi-watt vertical-external-cavity-semiconductor laser designed for vellow emission at 589 nm via intra-cavity second harmonic generation will be discussed

ment leads to no degradation of performance. **IWA120** Spectral and Spatial Mode Control in Self-Seeded Semiconductor Disk Laser Using Optical Feedback from Fiber Bragg Grating, Dionisio A. Pereira, Jussi Rautiainen, Antti Härkönen, Oleg G. Okhotnikov; Optoelectronics Res. Ctr., Tampere Univ. of Technology, Finland. Semi-

conductor disk laser with mode control using the feedback from a fiber Bragg grating. With seed signal, the wavelength is locked to the Bragg wavelength and beam quality

factor M² decreases from 1.6 to below 1.05.

posites and Corrosion under Insulation, Jeffrey S. White, David A. Zimdars; Picometrix, LLC., USA, Time domain terahertz (a.k.a. T-Ray or THz) imaging is used to detect water intrusion and delamination in composite structures used in radomes. Corrosion is detected on pipes beneath opaque insulation. JWA113

Morten Ibsen, David J. Richardson; Southampton Univ., UK. We investigate the performance of a gain-switched picosecond laser diode operating at 1.06 um when either injection- or self- seeded. We conclude that the much simpler self-seeding arrange-

JWA114

JOINT

JWA • Poster Session II—Continued

JWA133

IWA121

Metal-Encased Semiconductor Nanowires as Waveguides for Ultrasmall Lasers, Alexey V. Maslov¹, Cun-Zheng Ning^{1,2}: ¹NASA Ames Res. Ctr., USA, ²Ctr. for Nanophotonics and Dept. of Electrical Engineering, Arizona State Univ., USA. We show that a semiconductor nanowire encased by a metal offers the smallest laser waveguide, despite the large Joule loss. The TM., mode immediately above its cut-off is most advantageous for making sub-wavelength lasers

JWA122 Analysis of Ring-Metal-Aperture VCSELs

for Single-Lateral-Mode Operation, Gennady A. Smolyakov, Marek Osinski; Univ. of New Mexico, USA. The role of metal apertures in lateral-mode confinement in VCSELs is clarified by a detailed effectivefrequency-method analysis of an oxide-confined VCSEL structure. The conditions for suppression of higher-order lateral modes using metal apertures are established.

JWA123

Single-Contact Multi-Spatial-Mode Mode-Locking Fabry-Perot Semiconductor Laser Diodes, Weiguo Yang; Bell Labs, USA. A time-domain analysis of single-contact multi-spatial-mode mode-locking semiconductor lasers is presented with simplified treatments of material gain that captures the picoseconds laser dynamics. The equivalent saturable absorption is shown resulting from

active multi-spatial-mode coupling.

Emission Characteristics of InGaN/GaN

IWA127

the electrode used.

IWA128

sers.

JWA129

IWA124

JWA125

IWA126

Vertical-Cavity Surface-Emitting Lasers, Jung-Tang Chu, Tien-chang Lu, Hao-Chung Kuo, Shing-Chung Wang; Dept. of Photonics and Inst. of Electro-Optical Engineering, Natl. Chiao Tung Univ., Taiwan. Lasing characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers were investigated. The laser emission showed single and multiple spots emission patterns with spectral and spatial variation under different pumping conditions.

Transient Thermal Properties of High-

Power Diode Laser Bars. *Mathias Ziegler*¹. Fritz Weik¹, Jens W. Tomm¹, Thomas Elsaesser¹, Włodzimierz Nakwaski², Robert P. Sarzała²; ¹Max-Born-Inst. fuer Nichtlineare Optik und Kurzzeitspektroskopie, Germany, ²Lab of Computer Physics, Inst. of Physics. Technical Univ. of Lódź. Poland. The transient thermal properties of highpower diode laser bars with active and passive cooling are analyzed experimentally with thermal imaging and through their thermal wavelength tuning behavior and modeled with the finite element method.

Carrier Capture and Recombination in 2.4µm GaSb-Based Type-I Quantum Well High Power Diode Lasers, Leon Shterengas, Dmitry Donetsky, Michael Kisin, Gregory Belenky; State Univ. of New York at Stony Brook, USA, Carrier lifetime of 2ns was measured in GaSb-based type-I quantumwell high power laser heterostructures at threshold carrier concentration. Increased carrier capture rate was observed in laser heterostructures with reduced waveguide thickness

Axis and Ring Mode Switching in Multi-Nanosecond to Microsecond Dynamics Electrode GaAs Quasi-Stadium Laser Diof 1040nm Semiconductor Disk Lasers, odes, Takebiro Fukushima¹, Takabisa Sangam Chatterjee¹, Wolfgang Diebl^{1,2}, Haramava²: ¹Dept. of Communication En-Swantje Horst¹, Kristian Hantke¹, Wolfgang gineering, Okayama Prefectural Univ., Ja-Stolz¹, Angela Thränhardt¹, Stephan W. pan, ²Dept. of Nonlinear Science, ATR Wave Koch1, Peter Brick2, Michael Furitsch2, Stefan Engineering Labs, Japan. We fabricated and Illek², Ines Pietzonka², Johann Luft², tested multi-electrode guasi-stadium laser Wolfgang W. Rühle1; 1 Faculty of Physics and diodes having GaAs/AlGaAs GRIN-SCH-Material Sciences Ctr., Philipps-Univ. SOW structures. Axis and ring mode switch-Marburg, Germany, ²Osram Opto Semiconing was achieved under CW operation for ductors GmbH, Germany. We report on the output powers up to 15 mW by selecting lasing dynamics of semiconductor disk lasers following well and barrier pumping with both 500ns and 5µs pulses. The dynamics are explained using rate-equations.

JWA130

Photon Coupling Mechanism in 1.3-µm Quantum-Dot Lasers, Chaoyuan Jin,

JWA131 Huiyun Liu, Kristian M. Groom, Mark Development of a Clock Laser of Ca+ Ion for the Optical Frequency Standards, Hopkinson, Tom J. Badcock, Richard J. Royce, David J. Mowbray; Univ. of Sheffield, Ying Li, Shigeo Nagano, Hiroyuki Ito, UK. A room-temperature negative charac-Kensuke Matsubara, Masatoshi Kajita, teristic temperature is demonstrated for a p-Mizubiko Hosokawa: Natl. Inst. of Informatype modulation doped 1.3-um quantum dot tion and Communications Technology, Jalaser. A photon coupling mechanism is purpan. A narrow linewidth diode laser is beposed to explain the temperature-dependent ing developed. The laser linewidth is re-Ith for both p-doped and un-doped QD laduced to 66 Hz. The long term frequency drift is reduced 0.5 Hz per second, measured by Gigajet 20W optical frequency comb

Narrow Spectral Linewidth of Al-Free Active Region DFB Laser Diodes Operat-JWA132

ing at 852nm, Vincent Ligeret¹, Shailendra Highly Efficient and Compact Green Bansropun², Michel Lecomte¹, Michel VECSEL by Novel Optical End-Pumping Calligaro¹, Olivier Parillaud¹, Michel Scheme, Soobaeng Cho, Gi Bum Kim, Junbo Krakowski1; 1Alcatel-Thales III-V Lab, Lee, Jun-Youn Kim, Jaeryung Yoo, Ki-Sung France, ²Thales Res. and Technology, Kim, Sang-Moon Lee, Taek Kim, Yongjo France. We have developed single frequency Park; Samsung Inst. of Technology, Repuband single spatial mode laser structures with lic of Korea. We report on the development stable narrow linewidth (<1MHz) and high and demonstration of the watt-level operaoptical power (40mW), using an aluminium tion of a compact green vertical external free active region for Cs pumping at 852nm. cavity surface emitting laser optically endpumped by a single chip laser diode without any focusing lenses.

Pulsed High Duty-Cycle Operation of λ ~ 8µm Quantum Cascade Lasers, Tiffany Ko, Zhijun Liu, Claire Gmachl; Princeton Univ., USA. We report on high duty-cycle pulsed and burst-mode operation of λ -8µm quantum cascade lasers under ambient conditions for photo-acoustic spectroscopy. An optimum in average optical power and efficiency is seen around 800kHz and 50% dutycvcle.

IWA134 Temperature-Stable Operating Current

of Surface Plasmon VCSELs with Metal Nanohole Arrays, Tatsuya Tanigawa, Toshikazu Onishi, Jun Shimizu, Tetsuzo *Ueda, Daisuke Ueda; Semiconductor Device* Res. Ctr., Semiconductor Co., Matsushita Electric Industrial Co., Ltd., Japan. Temperature-stable operation of 850nm VCSELs with sub-micron metal hole arrays are presented. The resultant variation of the operating current from 10°C to 90°C is as small as 0.65mA at the output power of 1mW.

JWA135

Nonlinear Carrier Waves and Gain Oscillations in Infrared and Terahertz power at 5K. Quantum Cascade Lasers, Carsten Weber¹ Fouad Banit¹, Andreas Wacker², Andreas Knorr¹; ¹Inst. für Theoretische Physik, Technische Univ. Berlin, Germany, ²Fysiska Inst., Lunds Univ., Sweden. The pump pulse induced charge dynamics in quantum cascade laser structures is analyzed for typical examples of infrared and terahertz lasers in pump-probe spectra and electronic wave packet propagation using a density-matrix approach.

JWA136

Above Room-Temperature Operation of InAs/AlSb Quantum Cascade Lasers, Yoshitaka Moriyasu^{1,2}, Keita Ohtani^{1,3} Hidekazu Obnisbi¹. Hideo Obno¹: ¹Res. Inst. of Electrical Communication, Toboku Univ., Japan, ²AsabiKASEI EMD Corp., Japan, ³Japan Science and Technology Agency, Japan. Above room temperature operation of InAs/ AlSb quantum cascade lasers emitting at around 6 µm are reported. The threshold current in pulsed mode is 5.3 kA/cm² at 300 K and maximum operating temperature is 373 K.

IWA137

Single-Mode Surface-Emitting Terahertz Quantum Cascade Lasers Operating up

to ~ 150 K, Sushil Kumar¹, Benjamin S. Williams¹, Qi Qin¹, Alan W. M. Lee¹, Qing Hu1, John L. Reno2; 1MIT, USA, 2Sandia Natl. Labs, USA. We report robust single-mode operation of surface-emitting distributedfeedback terahertz quantum-cascade lasers in metal-metal waveguides. Grating devices span a range of 0.35THz around 2.9THz. with 149K maximum pulsed operating temperature, and >6mW continuous-wave

JWA138 **Difference Frequency Generation from** Integrated Nonlinearities in Two-Wavelength Quantum Cascade Lasers, Daniel Wasserman¹, Scott S, Howard¹, Claire Gmachl¹, Alexev Belvanin², Deborah Sivco³: ¹Princeton Univ., USA, ²Texas A&M Univ., USA. ³Bell Labs. Lucent Technologies. USA. Evidence for Difference Frequency Generation in Quantum Cascade Lasers with integrated nonlinearities is presented. Light at the difference frequency (λ =13.3µm) is detected from a two-wavelength (λ = 5.3µm and 8.8µm) laser processed with a split-ridge configuration.

TWA139

Very Low-Threshold-Current-Density 1.34-µm GaInNAs/GaAs Quantum Well Lasers with a Quaternary-Barrier Structure, Chaovuan lin, Huivun Liu, Shivong Zhang, Robert Airey, Mark Hopkinson; Univ. of Sheffield, UK. A quaternary-barrier structure is employed to reduce the strain at the interface between the quantum well and barriers for GaInNAs/GaAs materials. A vervlow room-temperature threshold current density of 178Å/cm² is demonstrated with 1.34um GaInNAs/GaAs lasers.

TWA140 High Performance 800-1000nm Single

Mode Lasers Using an Asymmetric Waveguide, Bocang Qiu, Stewart D. McDougall, John H. Marsh; Intense Ltd, UK. We report on the design and fabrication of high performance 800-1000 nm high power lasers using an asymmetric waveguide structure. The structure offers lower beam divergence, improved power kink and reduced resistively.

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	QELS	JOINT		CLEO		QE	LS
1:30 p.m. – 3:15 p.m. CWA • Mode-Locked Semiconductor Lasers I Cun-Zheng Ning; NASA Ames Res. Ctr., USA, Presider	1:30 p.m. – 3:15 p.m. QWA • Symposium on Degenerate Fermi Gases Phillip Gould; Univ. of Connecticut, USA, Presider	1:30 p.m. – 3:15 p.m. JWC • Large High-Intensity Lasers Craig Siders; LLNL, USA, Presider	1:30 p.m. – 3:15 p.m. CWB • Ultrafast Optical Parametric Amplifiers Jean-Jacques Zondy; Observatoire de Paris, France, Presider	1:30 p.m. – 3:15 p.m. CWC • Plasmonics and Metamaterials Hatice Altug; Stanford Univ., USA, Presider	1:30 p.m. – 3:15 p.m. CWD • Beam Combination and Regenerative Amplifiers Hagop Injeyan; Nortbrop Grumman Corp, USA, Presider	1:30 p.m. – 3:15 p.m. QWB • Pulse Shaping Alexei Sokolov; Texas A&M Univ., USA, Presider	1:30 p.m. – 3:15 p.m. QWC • Dynamic Phenomena and Chaos Alexander E. Kaplan; Johns Hopkins Univ., USA, Presider
CWA1 • 1:30 p.m. Tutorial Monolithic Mode Locked Quantum Dot Lasers, Ian H. White, Mark G. Thompson, Richard V. Penty; Univ. of Cambridge, UK. Quantum-dot active material systems are proving to be an excellent choice for mode- locked laser applications. High-power, high repetition-rate picosecond and sub-picosec- ond pulse generation is now readily achiev- able with promising results for ultra-low jit- ter performance.	QWA1 • 1:30 p.m. Unvited Superfluid Ultracold Fermi Gases, Wolfgang Ketterle; MIT, USA. We have ex- pored several aspects of superfluidity of ultracold fermionic atoms, including super- fluidity of rotating elouds, of clouds with an imbalance in the population of the two com- ponents, and of atoms in an optical lattice.	JWC1 • 1:30 p.m. Invited MegaJoule NIF, Edward I. Moses; ILIN, USA. Commissioning of the first 48 of 192 laser beams at the National Ignition Facility has resulted in the first-ever operational MegaJoule laser. A review of the laser per- formance and experimental campaign plans will be presented.	CWB1 • 1:30 p.m. Variational and WKB Descriptions of Laterally Localized Eigenmodes in Non- Collinear Optical Parametric Amplifiers, <i>Bedros Afeyan¹, Mathieu Charbonneau-</i> <i>Lefort⁹, Martin M. Fejer², ¹Polymath Res. Inc.,</i> <i>USA, ²Ginzton Lab, Stanford Univ., USA.</i> With a finite transverse width pump, non- collinear interactions result in metastable or stable laterally localized bound states. The physical processes involved are group ve- locity walk-off, diffraction, chirped QPM gratings and different pump shapes.	CWC1 • 1:30 p.m. Invited Metamaterial Nanophotonics, Nader Engbeta; Univ. of Pennsylvania, USA. Fun- damental properties of the concept of opti- cal "lumped" nanocircuit elements using optical metamaterial/plasmonic structures are discussed, and several cases of more complex nanophotonic circuits and systems using these lumped elements are studied using full-wave simulations.	CWD1 • 1:30 p.m. First Experimental Demonstration of Fiber Amplifier Array Phase Locking without an External Reference Beam, Thomas M. Shay ¹ , Vincent Benbam ² , Jeffrey T. Baker ³ , Anlbony D. Sanchez ¹ , Sg. Daniel Pilkington ¹ , L1. Douglas Nelson ¹ , L1. Chunte A. Lu ¹ ; ¹ AFRL, USA, ² IIT Industries, USA, ³ Boeing LTS Inc., USA. A novel, highly accu- rate, all electronic architecture for phase locking arrays of optical fibers without a reference beam is demonstrated. The mea- sured phase error is λ /20 for both passive fibers and for fiber amplifier arrays.	QWB1 • 1:30 p.m. Tutorial Temporally Focused Pulses and Coher- ent Control for Nonlinear Microscopy, <i>Yarael</i> . Nonlinear microscopy with femtosecond lasers is enhanced by pulse shaping using concepts of coherent control. We review some of these ideas, including the replacement of spatial scanning by tem- poral focusing.	QWC1 • 1:30 p.m. Invited Synchronization and Chaos, <i>Rajarsbi</i> <i>Roy; Univ. of Maryland, USA</i> . Identical syn- chronization of the chaotic fluctuations of nonlinear optical systems leads to schemes for communication. Extensions to new phe- nomena including generalized synchroniza- tion and mutually coupled nonlinear sys- tem dynamics will be described.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	<i>PhAST</i> ROOM 1 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 2 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 3 (EXHIBIT FLOOR)
QE	ELS		CLEO		JOINT	Ph.	4 <i>S T</i>
1:30 p.m. – 3:15 p.m. QWD • Photonic Crystals <i>Won Park; Univ. of</i> <i>Colorado, USA, Presider</i>	1:30 p.m. – 3:15 p.m. QWE • Dynamics of Magnetic and Strongly Correlated Materials Presider to Be Announced	1:30 p.m. – 3:15 p.m. CWE • Cavity-Based Optical Sensing <i>James Gord; US Air Force,</i> <i>USA, Presider</i>	1:30 p.m. – 3:15 p.m. CWF • Photonic Bandgap Fibers Jean Toulouse; Lebigh Univ., USA, Presider	1:30 p.m. – 3:15 p.m. CWG • Joint Symposium on THz QCLs I Rui Q. Yang; JPL, USA, Presider	12:30 p.m. – 2:30 p.m. JWB • Regional Overviews of the Status of Laser Applications Bo Gu; GSI Lumonics Inc., USA, Presider	12:30 p.m. – 2:15 p.m. PWA • Stand-off and Point Detection Ruth Woodward; HT Consulting (England), UK, Presider	12:30 p.m. – 2:30 p.m. PWB • Solid-State Lighting I Ian Ferguson; Georgia Tech, USA, Presider
					JWB1 • 12:30 p.m. Invited A View from a Leading Chinese Laser System Manufacturer, Rangda Wu; Wuban Chutian Laser (Group) Corp., China. General description of the industrial laser processing market in China, prospect and developing trend of the china industrial la- ser processing market, introduction of Chutian Laser group and its products.	PWA1 • 12:30 p.m. Invited Development of a LIDAR Controlled Air- space Scanner for Bio-Aerosol Detec- tion, <i>fack Bufton</i> ; <i>Science & Engineering</i> <i>Services, Inc., USA</i> . A standoff bio-aerosol- sensor is in prototype development and test for short-range building-interior applications. It measures elastic backscatter at ultraviolet and near-infrared laser wavelengths to de- tect respirable aerosol clouds and measures ultraviolet fluorescence for aerosol discrimi- nation.	PWB1 • 12:30 p.m. Invited LEDs, Volker Haerle; Osram Opto Semicon- ductors GmbH, Germany: Abstract not avail- able.
					JWB2 • 1:00 p.m. Invited Overview and Recent Topics in Indus- trial Laser Applications in Japan, <i>Kunibiko Washio; Paradigm Laser Res. Ltd.,</i> <i>Japan.</i> This paper presents overview on trends of domestic production of laser ma- terials processing equipment and introduces some recently achieved technological ad- vances in industrial laser applications in Ja- pan with a slighly emphasis on micro-pro- cessing applications.	PWA2 • 1:00 p.m. Invited Hyperspectral Imaging Detection of CBE Threat Materials, Patrick Treado; ChemImage Corp., USA. Chemical imaging, a multi-mode hyperspectral imaging ap- proach combining Raman, fluorescence and NIR spectroscopies, is being evaluated for point and standoff detection of chemical, biological and explosive (CBE) threats. Re- sults from sponsored studies will be pre- sented.	PWB2 • 1:00 p.m. Invited Development of GaN Substrates for GaN Based Laser Diodes, <i>Keith Evans; Kyma,</i> USA: Abstract not available.
QWD1 • 1:30 p.m. Invited Enhancement of Light Emission in Sili- con Photonic Crystal Slabs, <i>Lucio Claudio</i> Andreani ¹ , Michele Belotti ¹ , Matteo Galti ¹ , Dario Gerace ¹ , Marco Liscidini ¹ , Maddalena Patrini ¹ , Alberto Politi ¹ , Alessia Irrera ² , Maria Miritello ² , Francesco Priolo ² , Yong Chen ^{3,4} , ¹ Univ. of Catania, Italy, ³ LPN- CNRS, France, ⁴ Ecole Normale Supérieure, France. Silicon-on-insulator photonic crys- tal waveguides with an active layer contain- ing Er ⁴ ions displays strong enhancement of 1.54 µm emission at room temperature. A theory of photonic dispersion and spon- taneous emission is discussed.	QWE1 • 1:30 p.m. Multi-THz Conductivity and Lattice Dy- namics during a Fentosecond Insulator- Metal Transition in VO, Carl Kübler ¹ , Henri Ebrke ¹ , Rupert Huber ¹ , Alfred Leitenstorfer ¹ , Rene Lopez ^{2,3} , Andrej Halabica ² , Ricbard F. Haglund ² ; ¹ Univ. of Konstanz, Germany, ² Vanderbilt Univ., USA, ³ Univ. of North Carolina, USA. Ultra- broadband THz spectroscopy directly moni- tors the fentosecond onset of conductivity during the photoinduced insulator-to-metal phase transition in vanadium dioxide. We observe coherent structural distortions via anharmonic phonon coupling and fluence- dependent self-trapping of excitons.	CWE1 • 1:30 p.m. Stimulated Raman Gain Spectroscopy with Continuous-Wave Cavity Ringdown Detection, <i>Florian V. Englich, Yabai He,</i> <i>Brian J. Orr; Macquarie Univ., Australia.</i> A novel form of continuous-wave laser spec- troscopy entails cavity-ringdown detection of stimulated Raman gain, with co-propa- gating pump and Stokes beams to minimise Doppler broadening, Molecular rovibrational Raman spectra of methane gas are recorded.	CWF1 • 1:30 p.m. Large Pitch Kagome-Structured Hollow- Core PCF, Francois Courty, Fetab Benabid, Philip S. Light, Univ. of Bath, UK. A new type of hollow-core-PCF based on large pitch (~12µm) kagome-lattice cladding is reported. The fiber exhibits broad visible and IR trans- mission bands with low loss, low chromatic dispersion and high core-light confinement.	CWG1 • 1:30 p.m. Invited Terahertz Quantum Cascade Lasers, Ben- jamin Williams ¹ , Susbil Kumar ¹ , Qi Qin ¹ , Alan Wei Min Lee ¹ , Qing Hu ¹ , Jobn L. Reno ² , Z. R. Wasileuski ² , H. C. Liu ² , ¹ MIT, USA, ² Sandia Natl. Labs, Ctr. for Integrated Nanotechnologies, USA, ³ Natl. Res. Council, Canada. We provide an overview of terahertz quantum cascade lasers based on resonant-phonon depopulation and metal- metal waveguides, including two-phonon resonant-phonon depopulation schemes, long wavelength operation, and real time terahertz imaging.	JWB3 • 1:30 p.m. Invited Industrial Applications of Laser Direct- Write Processing: A Review, Andrew Holmes ¹ , Koji Sugioka ² , Bo Gu ² ; 'Imperial College, UK, ² RIKEN, Japan, ³ CSI Group, USA. The use of laser direct-write (LDW) in ad- vanced manufacturing processes is on the increase. This paper will review current in- dustrial applications of LDW worldwide, and discuss the future prospects for LDW tech- nologies.	PWA3 • 1:30 p.m. A Fiber-Coupled Eye Safe Spectrometer for the Stand-off Detection of Explo- sives, <i>Cbristoph Bauer¹</i> , <i>Jörg Burgmeter²</i> , <i>Gerbard Holl²</i> , <i>Wolfgang Schade²</i> ; ¹ <i>LAC TU</i> <i>Clausthal, Germany, ¹IPPT TU Clausthal,</i> <i>Germany, ³WIWEB, Germany,</i> A compact laser spectrometer for the detection of ex- plosives from a safe spot is presented. This laser setup also opens the possibility for the trace detection of explosives.	PWB3 • 1:30 p.m. Invited Can We Fabricate Efficient White-Light InGaN/GaN Quantum-Well Light-Emit- ting Diodes without Using Phosphors? C. C. Yang, Chi-Feng Huang, Dong-Ming Yeh, Cheng-Yen Chen, Chib-Feng Lu, Tsung- Yi Tang, Jeng-Ji Huang, Yen-Cheng Lu, Ying-Shen Chen, Wen-Yu Shiao, Kun-Ching Shen, Yun-Li Li, J. J. Huang; Natl. Taiwan Univ., Taiwan. We report some recent de- velopments in all-semiconductor multi-color and white-light light-emitting diodes. The potential of the development of phosphor- free all-InGaN/GaN quantum-well white- light light-emitting diode will be evaluated.

ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	QELS	JOINT		CLEO		C	ELS
CWA • Mode-Locked Semiconductor Lasers I— Continued	QWA • Symposium on Degenerate Fermi Gases— Continued	JWC • Large High-Intensity Lasers—Continued	CWB • Ultrafast Optical Parametric Amplifiers— Continued	CWC • Plasmonics and Metamaterials—Continued	CWD • Beam Combination and Regenerative Amplifiers—Continued	QWB • Pulse Shaping— Continued	QWC • Dynamic Phenomena and Chaos— Continued
			CWB2 • 1:45 p.m. A Simple Scalable Solid-State 589nm La- ser Guide Star Source Based on Optical Parametric Amplifiers, Barry Luther- Davies', Vesselin Kolev', Malle Duering ² ; ¹ Australian Natl. Univ., Australia, ² Fraunbofer Inst. fur Laser Technik, Ger- many. We describe a method for producing high power coherent light at 589nm based on a scalable, passively mode-locked, Nd:YVO ₄ laser and a seeded optical para- metric amplifier. Average powers of 4.6W at 589nm have been produced.		CWD2 • 1:45 p.m. Theoretical Model for Self-Synchronous Locking of Optical Coherence by Single- Detector Electronic-Frequency Tagging, <i>Thomas M. Shay; AFRI, USA.</i> The first theory for a novel coherent beam combination ar- chitectures that completely eliminate the separate reference beam are presented. These architectures greatly simplify the phase locking system without compromis- ing phase locking performance.		
	QWA2 • 2:00 p.m. Envited Collective Excitation Modes in the BEC- BCS Crossover, Rudolf Grimm ^{1,2} ; ¹ Inst. of Experimental Physics and Ctr. for Quantum Physics, Univ. of Innsbruck, Austria, ² Inst. for Quantum Optics and Quantum Infor- mation, Austrian Acad. of Sciences, Austria. We report on recent developments in our experiments on ultracold Fermi gases. This includes measurements of collective modes in the BEC-BCS crossover in ⁶ Li, and first experiments on a Fermi-Fermi mixture of ⁶ Li and ⁶ K.	JWC2 • 2:00 p.m. A 355 TW Femtosecond Tissapphire La- ser Facility with Three Stage Amplifiers, Zbi Y. Wei ¹ , Zbaobua Wang ¹ , Jie Zbang ¹ , Peng Wang ¹ , Weijun Ling ² , Jiangfeng Zbu ¹ , Jinrong Tian ¹ , 'Beijing Natl. Lab for Con- densed Matter Physics, Inst. of Physics, Chi- nese Acad. of Sciences, China, ² Xian Inst. of Optics and Precision Mecbanics, Chinese Acad. of Sciences, China. A compact femtosecond Tissapphire laser facility with three stage amplifiers was developed. By eliminating ASE and shaping spectrum, we generated 11 Jaser pluse at duration of 31fs, which corresponds to peak power of about 355TW.		CWC2 • 2:00 p.m. Compact Couplers between Dielectric and Metal-Dielectric-Metal Plasmonic Waveguides, Georgios Veronis, Wonseok Shin, Shanhui Fan; Stanford Univ., USA. We theoretically investigate the properties of compact couplers between high-index-con- trast dielectric waveguides and metal-dielec- tric-metal subwavelength plasmonic waveguides. We show that they can be de- signed to have high transmission efficiency over a broad range of wavelengths.	CWD3 • 2:00 p.m. Laser Beam Combing for High-Power, Broadband Sources Using Two-Step Re- fractive Grating, Mona Mayeb, Faramarz Farabi; Ctr. of Optoelectronics and Optical Communications, Univ. of North Carolina at Charlotte, USA. An efficient method for addition of mutually incoherent laser sources in a two-step diffractive grating. Multiple laser beams in different range of wavelength could be combined with the efficiency greater than 70%.		QWC2 • 2:00 p.m. Nonlinear Dynamics in Zinc-Porphyrin Microcavities , <i>Pavlos G. Savvidis¹², L. G.</i> <i>Connolly³</i> , <i>Maurice S. Skolnick³</i> , <i>David G.</i> <i>Lidzey³</i> , <i>Jeremy J. Baumberg⁴</i> , ¹ <i>Univ. Of</i> <i>Crete, Greece, ²PORTH, Greece, ³Dept. of</i> <i>Physics and Astronomy, Univ. of Soutbampton, UK.</i> <i>of Soutbampton, UK.</i> We report on ultrafast dynamics of polaritons in organic microcavities. Polariton dynamics is found to be governed by fast vibronic relaxation and intersystem crossing. Lower polariton branch blue-shift indicates the presence of nonlinear interactions.
		JWC3 • 2:15 p.m. Generation and Characterization of Femtosecond Petawatt Ti:Sapphire La- ser, Xiaoyan Liang', Yuxin Leng', Cheng Wang', Libuang Lin', Chuang Li', Baozben Zhao', Yunbua Jiang', Xiaoming Lu', Mingyun Hu', Halibe Lu', Dingjun Yin', Yongliang Jiang', Cbunmei Zhang', Xingqiang Lu', Hui Wei', Jianqiang Zhu', Ruxin Li', Zbizhan Xu', 'State Key Lab of Higb Field Laser Physics, Shangbai Inst. of Optics and Fine Mechanics, China. 'Joint Lab of Higb Power Laser Physics, Shangbai Inst. of Optics and Fine Mechanics, China. A Ti:sapphire laser with output of 0.89PW/ 29.0fs based on the scheme of chirped pulse amplification was achieved in large aperture amplifiers by effective suppression of parasitic lasing.	CWB4 • 2:15 p.m. Highly Efficient, Widely Tunable, Pico- second Optical Parametric Generation and Amplification in BiB₃O₆, <i>Zbipei Sun,</i> <i>Masood Gbotbi, Stefano Minardi, Majid</i> <i>Ebrabim-Zadeb; ICFO-Inst. of Photonic Sci-</i> <i>ences, Spain.</i> Broadly tunable picosecond pulses from the ultraviolet to infrared (370- 2497nm) have been obtained by optical parametric generation and amplification in BiB₃O₆. Pulse energies of 48.6µJ at conver- sion efficiencies as high as 30% have been generated.	CWC3 • 2:15 p.m. Enhanced Optical Trapping through Localized Surface Plasmon Resonance of Au Nanoparticle Array, <i>Xiaoyu Miao, Lib</i> <i>Y. Lin; Univ. of Washington, USA.</i> Localized surface plasmon resonance is excited on Au nanoparticle array. The radiation field of the resonant oscillating dipoles is utilized to realize the trapping of polystyrene spheres with lower optical intensity than conven- tional optical tweezers.	CWD4 • 2:15 p.m. Upscaling Coherent Addition of Laser Distributions, <i>Liran Shimshi, Vardit</i> <i>Eckbouse, Amiel A. Isbaaya, Nir Davidson,</i> <i>Asber A. Friesen; Weizmann Inst. of Science,</i> <i>Israel.</i> A unique approach for coherently adding a multiplicity of separate and inde- pendent laser distributions with intra-cavity interferometric combiners is developed. The approach which can be scalable is demon- strated with coherent addition of 25 laser distributions.		QWC3 • 2:15 p.m. Wave Kinetic Instabilities in Nonlinear, Statistical Optics, Dmitry V. Dylov, Jason W. Fleischer; Dept. of Electrical Engineering, Princeton Univ., USA. We experimentally demonstrate wave-kinetic instabilities in the nonlinear coupling of two partially-coher- ent beams. We report pure momentum- space energy transfer, without intensity modulations, below the (joint) MI thresh- old and full (x,k) phase space dynamics above it.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	<i>PhAST</i> ROOM 1 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 2 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 3 (EXHIBIT FLOOR)
QE	ELS		CLEO		JOINT	Ph	4 <i>S T</i>
QWD • Photonic Crystals— Continued	QWE • Dynamics of Magnetic and Strongly Correlated Materials— Continued	CWE • Cavity-Based Optical Sensing—Continued	CWF • Photonic Bandgap Fibers—Continued	CWG • Joint Symposium on THz QCLs I—Continued	JWB • Regional Overviews of the Status of Laser Applications—Continued	PWA • Stand-off and Point Detection—Continued	PWB • Solid-State Lighting I—Continued
	QWE2 • 1:45 p.m. Acoustic Phonon Dynamics in Exciton Self-Trapping, F. X. Morrissey, Susan L. Dexbeimer, Washington State Univ., USA. We probe the vibrational dynamics associated with the formation of self-trapped excitons at low temperature. The early-time oscilla- tory response provides evidence for acous- tic phonon dynamics as an integral part of the localization process.	CWE2 • 1:45 p.m. Sensitive Trace Gas Detection in a Jet Expansion Using cw OPO-based Cavity Ringdown Spectroscopy, Anthony Ngai', Stefan Persijn', Frans Harren', Harald Verbraak ² , Harold Linnartz ² ; 'Radboud Univ., Netherlands, ² Sackler Lab for Astro- physics, Leiden Observatory, Netherlands. We present a novel approach to trace gas de- tection of more complex molecules, based upon a combination of continuous cavity ringdown spectroscopy using a cw infrared OPO system and supersonic planar jet.	CWF2 • 1:45 p.m. Control of Dispersion in Hollow Core Photonic Crystal Fibers , <i>Peter J. Roberts</i> ; <i>Dept. of Communications, Optics and Ma-</i> <i>terials, Danish Technical Uniw., Denmark.</i> The dispersion of hollow core photonic crys- tal fibers can be tailored by modifying a single ring of holes in the cladding. The dis- persion can be lowered and flattened, or alternatively increased, in a controlled man- ner.			PWA4 • 1:45 p.m. Novel Distributed Fiber Temperature and Strain Sensor Using Coherent Ra- dio-Frequency Detection of Spontane- ous Brillouin Scattering, Jibong Geng, Sean Staines, Mike Blake, Sbibin Jiang; NP Photonics, USA. A novel technique that en- ables coherent detection of spontaneous Brillouin scattering in radio-frequency re- gion has been demonstrated for distributed measurements of temperature and strain in long fiber by using a CW single-frequency Brillouin fiber laser.	
QWD2 • 2:00 p.m. Mode Control by Lattice Deforming in InGaAsP/InP Photonic Crystal Laser, Wanbua Zbeng ¹ , Mingxin Xing ¹ , Gang Ren ¹ , Xiaoyu Du ¹ , Ke Wang ¹ , Liangbui Chen ¹ , Kengo Nozaki ² , Tosbibiko Baba ² ; ¹ Nano- Optoelectronic Lab, Inst. of Semiconductors, China, ² Yokobama Natl. Univ., Japan. The dipole mode in point defect photonic crys- tal shows the characteristics of nondegenerate by deforming lattice struc-	QWE3 • 2:00 p.m. Invited Femtosecond Opto-Magnetism, Alexey Kimel, A. Kirilyuk, Th. Rasing; Radboud Univ. Nijmegen, Netberlands. We demon- strate that circularly polarized laser pulses may selectively excite different modes of magnetic resonance, realize quantum con- trol of magnons, trigger magnetic phase tran- sitions and switch spins in a controllable way on a subpicosecond timescale.	CWE3 • 2:00 p.m. Invited Recent Advances in Cavity Ring-Down Spectroscopy, Kevin Lebmann; Univ. of Virginia, USA. Abstract not available.	CWF3 • 2:00 p.m. Bandwidth Enhancement by Differen- tial Mode Attenuation in Multimode Pho- tonic Crystal Bragg Fibers, Maksim Skorobogatiy, Ning Guo, Ecole Polytechnique de Montreal, Canada. In multimode bandgap guiding fibers higher order modes have high radiation losses. Thus, after a short propagation distance effective intermodal dispersion is reduced and bandwidth is dra- matically enhanced compared to that of step	CWG2 • 2:00 p.m. Limiting Factors for High Temperature Operation of THz Quantum Cascade La- sers, Christian Jirauschek, Paolo Lugli; TU München, Germany. We theoretically inves- tigate the temperature dependence of the carrier transport in GaAs-based THz quan- tum cascade lasers and identify the factors restricting high-temperature operation. In this context, we compare a single- to a double-resonant-phonon depopulation de-	JWB4 • 2:00 p.m. Invited 3-D Photofabrication by Femtosecond Laser Pulses and Its Applications in Photonics and Biomedicine, Aleksandr Ovsianikov, Boris N. Cbichkov; Laser Zentrum Hannover e.V., Germany. Recent advances in two-photon activated laser pro- cessing, properties of applied materials, and applications of this technology are discussed. This presentation is supported by numer- ous examples of fabricated structures.	PWA5 • 2:00 p.m. Long Fiber-Optic Perimeter Sensor: Sig- nature Analysis, <i>Christi Madsen, Taeban Bae, Robert Alkins; Texas A&M Uniw., USA.</i> A phase-sensitive OTDR provides a cost-ef- fective and highly sensitive solution for monitoring of long perimeters. Signature analysis of the f-OTDR signal allows the identification of intruders on foot as well as vehicles.	PWB4 • 2:00 p.m. Invited Development of High Efficiency Green and Deep Green Light Emitters in Piezo- electric Group-III Nitrides, Christian Wetzel; Rensselaer Polytechnic Inst., USA. Green and deep-green light emitting diodes are still the weakest link in energy efficient Solid-State Lighting. We analyze the limiting factors of the external quantum efficiency and summarize our approach of dislocation and polarization control.
ture. Lasing action with single mode, y- mode, is obtained in the elongated point defect cavity in our experiment.			index fibers.	sign.			
QWD3 • 2:15 p.m. Modal Analysis of Coherent Linear Pho- tonic Crystal VCSEL Arrays, Ann C. Lebman, P. Scott Carney, Kent D. Choquette; Univ. of Illinois at Urbana-Champaign, USA. Formalism from Young's two-pinhole experi- ment is used to study the lasing modes of coupled 2x1 photonic crystal vertical cavity laser arrays. The eigenmodes of the system as well as the coherence change with injec- tion current.			CWF4 • 2:15 p.m. Transmission of Different Angular-Mo- mentum Modes in Cylindrically Sym- metric Photonic Bandgap Fibers in the Near-Infrared, Ayman F. Aboouraddy, Qichao Hu, Ofer Shapira, Jeff Viens, John D. Joannopoulos, Yoel Fink, MIT, USA. We report the first controllable transmission of TE ₀₁ and HE ₁₁ modes (angular momenta 0 and 1, respectively) in cylindrically symmet- ric photonic bandgap fibers in the near-in- frared and confirm that TE ₀₁ has lower losses than HE ₁₁ .	CWG3 • 2:15 p.m. Thermally Activated Absorption in TerahertzSemiconductor Hetero- structure Lasers, J. Kröll ¹ , J. Darmo ¹ , K. Unterrainer ¹ , S. S. Dbillon ^{2:3} , C. Sirtori ^{2:3} , X. Marcadet ³ , M. Calligaro ³ , ¹ Vienna Uniu. of Technology, Austria, ² Univ. Paris 7, France, ³ Thales Res. and Technology, France. We present thermally activated absorption in a terahertz semiconductor heterostructure la- ser based on the bound-to-continuum de- sign. By sensing broadband terahertz pulses transmitted through such laser structure the losses and the real device temperature are sensed.			

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	QELS	JOINT		CLEO		QE	LS
CWA • Mode-Locked Semiconductor Lasers I— Continued	QWA • Symposium on Degenerate Fermi Gases— Continued	JWC • Large High-Intensity Lasers—Continued	CWB • Ultrafast Optical Parametric Amplifiers— Continued	CWC • Plasmonics and Metamaterials—Continued	CWD • Beam Combination and Regenerative Amplifiers—Continued	QWB • Pulse Shaping— Continued	QWC • Dynamic Phenomena and Chaos— Continued
CWA2 • 2:30 p.m. High Repetition Rate Monolithic Pas- sively Mode-Locked Semiconductor Quartum-Dot Laser: Investigation of the Locking Regimes and the RF Linewidth, Fabien Kéfélian ^{1,2,3} , Shane O'Donogbue ^{1,2,3} , Maria Teresa Todaro ^{1,3} , John G. McInerney ^{1,3} , Guillaume Huyet ^{1,2} ; ¹ Tyndall Natl. Inst., Ireland, ² Cork Inst. of Technol- ogy, Ireland, ² Dept. of Physics, Univ. College Cork, Ireland. We investigate global mode- locked regimes of a passively mode-locked quantum-dot GaAs/InAs laser at 1300 nm. Detailed RF linewidth studies demonstrate the possibility of obtaining 1,9 ps pulses with a pulse-to-pulse timing jitter of 6.5 fs/cycle.	QWA3 • 2:30 p.m. Invited Phases of a Paired Fermi Gas with Un- equal Spin Populations, <i>Gutbrie B. Par- tridge, Wenbui Li, Yean-an Liao, Randall G.</i> <i>Hulet, Rice Univ., USA.</i> We have produced a two-component gas of ultracold, fermionic 'Li atoms with unequal spin populations. The real-space densities reveal two distinct su- perfluid phases, both with an evenly paired central core.	JWC4 • 2:30 p.m. ILE 25PW Single Laser Beamline: The French Step for the European Extreme Light Infrastructure (ELI), Jean-Paul Chambarel ¹ , Federico Canova ¹ , Rodrigo Lopez-Martens ¹ , Gilles Chériaux ¹ , Gérard Mourou ¹ , Arnaud Cotel ² , Catherine Le Blanc ² , Frederic Druon ³ , Patrick Georges ³ , Nicolas Forget ⁴ , Fabien Plé ⁵ , Moana Pittman ³ , 'Lab d'Optique Appliquee - LOA, France, ² LULI, France, ³ LCFIO, France, ⁴ FASTLITE, France, ⁵ LIXAM, France. We present the design of a single ultra intense laser beamline delivering 25PW pulses at one shot per minute as a first step of an Ultra Intense High Field Science European project (Extreme Light Infrastructure).	CWB5 • 2:30 p.m. High-Power Femtosecond Optical Para- metric Amplifier in the Near-IR Based on BiB ₂ O ₆ , Valentin Petrov ¹ , Frank Noack ¹ , Pancho Tzankov ¹ , Massood Ghothi ² , Majid Ebrabim-Zadeb ² , Ivailo Nikolov ³ , Ivan Buchvarov ³ , ¹ Max-Born-Inst., Germany, ² ICFO, Spain, ³ Sofia Univ., Bulgaria. Power scaling to >1 mJ is demonstrated for a tun- able (1.1-2.9 µm) femtosecond (<140 fs) optical parametric amplifier based on the monoclinic crystal BiB ₂ O ₆ , pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier.	CWC4 • 2:30 p.m. High Quality 3-D Virtual Nanocavity by Fringing Near-Fields of a Plasmonic Cyl- inder, David Arbel, Eyal Feigenbaum, Meir Orenstein, Technion, Israel. A 50nm diam- eter gold cylinder loaded on a semiconduc- tor surface creates sub-wavelength field con- finement in 3-D. The virtual nano-cavity exhibits 180nm ³ modal volume with Q-fac- tor of few hundreds, suitable for realizing a semiconductor based nano-laser.	CWD5 • 2:30 p.m. High Average Power Phase-Coded Laser System for the CTF3 Photoinjector, Gabor Kurdi, Ian O. Musgrave, Marta Divall, Emma Springate, Graeme Hirst, Ian Ross, William Martin; Central Laser Facility, Ru- therford Appleton Lab, UK. In this paper we present the results of a diode-pumped high average power high repetition rate laser system delivering 50 Hz macropulses of 1.5GHz 1047nm pulses with a mean power of 9 kW per macropulse.	QWB2 • 2:30 p.m. Temporal Soliton Molecules: Experi- mentally Determined Phase Profiles, Alexander Hause, Haldor Hartwig, Michael Boehm, Fedor Mitschke, Univ. Rostock, Ger- many. Temporal soliton molecules in dis- persion-managed fibers are characterized with an advanced FROG technique. This technique reveals phase and power profiles for complex pulse shapes where conven- tional techniques fail.	QWC4 • 2:30 p.m. Ultra-Slow Dynamics of an Ultra-Fast Laser , Andreas Schmitt-Sody, Jean-Claude Diels, Ladan Arissian; Ctr. for Higb Tech- nology Materials, Univ. of New Mexico, USA. The population transfer between the two pulses in a mode locked ring laser is a di- rect analogy of the population oscillation (Rabi cycle) in a two-level atom.
CWA3 • 2:45 p.m. High-Power and Low-Noise 10-GHz All- Active Monolithic Mode-Locked Lasers with Surface Etched Bragg Grating, David Larsson, Kresten Yvind, Jørn M. Hvan; COM•DTU, Inst. of Communications, Optics and Materials, Nano•DTU, Techni- cal Univ. of Denmark, Denmark. We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with in- tegrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter.		JWC5 • 2:45 p.m. Electra: An Electron Beam Pumped 730 J Rep-Rate KrF Laser, Matthew F. Wolford ¹ , John D. Setbian ¹ , John L. Giuliani ¹ , Matthew C. Myers ¹ , Stephen P. Obenschain ¹ , Frank Hegeler ² , Moshe Friedman ² , Patrick M. Burns ³ , Rohert H. Lehmberg ³ , Reginald Jaynes ⁴ , ¹ NRL, USA, ² Commonwealth Tech- nologies Inc., USA, ³ Res. Support Instruments, USA, ⁴ Science Applications Intl. Corp., USA Electra has operated in oscillator mode for multi-thousand shot runs continuously at 1, 2.5 and 5 Hz. The Electra single pass pre- amplifier produces 23 Joules and is being incorporated into the laser system.	CWB6 • 2:45 p.m. Optical Pulse Generation Using Two- Stage Compression Based on Optical Parametric Amplifier, Henry K. Y. Cheung, Rebecca W. L. Fung, David M. F. Lai, P. C. Chui, Kenneth K. Y. Wong; Univ. of Hong Kong, Hong Kong. We demonstrate a simple, two-stage optical pulse compressor based on optical parametric amplifier using single spool of highly nonlinear dispersion-shifted fiber. 112-ps-wide pulses are compressed to 24-ps Gaussian-shaped pulses with clear eye openings.	CWC5 • 2:45 p.m. Focusing of Surface Plasmon Polaritons by Surface Parabolic Dielectric Gratings, Yu-Ju Hung, Igor I. Smolyaninov, Christo- pher C. Davis, Dept. of Electrical Engineer- ing, Univ. of Maryland, College Park, USA. Focusing of surface plasmon polaritons by parabolic dielectric gratings formed on top of a 100nm thick Au film has been studied. Complex interference effects are observed in a "cavity" between two sets of parabolic gratings.	CWD6 • 2:45 p.m. High-Energy, Diode-Pumped, Picosec- ond Yb-YAG Chirped-Pulse Regenerative Amplifier as a Pump Source for Optical Parametric Chirped-Pulse Amplifica- tion, Yutaka Akabane ¹ , Makoto Aoyama ¹ , Kanade Ogawa ^{1,2} , Koicbi Tsuji ¹ , Koicbi Yamakawa ¹ , Sbigeki Tokita ² , Junji Kawanaka ² , Hajime Nisbioka ³ ; ¹ Japan Atomic Energy Agency, Japan, ² Inst. of Ia- ser Engineering, Osaka Univiersity, Japan, ³ Inst. for Laser Science, Univ. of Electro-Com- munications, Japan. A diode-pumped Yb-YAG regenerative amplifier utilizing gain- narrowing has been developed. A chirped- seed pulse was amplified and compressed in the regenerative amplifier, simultaneously, which generated the picosecond pulses with ~8-mJ of energy without a pulse compres- sor.	QWB3 • 2:45 p.m. High Resolution Two Photon Excitation Spectroscopy by Pulse Shaping an Ultrabroad Bandwidth Femtosecond Laser, Binguei Xu, Yves Coello, Vadim V, Lozovoy, Marcos Dantus; Micbigan State Uniu., USA. High-resolution two-photon ex- citation spectroscopy of natural and synthetic fluorescent biological molecules is demon- strated using an ultra-broad-bandwidth (over 400 nm) femtosecond laser. Selective exci- tation was achieved using a series of spe- cially designed phase and amplitude masks.	QWC5 • 2:45 p.m. Phase-Matched Non-Degenerate Four- Wave Mixing in One-Dimensional Pho- tonic Crystals, Christiane Becker ¹ , Martin Wegener ² , Sean Wong ¹ , Georg von Freymann ¹ ; Forschungszentrum Karlsruhe, Germany, ² Univ. Karlsruhe, Germany. We report on non-degenerate four-wave mix- ing in the near-infrared using a 76 layer thick one-dimensional chalcogenide-glass based photonic crystal. A 3:5-fold enhancement of the mixing signal with respect to the opti- mum-thickness bulk film is observed.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QE	LS		CLEO	
QWD • Photonic Crystals— Continued	QWE • Dynamics of Magnetic and Strongly Correlated Materials— Continued	CWE • Cavity-Based Optical Sensing—Continued	CWF • Photonic Bandgap Fibers—Continued	CWG • Joint Symposium on THz QCLs I—Continued
QWD4 • 2:30 p.m. Modes of the L3 Defect Cavity in InAs Quantum Dot Photonic Crystals, Alexander R. Chalcraff ¹ , Sang Lam ¹ , Mehmet Sabin ¹ , Dominik M. Szymanski ¹ , Daniele Sanvitto ¹ , Ruth Oulton ¹ , Maurice S. Skolnick ¹ , A. Mark Fox ¹ , David M. Wbittaker ¹ , Abbes Tabraout ¹ , Hui-Yun Liu ¹ , Paul W. Fry ¹ , Mark Hopkinson ¹ , David O'Brien ² , Thomas F. Krauss ² ; ¹ Univ. of Sheffield, UK, ² Univ. of St Andreus, UK. We investigate the longest wavelength modes of an L3 photonic crystal cavity. Reordering of modes due to hole displacement is shown theoretically and experimentally. Cavity optimization is explained in terms of dipo- lar emission cancellation.	QWE4 • 2:30 p.m. Ultrafast Observation of the Coexistence of Antiferromagnetism and Supercon- ductivity in a High-Tc Superconductor, Elbert E. M. Cbia', Jian-Xin Zbu', Diyar Talbayev', In-Sun Jo ² , Kyu-Huan Ob ² , Sung- Ik Lee ² , Antoinette J. Taylor ¹ , Richard D. Averitt ¹ ; 'Los Alamos Natl. Lab, USA, 'Pobang Univ. of Science and Technology, Republic of Korea. Ultrafast dynamics of the high-Tc superconductor TI ₂ Ba ₂ Ca ₂ Cu ₂ Oy were probed using all-optical pump-probe tech- nique. Our results are consistent with the coexistence of antiferromagnetism and su- perconductivity at low temperatures, result- ing in the depression of the superconduct- ing gap.	CWE4 • 2:30 p.m. Optical Microring Resonator Sensors with Selective Membrane Surface Customization, Sang-Yeon Cho ¹ , Gary Dobb ² , Nan Marie Jokerst ¹ , Boris Mizaikoff ² , Tray Cooper ¹ , 'Duke Univ., USA, 'Georgia Tech, USA. Optical microresonator sensors with surface customization using chemically selective membranes have been demon- strated for the first time. The ethylene/pro- pylene copolymer membrane enriches o- xylene representing an organic contaminant from water, which was sensed by the microresonator.	CWF5 • 2:30 p.m. Fresnel Zone Imaging of Bloch-Modes from a Hollow-Core Photonic Crystal Fiber Cladding, Francois Couny ¹ , Fetab Benabid ¹ , Peter John Roberts ² , Philip S. Light ¹ ; Physics Dept., Unito. of Bath, UK, ² COM, Technical Unito. of Denmark, Den- mark. A Fresnel zone imaging technique at the output of a short length of hollow core photonic crystal fiber allows the identifica- tion of the photonic crystal cladding Bloch- modes. The experimental results show ex- cellent agreement with theory.	CWG4 • 2:30 p.m. Experimental Measurement of the Wall- Plug Efficiency in THz Quantum Cascade Lasers, Miriam S. Vitiello ¹ , Gaetano Scamarcio ¹ , Vincenzo Spagnolo ² ; ¹ CNR- INFM Regional Lab LT3 Univ. of Bari, Italy, ¹ Politecritico of Bari, Italy. The wall-plug ef- ficiency and the thermal resistance of bound- to-continuum THz quantum-cascade lasers are extracted from the analysis of micro- probe photoluminescence spectra, via the direct measurement of the lattice tempera- ture as a function of the electrical-power.
QWD5 • 2:45 p.m. Far-Field Control of the Radiative Life- time of an Individual Optical Nanocavity, Jacob T. Robinson, Michal Lipson; Cornell Univ., USA. Using a scanning metallic probe we demonstrate the first long- range control of the radiative lifetime of an optical nanocavity resonant near 1.5 microns. Changes in lifetime are observed for probe- cavity separations up to 70 microns.	QWE5 • 2:45 p.m. Giant Magnetoelastic Effect in Multiferroic Ba₀₆Sr_{1.4}Zn₂Fe_{1.2}O₂₂ , <i>Diyar</i> <i>Talbayev¹</i> , <i>Richard D. Averitt¹</i> , <i>Antoinette J.</i> <i>Taylor¹</i> , <i>Tsuyoshi Kimura²</i> , ' <i>Los Alamos Natl.</i> <i>Lab</i> , USA, 'Bell Labs, Lucent Technologies, USA. We report a giant magnetoelastic ef- fect in multiferroic Ba _{0.6} Sr _{1.4} Zn ₂ Fe ₁₂ O ₂₂ mea- sured by ultrafast pump-probe spectroscopy. Coherent phonon excitation allows to mea- sure the field-induced changes in the speed of sound and the corresponding elastic stiff- ness.	CWE5 • 2:45 p.m. Enhancing the Sensitivity Limit of a Whispering Gallery Mode Biosensor through Sub-Wavelength Confinement of Light, Opbir Gaatbon, Jelena Culic- Viskota, Momcbil Mibnev, Itwao Teraoka, Stepben Arnold, Microparticle Photophysics Lab, Polytechnic Univ., USA. We demonstrate an optical means for enhancing the sensi- tivity of a whispering gallery mode biosen- sor by more than 700% through sub-wave- length confinement produced by drawing light closer to the surface using a high in- dex nano-layer.	CWF6 • 2:45 p.m. Sub-Wavelength Intensity Profiles and Field Enhancement within an Optical Fiber, Gustavo S. Wiederbecker ^{1,2} , Cristiano M. B. Cordeiro ^{1,2} , Francois Couny ² , Fetab Benabid ² , Stefan A. Maier ² , Jonathan C. Knigh ² , Carlos H. B. Cruz ¹ , Hugo L. Fragnito ¹ ; ¹ Univ. Estadual de Campinas, Brazil, ² Ctr. for Photonics and Photonic Materials, Univ. of Bath, UK. We demonstrate concentration of optical energy within a sub- wavelength air hole running the length of an optical fiber. The fiber core resembles a tiny tube with a bore diameter of 200 nm or less.	CWG5 • 2:45 p.m. Low-Divergence Surface-Emitting Terahertz Quantum Cascade Lasers, Jonathan Fan ¹ , Mikhail Belkin ¹ , Federico Capasso ^{1,2} , Suraj Khanna ² , Mohammed Lachab ² , Giles Davies ² , Edmund Linfield ² ; 'Harrard Univ., USA, ² Univ. of Leeds, UK. We investigate surface-emission via a sec- ond-order grating in terahertz quantum cas- cade lasers. We optimize grating design and suppress facet reflectivity with absorbing waveguide edges. Single-mode lasing, small beam divergence, and improved slope effi- ciency are observed.

CLEO/QELS and PhAST 2007, May 6-11, 2007 • Baltimore Convention Center, Baltimore, Maryland

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	QELS	JOINT		CLEO		QE	LS
CWA • Mode-Locked Semiconductor Lasers I— Continued	QWA • Symposium on Degenerate Fermi Gases— Continued	JWC • Large High-Intensity Lasers—Continued	CWB • Ultrafast Optical Parametric Amplifiers— Continued	CWC • Plasmonics and Metamaterials—Continued	CWD • Beam Combination and Regenerative Amplifiers—Continued	QWB • Pulse Shaping— Continued	QWC • Dynamic Phenomena and Chaos— Continued
CWA4 • 3:00 p.m. Linewidth Enhancement Factor Reduc- tion on the Blue Side of the Gain Peak from a Quantum Dot Mode-Locked La- ser, Jimyung Kim, Myoung-Taek Choi, Pe- ter J. Delfyett; College of Optics and Photonics, CREOL and FPCE, USA. We ob- served above threshold linewidth enhance- ment factor reduction at blue side lasing wavelengths from a quantum dot mode- locked laser. The linewidth and pulse width become narrower as the lasing wavelength is tuned to blue side.	QWA4 • 3:00 p.m. Momentum Distribution Dynamics of a Tonks-Girardeau Gas: Bragg Reflections of a Quantum Many-Body Wavepacket, <i>Robert Pezer, Hrvoje Buljan; Dept. of Phys-</i> <i>ics, Univ. of Zagreb, Croatia.</i> The dynamics of the momentum distribution and the re- duced single-particle density matrix of a Tonks-Girardeau gas is studied in the con- text of Bragg-reflections of a many-body wavepacket.	JWC6 • 3:00 p.m. Interferometric Tiling of Large-Aperture Gratings for Petawatt Laser Systems, <i>Jie</i> <i>Qiaol</i> , <i>Jobn H. Kelly¹</i> , <i>David Canning¹</i> , <i>Mark</i> <i>J. Guardalben¹</i> , <i>Geoffrey King¹</i> , <i>Jobn Price²</i> , <i>Adam Kalb¹</i> , <i>Robert Jungguist¹</i> , <i>Amy Rigatti¹</i> , <i>¹Lab for Laser Energetics</i> , <i>Univ. of Rocbester</i> , USA, <i>⁴Helicos BioSciences Corp</i> , USA. A tiled- grating assembly with three large-scale grat- ings is developed with real-time interfero- metric tiling control for a petawatt laser sys- tem. Tiling-parameters sensitivity and focal- spot degradation are analyzed for a com- pressor composed of four such assemblies.	CWB7 • 3:00 p.m. PPLN OPCPA Based on Spectrally Ad- dressed Amplification, Ambre Nelet ^{1,2} , Gediminas Jonusauskas ¹ , Jérôme Degert ¹ , Eric Freysz ¹ ; ¹ Univ. Bordeaux I, Ctr. de Pby- sique Moléculaire Optique et Herzienne, France, ² CEA/ CESTA, France. We propose and demonstrate the concept of OPCPA based on spectrally addressed amplification in a periodically poled Lithium Niobate.	CWC6 • 3:00 p.m. Guided Modes in Arrays of Metallic Nanowires , <i>Christopher G. Poulton, Marcus</i> <i>Schmidt, Greg Pearce, George Kakarantzas,</i> <i>Pbilip St. J. Russell; Max Planck Res. Group</i> <i>(IOIP), Germany.</i> We study numerically the formation of photonic band gaps and guided "defect" modes within two dimensional ar- rays of metallic nanowires. Attenuations as low as 1.7 dB/cm are predicted for silver wires at 1550 nm wavelength.	CWD7 • 3:00 p.m. Multi-Millijoule, Diode-Pumped, Chirped-Pulse Yb:KY(WO ₄) ₂ Regenera- tive Amplifier, Kanade Ogawa ¹ , Yutaka Akabane ¹ , Makoto Aoyama ¹ , Koicbi Tsuji ¹ , Koicbi Yamakawa ¹ , Sbigeli Tokita ² , Junji Kawanaka ² , Hajime Nisbioka ³ ; ¹ Japan Atomic Energy Agency, Japan, ² Inst. of La- ser Engineering, Osaka Uniw. Japan, ³ Inst. for Laser Science, Uniw. of Electro-Commu- nications, Japan. A diode-pumped, cryo- genically-cooled Yb:KYW regenerative am- plifier utilizing regenerative pulse shaping has been developed. An amplified pulse with an energy of 5.5 mJ and a broad band- width of 3.4 nm is achieved.	QWB4 • 3:00 p.m. Memory in Nonlinear Ionization of Transparent Dielectrics , <i>Rajeev Pattathil</i> , <i>Marina Gertsvolf⁴</i> , <i>Ravi Bbardwaf²</i> , <i>Eli</i> <i>Simova¹</i> , <i>Cyril Hnatosky¹</i> , <i>Rod Taylor¹</i> , <i>David Rayner¹</i> , <i>Paul Corkum¹</i> , 'Natl. Res. <i>Council, Canada, ²Univ. of Ottawa, Canada</i> . We show a reduction in the ionization threshold at previously ionized regions in- side transparent solids. This forms a shot- to-shot memory that can lead to several unique nonlinear phenomena including the formation of nanostructures.	QWC6 • 3:00 p.m. A Tunable-Bandwidth White Light Inter- ferometer Using Bi-Frequency Raman Gain in Atomic Vapor, Gour Pati, Mary Messall, Kenneth Salit, Selim M. Shabriar, Norbhuestern Univ., USA. A White Light Cav- ity is of considerable interest in broadband gravitational-wave detection. This paper presents a demonstration of the such a sys- tem in a meter long ring-cavity using bi- frequency Raman gain in the intra-cavity medium.

3:15 p.m. – 3:45 p.m. COFFEE BREAK AND LIGHT REFRESHMENTS, EXHIBIT HALL, 100 LEVEL

3:15 p.m. – 4:45 p.m. EXHIBIT ONLY, EXHIBIT HALL, 100 LEVEL

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	<i>PhAST</i> ROOM 1 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 2 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 3 (EXHIBIT FLOOR)
QE	ELS		CLEO		JOINT	PhA	4 <i>S T</i>
QWD • Photonic Crystals— Continued	QWE • Dynamics of Magnetic and Strongly Correlated Materials— Continued	CWE • Cavity-Based Optical Sensing—Continued	CWF • Photonic Bandgap Fibers—Continued	CWG • Joint Symposium on THz QCLs I—Continued	3:00 p.m. – 5:00 p.m. JWD • New Industrial Lasers Heinrich Endert; Newport Corp., USA, Presider	3:00 p.m. – 4:45 p.m. PWC • Detection and Identification Systems William Gunning; Rockwell Science Co. LLC, USA, Presider	3:00 p.m. – 5:00 p.m. PWD • Solid-State Lighting II Ian Ferguson; Georgia Tech, USA, Presider
QWD6 • 3:00 p.m. Anomalous-Refraction-Induced Strong Resonances and Enhancement of Ab- sorption in Thin-Film Photonic Crystals, <i>Alongkarn Chutinan, Sajeey John; Univ. of</i> <i>Toronto, Canada.</i> We demonstrate strong resonances and absorption enhancement in thin-film photonic crystals due to distin- guished anomalous refraction (parallel in- terface refraction), where off-normal inci- dent beams are refracted to directions nearly	QWE6 • 3:00 p.m. Ultrafast Structure and Polarization Dy- namics in Nanolayered Perovskites Stud- ied by Femtosecond X-Ray Diffraction, Clemens von Korff Schmising', Matias Bargbeer ¹ , Mareike Kiel ¹ , Nikolai Zbavoronkov ¹ , Micbael Woerner ¹ , Thomas Elsaesser ¹ , Ionela Vrejoiu ² , Dietrich Hesse ² , Marin Alexe ² , Max Born Inst., Germany, ² Max-Planck-Inst. für Mikrostrukturphysik, Germany, The polarization and lattice dy-	CWE6 • 3:00 p.m. Prism-Coupled Silica Micro-Tube Reso- nator as a Bio-Sensor, <i>Tao Ling, LJay Guo;</i> <i>Dept. of Electrical Engineering and Com-</i> <i>puter Science, Univ. of Michigan, USA.</i> Prism coupled silica micro-tubes were studied as optical bio-sensing elements. We demon- strated to sense the glucose concentration change in the micro-tube and the smallest concentration change can be detected in our system is 0.3 mM.	CWF7 • 3:00 p.m. Numerical Study of Heterogeneously- Indexed Photonic Bandgap Fibers, Tsinghua Her ¹ , Min Hyung Cho ² , Wei Cai ¹ ; ¹ Univ. of North Carolina at Charlotte, USA, ² Quantum Photonic Science Res. Ctr., Hanyang Univ., Republic of Korea. We pro- pose a new ARROW-like bandgap fiber com- pose of high-index rods with two different refractive indexes. Numerical study shows its spectral properties are determined by	CWG6 • 3:00 p.m. High-Power Metal-Metal Waveguide Terahertz Quantum-Cascade Laser with a Hyperhemispherical Lens, Alan W. M. Lee', Qi Qin', Sushil Kumar', Benjamin S. Williams', Qing Hu', John L. Reno ² ; ¹ MIT, USA, ² Sandia Natl. Labs, USA. We demon- strate an -85 mW (pulsed, 5 K), metal-metal waveguide, terahertz quantum-cascade la- ser using an optically coupled lens. The device has a FWHM of ~6 Deg, and a maxi-	JWD1 • 3:00 p.m. Invited Double Pulse Laser Machining, Andrew Forsman; General Atomics, USA. Abstract not available.	PWC1 • 3:00 p.m. Invited BAND Sensor for BioDefense, David Robbins, SAIC, USA. SAICs BAND Sensor is an automated system for collecting and ana- lyzing urban air samples to detect airborne biological threats. Microbial threat detection uses highly-multiplexed PCR with microarray fluorescence readout. Tokin detection em- ploys an antibody assay.	PWD1 • 3:00 p.m. Invited Limitations to be Aware of When Using LEDs in Lighting System Designs, John W. Curran; Dialight, USA. LED technology offers the lighting industry an exciting tool The longer lifetimes, higher monochromatic efficiencies and greater reliability come with some design limitations. This presentation will provide a guide to some of the major restrictions.
parallel to the surfaces of thin film.	namics in a metal/ferroelectric/metal nanolayer system is analyzed by femtosecond X-ray diffraction. Optically in- duced giant stress in the metal layers can switch off the ferroelectric polarization within 2 ps.	System is 0.0 min.	superposition of those of individual rods at short wavelength region.	mum pulsed operating temperature of 155 K.	JWD2 • 3:30 p.m. A 142-W Diffraction-Limited Q-Switched Rotary Disk Yb-YAG Laser for Material Procesing, Santanu Basu, Sparkle Optics Corp., USA. The average power of a diffrac- tion-limited Q-switched diode pumped solid state laser was scaled to 142 W. At 100 W, the laser drilled 44 µm diameter holes in 3-mm thick stainless steel in 3.4 s. JWD3 • 3:45 p.m. Industrial Applications of New Disk La- sers, Mike Heglin; LMH Technologies, USA. Abstract not available.	PWC2 • 3:30 p.m. Invited Detection of Bio-Aerosol Threats with a UV Scattering Trigger and Rapid DNA- and Antibody Based Confirmation, <i>Roland Stoughton; GHC Technologies, USA.</i> An economical sensor for airborne patho- gens consists of a continuous "reagentless" UV scattering trigger followed by a confirmer that analyzes air filtrate for characteristic pathogen molecular markers,	PWD2 • 3:30 p.m. Invited Thermal Analysis and Reliability of LED Light Sources, Samuel Graham; Georgia Tech, USA. Abstract not available.
	3:15 p.m. – 3:45 p.m. COFFEE	E BREAK AND LIGHT REFRESHM	ENTS, EXHIBIT HALL, 100 LEVE	L	JWD4 • 4:00 p.m. Refractive Gauss-to-Tophat Beam Shapers Improve Structure Quality and	PWC3 • 4:00 p.m. Laser-Induced Breakdown Spectroscopy Infrared Emission from Inorganic and	PWD3 • 4:00 p.m. Invited InGaN HVPE Technology for Solid-State Lighting, Vladimir Dmitriev; TDII, USA.
	3:15 p.m. – 4:45	p.m. EXHIBIT ONLY, EXHIBIT	HALL, 100 LEVEL		Speed in Micromachining, Oliver Hom- burg, Frank Toennissen, Heiko Ganser, Tho- mas Mitra, Vitalij Lissotschenko; LIMO Lissotschenko Mikrooptik GmbH, Germany.	Organic Substances, Clayton S. C. Yang ¹ , E. Brown ² , U. Hommerich ² , S. Trivedi ² , A. P. Snyder ⁴ , A. C. Samuels ¹ , "Battelle, USA, "Hampton Univ., USA, "Brimrose, USA,	Abstract not available.
					The transformation principle of a Gaussian beam into a homogeneous top-hat profile by means of free-form refractive micro-op- tics is reviewed. Various flat-top profiles achieved with different laser sources as well as micro-machining results are demon- strated.	⁴ Army Edgewood Chemical Biological Cr., USA. The mid-infrared emission from a la- ser-induced-breakdown process between 2 to 5.75 μm was probed for the first time. Emission features from oxygenated carbon- containing breakdown fragments and from alkali metal-containing breakdown frag- ments have been successfully identified.	

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
C L	E 0	JOINT		CLEO		QE	LS
4:45 p.m. – 6:30 p.m. CWH • Organic Optoelectronics Steven R. Flom; NRL, USA, Presider	4:45 p.m. – 6:30 p.m. CWI • Mode-Locked Semiconductor Lasers II Peter Blood; Cardiff Univ., UK, Presider	4:45 p.m. – 6:30 p.m. JWE • High-Power Few- Cycle Sources Mauro Nisoli; Politecnico di Milano, Italy, Presider	4:45 p.m. – 6:30 p.m. CWJ • Ultrafast Dynamics and Optical Switching Antoinette J. Taylor; Los Alamos Natl. Lab, USA, Presider	4:45 p.m. – 6:30 p.m. CWK • Biosensors Changhuei Yang; Caltech, USA, Presider	4:45 p.m. – 6:30 p.m. CWL • Panel on Solid-State Laser Power Scaling through Beam Combination Don Seeley; HEL-JTO, USA, Moderator Panelists Mathony Siegman, Stanford Univ., USA; Tso Yee Fan, MIT Lincoln Lab, USA; Robert Rice, Northrop Grumman, USA; Iain McKinnie, Coberent Technologies, Inc., USA; Arnaud Brignon; Tbales Res. and Technology, France.	4:45 p.m. – 6:30 p.m. QWF • Entanglement Julio Gea-Banacloche; Univ. of Arkansas, USA, Presider	4:45 p.m. – 6:30 p.m. OWG • Laser Cooling and Other Effects in Semiconductors Kevin Malloy; Univ. of New Mexico, USA, Presider
CWH1 • 4:45 p.m. Tutorial Organic Photovoltaics, <i>Bernard Kippelen;</i> <i>Georgia Tech, USA</i> . Organic photovoltaic technologies are emerging and maturing with reports of power conversion efficien- cies close to 5%. This tutorial will provide an overview of the chemistry, physics and engineering of solar cells based on organic materials.	CW11 • 4:45 p.m. Invited First Demonstration of a Modelocked Integrated External-Cavity Surface Emit- ting Laser (MIXSEL), Aude-Reine Bellancourt, Benjamin Rudin, Deran J.H.C. Maas, Mattbias Golling, Heiko J. Unold, Tbo- mas Sudmeyer, Ursulu Keller, ETH, Suritzer- land. For the first time we have success- fully demonstrated a novel concept of a passively modelocked vertical-external-cav- ity surface-emitting semiconductor laser with an integrated saturable absorber. This MIXSEL will be ultimately suitable for cost- effective high-volume wafer-scale fabrica- tion.	JWE1 • 4:45 p.m. Optimal Pulse Compression via Sequen- tial Filamentation, <i>Luat T. Vuong'</i> , <i>Rodrigo</i> <i>B. Lopez-Martens'</i> , <i>Cbristopb P. Hauri'</i> , <i>Mark</i> <i>A. Foster'</i> , <i>Arme I. Huillier'</i> , <i>Thierry Ruchon'</i> , <i>Alexander L. Gaeta'</i> , 'Dept. of <i>Applied and</i> <i>Engineering Physics</i> , <i>Cornell Univ.</i> , USA, ' <i>Lab d'Optique Appliquée</i> , <i>ENSTA-CNRS-</i> <i>École Polytechnique</i> , <i>France</i> , ' <i>Atomic Phys-</i> <i>ics Div.</i> , <i>Univ. of Lund</i> , <i>Sueden.</i> We demon- strate theoretically and experimentally a ro- bust method based on sequential filamentation to optimize compression of high-energy pulses in gases. We gain insight into this process by comparing compression dynamics for linear- and circularly-polarized pulses.	CWJ1 • 4:45 p.m. Quantum Interference Control of Elec- trical Currents in Silicon, <i>Louis Costa</i> , <i>Marko Spasenovic, Markus Betz, Alan D.</i> <i>Bristow, Henry M. van Driel; Univ. of</i> <i>Toronto, Canada.</i> Electrical currents are generated in clean silicon at T=300K using quantum interference of femtosecond fun- damental and second-harmonic pulses. This efficient photoinjection of ballistic currents across the indirect bandgap is detected by the emitted terahertz radiation.	CWK1 • 4:45 p.m. Molecular Interferometric Imaging Bio- sensor, <i>Ming Zbao, David D. Nolte; Purdue</i> <i>Univ., USA.</i> We present molecular interfero- metric imaging (MI2) as a new sensing tech- nique for direct detection of biomolecules that is easier and more sensitive than sur- face plasmon resonance and scalable to hundreds of assays per chip.		QWF1 • 4:45 p.m. Tutorial Quantum Entanglement and Metrology, <i>Carlton Caves, Univ. of New Mexico, USA.</i> For linear couplings of <i>N</i> systems to a pa- rameter, quantum entanglement can improve the precision of parameter estimation from <i>U/W</i> shot-noise limit to <i>U/N</i> Heisenburg limit. Intrinsic <i>k</i> -body couplings improve this scal- ing further to <i>1/N</i> *.	QWG1 • 4:45 p.m. Invited Laser Cooling in Solids, Mansoor Sheik- Bahae; Unit: of New Mexico, USA. Laser cool- ing in optical solids can lead to the realiza- tion of all-solid state cryoccolers. We present new results on Yb- and Tm-doped glasses and crystals and describe progress toward achieving net cooling in GaAs heterostructures.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	<i>PhAST</i> ROOM 1 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 2 (EXHIBIT FLOOR)	<i>PhAST</i> ROOM 3 (EXHIBIT FLOOR)
QELS		C L	E 0		JOINT	Ph	4 <i>S T</i>
 4:45 p.m. – 6:30 p.m. QWH • Photonic Metamaterials Samuel L. Oliveira; Univ. of Micbigan, USA, Presider QWH1 • 4:45 p.m. Experimental Comparison of Circular, Elliptical and Rectangular (Fishnet) Negative-Index Metamaterials, Zabyun Ku, S. R. J. Brueck; Univ. of New Mexico, USA. Negative index materials consisting of Au- Al₂O₃-Au films with a 2-D array of apertures have been fabricated. Circular, elliptical and rectangular apertures are compared. Com- parable figures of meri [Re(n)/Im(n)] are observed for all three geometries. 	4:45 p.m. – 6:30 p.m. CWM • Free-Space and Multi-Mode Fiber Transmission Scott A. Hamilton; MIT Lincoln Lab, USA, Presider Scott A. Hamilton; MIT Lincoln Lab, USA, Presider Vira-Long Distance Free Space Laser Communications, David O. Caplan, Mark Istevens, Bryan S. Robinson, Steven Constantine, Don M. Boroson; MIT Lincoln Lab, USA. We present a survey of state-of- the-art free space laser communication trans- mitter and receiver designs and technolo- gies for ultra-long-distance high-speed links. High-performance power-efficient imple- mentations for photon-counting, coherent, and optically-preamplified receivers are dis- cussed.	4:45 p.m. – 6:30 p.m. CWN • III-IV Nanophotonics Boon-Siew Ooi; Lebigh Univ., USA, Presider State of the state o	 4:45 p.m. – 6:30 p.m. CWO • Microstructured Fibers and Applications Jesper Laegsgaard; DTU Technical Knowledge Ctr., Denmark, Presider CWO1 • 4:45 p.m. Control of the Transient Regime of Stimulated Raman Scattering in Hollow- Core Photonic Crystal Fiber, Francos Couny, Fetab Benabid, Pbilip S. Light, Cr. for Photonics and Photonic Materials, Univ. of Bath, UK. A detailed experimental results on the evolution of stimulated Raman scat- tering amplification regimes in H, filled hol low-core PCF are reported. The role of the fiber length and the gas pressure is high- lighted. 	 4:45 p.m. – 6:30 p.m. CWP • Joint Symposium on THz QCLs II Benjamin Williams; MIT, USA, Presider CWP1 • 4:45 p.m. Quantum-Cascade Lasers with One-Well Injector Operating at 1.59 THz (λ = 188; S µm), Susbil Kumar¹, Qi Qin¹, Benjamin S Williams², Qing Hu¹, Zbig R. Wasileuskr², Xiaobua Wir², Hui C. Liu², ¹MT, USA, ²Inst. of Microstructural Sciences, Natl. Res. Coun- cil, Canada. We report quantum-cascade lasers operating at 1.59 THz using a single quantum-well injector, which significantly reduces photon re-absorption losses in the active-region. Continuous-wave operation up to 71K, and >0.65mW optical-power at 30K is demonstrated. 	 JWD • New Industrial Lasers—Continued JWD5 • 4:15 p.m. Advances in High Efficiency Diode Laser Pump Sources Suitable for Pumping Nd:YAG Systems, Paul A. Crump, Rob Martinsen; nLight Photonics Corp., USA. Nd:YAG systems are conventionally pumped at 808-nm. Direct upper-level pumping at 885-nm leads to lower heat. Diode laser pumps sources now provide power with efficiency close to 70% at both wavelengths, offering significant system benefits. JWD6 • 4:30 p.m. 30W CW Operation of Single-Chip Laser Diodes, Wei Gao, Zuntu Xu, Lisen Cheng, Kejian Luo, Andre Marstrovito, Kun Shen; Axcel Photonics, Inc., USA. We report CW operation of 30W from single-chip laser di- odes at 808 nm, with an estimated lifetime of over 40,000 hours. They are designed with broad waveguides using InAlGaAs/AlGaAs/ GaAs material system grown by MOCVD. JWD7 • 4:45 p.m. Evaluating Micromachining Capabilities of High Power Diode Pumped Solid-State Mode-Locked and Q-Switched UV lasers have been evaluated by studying ablation of com- monly used materials in semiconductor, mi- croelectronics, and solar cell industry. 	 PWC • Detection and Identification Systems— Continued PWC4 • 4:15 p.m. Biological Substance Characterization in Water Matrices with Raman Microscopy, Rabib E. Jabbour, Ashish Tripathi? Patrick J. Treado², Matthew P. Nelson², Janet L. Jensen³, A. Peter Snyder³, 'SAIC, USA, ²ChemImage, Inc., USA, 'US Army, USA. Raman microspectroscopy is investigated for spectral information from bacteria and pro- tein biological substances in distilled and tap water matrices. Laser energy flux, multi- variate dataspace biological differentiation, and substance aging in water matrices were- investigated. PWC5 • 4:30 p.m. Detection and Identification of a Water Mixture of <i>E. coli</i> Cells and <i>B. subtilis</i> Spores with Raman Chemical Imaging Microscopy, Ashisb Tripathi?, Rabib E. Jabbour², Patrick J. Treado², Matthew P. Nelson², Janet L. Jensen³, A. Peter Snyder³; 'SAIC, USA, 'CbemImage, Inc., USA, 'US Army, USA. Raman chemical imaging micros- copy was used to visualize and discriminate between biological substances with Raman spectral database identification. Water sus- pensions were investigated for mixtures of different concentrations of <i>E. coli</i> and <i>Ba- cillus subtilis</i> spores. 	PWD • Solid-State Lighting II—Continued
		are exposed.					

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
C L	E 0	JOINT		CLEO		Q	ELS
CWH • Organic Optoelectronics—Continued	CWI • Mode-Locked Semiconductor Lasers II— Continued	JWE • High-Power Few- Cycle Sources—Continued	CWJ • Ultrafast Dynamics and Optical Switching— Continued	CWK • Biosensors— Continued	CWL • Panel on Solid-State Laser Power Scaling through Beam Combination—Continued	QWF • Entanglement— Continued	QWG • Laser Cooling and Other Effects in Semiconductors— Continued
		JWE2 • 5:00 p.m. High-Energy Few-Cycle Pulse Genera- tion in a Filament for Relativistic Appli- cations at kHz Repetition Rate, <i>Christoph</i> <i>P. Hauri, Michele Merano, Alexandre</i> <i>Trisorio, Gerard Mourou; Lab d'Optique</i> <i>Appliquee, France.</i> We demonstrate efficient generation of 9.5-fs 1.8 mJ pulses by filamentation. The pulse wavefront, the low energy fluctuations and the good temporal contrast make this source suited for relativ- istic laser-solid experiments at kHz repeti- tion rate.	CWJ2 • 5:00 p.m. Ultrafast Optical Response of InAs Quan- tum Dots for Photoconductive Applica- tions, Amarlya Sengupla', Prashanth C. Upadbya', Mobammed Lachab', Wenbui Fan', John E. Cunningham', A. G. Davies', Edmund H. Linfield ^{1,2} , Mobammed Missous ² ; ¹ Univ. of Leeds, UK, ² Univ. of Mancbester, UK. Optical pump-probe measurements have been performed on superlattices of self- organised InAs quantum dots embedded in GaAs. These structures exhibit subpico- second photocarrier lifetimes when excited at 800 nm, which increase with the <i>ex situ</i> annealing temperature.	CWK2 • 5:00 p.m. Virus Detection on a Planar Optofluidic Chip , <i>Mikbail I. Rudenko¹</i> , <i>Dongliang Yin¹</i> , <i>David W. Deame¹</i> , <i>Holger Schmidt¹</i> , <i>Evan</i> <i>J. Lun²</i> , <i>Brian Pbillips²</i> , <i>Aaron R. Hawkins²</i> , 'Scbool of Engineering, <i>Univ. of California</i> <i>at Santa Cruz</i> , <i>USA</i> , 'Dept. of Electrical and <i>Computer Engineering</i> , <i>Brigbam Young</i> <i>Univ.</i> , <i>USA</i> . We present the first detection of fluorescently labeled Qβ phage viruses on a planar integrated optofluidic chip. Detec- tion sensitivities on the order of 1000 vi- ruses within an 85 femtoliter excitation vol- ume have been achieved.			
	CW12 • 5:15 p.m. Injection Locking of a Broad Area Laser Diode by Use of Holographic Four-Wave Mixing in a Photorefractive Polymer, Pe- ter D. van Voorst ¹ , Herman L. Offerbaus ¹ , Marten R. de Wit ¹ , Savas Tay ² , Jayan Tho- mas ² , Nasser Peygbambarian ² , Klaus J. Boller ¹ ; ¹ Twente Univ., Netherlands, ² College of Optical Sciences, USA. We report on ho- lographic injection locking using a novel photorefractive polymer introducing a new method to improve the beam quality of a broad area laser diode.	JWE3 • 5:15 p.m. Organizing and Characterizing Multiple Filaments in Space and Time, Alexandre Trisorio, Christoph P. Hauri, Lab d'Optique Appliquee, France. Multiple femtosecond filamentation(MF) are spatially organized by polarization control. Spatio-temporal char- acterization demonstrates a stable multi-fila- ment pattern and compression to ultrashort pulses in each individual filament.	CWJ3 • 5:15 p.m. Ultrafast Carrier Dynamics in an InAs/ InGaAs Quantum-Dots-in-a-Well Mid-In- frared Photodetector, Robit P. Prasankumar ³ , Ram S. Attaluri ² , Ricbard D. Averitt ¹ , Andreas Stintz ² , Sanjay Krisbna ² , Antoinette J. Taylor ³ ; ¹ Los Alamos Natl. Lab, USA, ² Univ. of New Mexico, USA. Differen- tial transmission spectroscopy is used to measure carrier dynamics in a quantum-dots- in-a-well heterostructure. This provides fun- damental insight into carrier relaxation from three to two to zero dimensions and has significant implications for dots-in-a-well- based mid-infrared photodetectors.	CWK3 • 5:15 p.m. Optical Characterization and Sensitivity Evaluation of Guided-Resonances in Photonic Crystal Slabs for Biosensing Applications, Ofer Levi ¹ , Meredith M. Lee ¹ , Jingyu Zhang ² , Virginie Lousse ¹ , Steven R. J. Brueck ² , Sbanbui Fan ¹ , James S. Harris ¹ ; 'Stanford Univ., USA, ² Univ. of New Mexico, USA. Optical characterization and sensitiv- ity evaluation of an all-dielectric photonic crystal based guided-resonance filter sensi- tive to index-of-refraction changes in aque- ous solutions is presented. Measured qual- ity factor values (Q=83, 181) corresponds to detectable index-change of 2x10 ⁻³ .			QWG2 • 5:15 p.m. Theory of Optical Refrigeration in p- doped Semiconductors, <i>Greg Rupper, Nai</i> <i>H. Kuong, Rolf Binder, Univ. of Arizona,</i> <i>USA.</i> We present a microscopic theory for luminescence of doped GaAs and its appli- cation to a study of optical refrigeration. We find that p-doping affects the temperature dependence of the cooling threshold in a complex way.
	CW13 • 5:30 p.m. Self-Injection Locking on Brillouin-Am- plified Radiation in Long Optical Fiber Feedback, Vasily V. Spirin, Marcial Castro; CICESE, Mexico. We report a novel optical injection-locking configuration that utilized Brillouin amplification in optical fiber feed- back. Proposed structure exhibits proper- ties inherent in two phenomena, self-injec- tion locking and injection locking in mas- ter-slave configuration at the same time.	JWE4 • 5:30 p.m. Invited Intense Self-Compressed Carrier-Enve- lope Phase-Locked Few-Cycle Pulses at 2 μm, Christoph P. Hauri ¹ , Cosmin Blaga ² , Erik Pouer ³ , James Cryan ² , Razwan Chirla ² , Philip Colosimo ² , Gilles Doumy ² , Anne-Marie March ² , Chris Roedig ² , Emily Sistrunk ¹ , Jen- nifer Tate ² , Jonathan Wbeeler ² , Rodrigo Lopez-Martens ¹ , Kevin Scbultz ² , Louis DiMauro ² ; ¹ Lab d'Optique Appliquee, France, ² Obio State Univ., USA, ³ Ctr. for Ultrafast Optical Science, USA. We demon- strate filamentation at 2 μm using carrier- envelope phase (CEP) stabilized 55 fs, 330 μJ pulses from an OPA. The ultra-broadband output is self-compressed below 3-optical cycles with 270 μJ and preserves the CEP offset.	CWJ4 • 5:30 p.m. Ultra High Bandwidth THz Tunable De- lays Using Cascaded Semiconductor Optical Amplifiers, Bala Pesala, Forrest G. Sedgwick, Connie Chang-Hasnain; Univ. of California at Berkeley, USA. Tunable delays at THz bandwidths are achieved using ul- tra-fast non-linearities in semiconductor optical amplifiers. In this paper, we report electrically controllable fractional delays of 330% for 600fs pulses propagating through two cascaded semiconductor optical ampli- fiers.	CWK4 • 5:30 p.m. Protein Microarray Analysis Using Sur- face Optical Wave Resonance in Photo- nic Band Gap Multilayers, William M. Robertson, Stephen M. Wright, Andrienne C. Friedli, Travis R. Denton, Nate Brady, David Moore, Nicbolas Major, Wesley Cline, Jenni- fer Freimund; Middle Tennessee State Univ., USA. A label-free optical method of analyz- ing protein reactions in microarrays is dem- onstrated. The technique is based on the resonant excitation of surface optical waves in photonic band gap multilayers.			QWG3 • 5:30 p.m. Cavity-Enhanced Resonant Absorption in Laser Cooling of Solids, Denis Seletskiy ¹ , Michael P. Hasselbeck ¹ , Mansoor Sbeik- Bahae ¹ , Richard I. Epstein ² ; ¹ Univ. of New Mexico, USA, ² Los Alamos Natl. Lab, USA. We use an optical cavity to enhance the absorp- tion of pump light in a laser cooling experi- ment. Nearly 90% pump absorption is ob- tained on resonance and cooling is demon- strated with Yb:ZBLAN glass.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		C L	EO	
QWH • Photonic Metamaterials—Continued	CWM • Free-Space and Multi-Mode Fiber Transmission—Continued	CWN • III-IV Nanophotonics—Continued	CWO • Microstructured Fibers and Applications— Continued	CWP • Joint Symposium on THz QCLs II—Continued
QWH2 • 5:00 p.m. Negative Refraction in Mid-Infrared Semiconductor Metamaterials, Anthony J. Hoffman ¹ , Leonid Alekseyeu ¹ , Eugenii E. Narimanov ¹ , Claire Gmachl ¹ , Deborab L. Sivco ² , ¹ Princeton Univ., USA, ² Bell Labs, Lucent Technologies, USA. Semiconductor metamaterials consisting of n [*] -GalnAs/i- AllnAs heterostructures that support nega- tive index modes in the mid-infrared are reported. We demonstrate negative refrac- tion in these metamaterials for wavelengths from 9-15 µm over a wide range of inci- dence angles.		CWN2 • 5:00 p.m. Temperature Insensitive Ultra Low Threshold Lasing in Quantum-Dot Pho- tonic-Crystal Nanocavities, Takebiko Tauara ¹ , Hidebiko Kamada ¹ , Yong-Hang Zbang ¹⁻² , Nicbolas Ian Cade ¹ , Takasumi Tanabe ¹ , Hidebi Gotob ¹ , Ding Ding ² , Shane Jobson ² , Eiicbi Kuramoch ¹ , Masaya Notom ¹ , Hidetoshi Nakano ¹ , ¹ NT Basic Res. Labs, Japan, ² Arizona State Univ., USA. Tem- perature insensitive ultra low threshold las- ing up to 90 K is observed in quantum dots in photonic crystal nanocavities, due to the fast radiative recombination of excitons and the suppression of the phonon scattering probability.	CWO2 • 5:00 p.m. Side Coupling Light into the Core of Photonic Crystal Fiber, Graham D. Marshall', Dougal Kan², Ara A. Asaryan², Lindsay C. Botten², Michael J. Withford', 'Macquarie Univ., Australia, ² Univ. of Tecb- nology, Australia. The effect of the cladding region on coupling side-launched light into the core of photonic crystal fiber is studied experimentally and using a multipole com- puter model. The implications on grating writing in PCFs are discussed.	CWP2 • 5:00 p.m. Long Wavelength Terahertz Quantum Cascade Lasers, Emitting down to 1.2 THz, Christoph Walther, Milan Fischer, Giacomo Scalari, Jérôme Fais; Inst. of Phys- ics, Univ. of Neuchâtel, Switzerland. We re- port operation of terahertz quantum cascade lasers at frequencies from 2.0 THz down to 1.2 THz by using a bound-to-continuum based lasing scheme which combines high injection efficiency and low intersubband absorption.
QWH3 • 5:15 p.m. Circular Dichroism in Double-Layer Chiral Metamaterials, Manuel Decker, Mathias Klein, Martin Wegener, Stefan Lin- den; Univ. Karlsrube (TH), Germany. We present experiments and numerical calcu- lations for chiral metamaterials composed of double-layer gammadions. The excitation of anti-symmetric magnetic modes leads to pronounced circular dichroism. In contrast, polarization effects are negligible in corre- sponding single layer gammadions.	CWM2 • 5:15 p.m. Receiver Sensitivity Improvement of Optical Wireless Channels with Delayed- Diversified Pulse-Position Modulation, C. H. Kuok, F. K. Lau, R. V. Penty, I. H. White; Cir. for Advanced Photonics and Electron- ics, Dept. of Engineering, Univ. of Cam- bridge, UK. We propose a simple approach to improve the receiver sensitivity in a line- of-sight optical-channel using a delayed-di- versified-pulse-position-modulation scheme. A 5-dB sensitivity improvement is achieved over the conventional RZ-OOK scheme in the presence of atmospheric turbulence.	CWN3 • 5:15 p.m. High Quality Factor with Fundamental Resonant Mode near the Bandedge of GaN Triangular Submicron Laser Cavity, Cm Lai ⁴ , HM. Wu ² , PC. Huang ² , BC. Yeh ² , CL. Chou ² , LH. Peng ² ; 'Dept. of Elec- tronic Engineering, Ming Chuan Univ., Tai- wan, 'Inst. of Electro-Optical Engineering, Natl. Taiwan Univ., Taiwan. Optically- pumped, single-mode stimulated emission was observed on GaN triangular submicron- cavity bounded by [10-10] facets. FDTD analysis indicates a high-Q factor (10 ³) re- sultant from material's dispersion effect near the bandedge.	CWO3 • 5:15 p.m. Unvited Quantum Optics in Microstructured Fi- bers, Jobn G. Rarity ¹ , Jeremie Fulconis ¹ , Olivier Alibart ¹ , Jeremy L. O'Brierl ¹ , William J. Wadsworb ² , ¹ Univ. of Bristol, UK, ² Univ. of Bath, UK. We have shown that four-wave mixing in micro-structured fibres can be a versatile source of photon pairs for quan- tum optics experiments. We will review the progress towards all fibre sources for vari- ous quantum information applications.	CWP3 • 5:15 p.m. Optically-Assisted Electrically-Driven THz Generation: A New Approach for Efficient THz Quantum Cascade Lasers, Ines Waldmueller, Weng W. Chou, Michael C. Wanke, Sandia Natl. Labs, USA. The pro- posed optically-assisted electrically-driven laser keeps the advantages of optical con- version while overcoming its constraints by recycling the pump photons yielding con- version efficiencies exceeding the Manley- Rowe limit and a path to room temperature THz generation.
QWH4 • 5:30 p.m. Achieving Sharp Resonances in Metamaterials via Engaging "Closed- Modes," Vassili A. Fedolov ¹ , Michael Rose ¹ , Nikitas Papasimakis ¹ , Sergey L. Prosvirnin ² , Nikolay I. Zheludev ¹ ; ¹ Univ. of Southampton, UK, ² Inst. of Radio Astronomy, Natl. Acad. of Science, Ukraine. We report on the new way of achieving sharp transmission and reflection resonances in sub-wavelength structured artificial materials.	CWM3 • 5:30 p.m. Optimized Multi-Emitter Beams for Free- Space Optical Communications through Atmospheric Turbulence, Pavel Polynkin ¹ , Laura Klein ² , Troy Rboadarmer ² , Avner Peleg ³ , Jerome Moloney ³ ; ¹ College of Optical Sciences, Univ. of Arizona, USA, ² Starfire Optical Range, AFRL, USA, ³ Arizona Ctr. for Mathematical Sciences, USA. We re- port an experimental study of scintillations in a free-space optical communication chan- nel with turbulence. Using optimized multi- emitter beams results in substantial reduc- tion of scintillation index. Experimental re- sults agree with calculations based on Rytov theory.	CWN4 • 5:30 p.m. Growth of Localized InAs/InP Quantum Dots on Nano-Holes for Quantum Pho- tonic Sources, <i>Pedro Rojo-Romeo, Artur</i> <i>Turala, Pbilippe Regreny, Fabien Mandorlo,</i> <i>Micbel Gendry, INL - CNRS, France.</i> The lo- calization of InAs Quantum Dots on nanostructured InP(001) surfaces is achieved. The sites for QDs nucleation are nanoholes defined by e-beam lithography. Photoluminescence results of QD area are exposed. Nanosource fabrication is de- scribed.		CWP4 • 5:30 p.m. Integrated Horn Antenna for Microstrip Waveguide THz Quantum Cascade La- sers, Stefano Barbieri ¹ , Jesse Alton ² , Sukbdeep Dbillon ¹ , Carlo Sirtori ^{1,3} , Jean Francois Lampin ⁴ , T. Akalin ⁴ , E. Peytavit ⁴ , Harvey Beere ⁵ , David Ritchi ⁶ , ¹ MPQ Lah, France, ² Teraview Ltd., UK, ³ Thales Res. and Technology, France, ⁴ Inst. d'Electronique de Microélectronique et de Nanotechnologie, France, ⁵ Cavendisb Lab, UK. A hom-antenna is integrated on a microstrip waveguide QCL emitting at 2.0 THz. This allows a better impedance match to free space, which im- proves substantially the directivity of the beam and the radiation outcoupling.

CLEO/QELS and PhAST 2007, May 6-11, 2007 • Baltimore Convention Center, Baltimore, Maryland

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
C L	E 0	JOINT		CLEO		QE	LS
CWH • Organic Optoelectronics—Continued	CWI • Mode-Locked Semiconductor Lasers II— Continued	JWE • High-Power Few- Cycle Sources—Continued	CWJ • Ultrafast Dynamics and Optical Switching— Continued	CWK • Biosensors— Continued	CWL • Panel on Solid-State Laser Power Scaling through Beam Combination—Continued	QWF • Entanglement— Continued	QWG • Laser Cooling and Other Effects in Semiconductors— Continued
CWH2 • 5:45 p.m. High External Quantum Efficiency from Organic Bulk Heterojunction Photode- tectors, Younggu Kim, Dong H. Park, Min Du, Wei-lou Cao, Cbi H. Lee, Warren N. Herman, Danilo B. Romero, Lab for Physi- cal Sciences, Univ. of Maryland at College Park, USA. From an organic bulk heterojunction photodetector fabricated from a blend of P3HT/PCBM-C ₆₆₀ we report an external quantum efficiency of under an applied bias voltage of -10V, leading to an internal quantum efficiency of 97%.	CW14 • 5:45 p.m. Monolithic 1.55-µm GaInNAsSb Quan- tum Well Mode-Locked Lasers, Yongchun Xin ¹ , Luke F. Lester ¹ , Seth R. Bank ² , H. P. Bae ² , Homan B. Yuen ² , Mark Wistey ² , James S. Harris ² , ¹ Univ. of New Mexico, USA, ² Stanford Univ., USA. The first monolithic GaInNAsSb/GaNAs 1550-nm mode-locked lasers are reported on a GaAs substrate. A repetition rate of 5.8 GHz has been real- ized.		CWJ5 • 5:45 p.m. Multi-Fiber-Channel, Ultrafast, All-Opti- cal Switch Utilizing a 2-D Fresnel Lens Array, Darren Wu ¹ , Waleed Mohammed ¹ , Pradeep Sriniwasar ² , Eric G. Johnson ² , Li Qian ¹ , Peter W.E. Smibl ² , ¹ Uniu: of Toronto, Canada, ² College of Optics and Photonics, CREOL, Uniu. of Central Florida, USA. We demonstrate multi-fiber-channel, multi- wavelength operation of an ultrafast all-op- tical switch using a compact 2-D lens array and a commercial fiber array. Our objective is to demonstrate the device's potential for broadband multi-variable all-optical signal processing.	CWK5 • 5:45 p.m. Biological Life Signs Detection Using High Sensitivity Pulsed Laser Vibrometer, Chen-Chia Wang ¹ , Sudbir Tritvedi ¹ , FengJin ¹ , Zbongyang Chen ² , Jacob Khurgir ² , Ponciano Rodrigue ² , Narasimha S. Prasad ¹ ; ¹ Brimrose Corp, USA, ² Johns Hopkins Univ., USA, ³ INAOE, Mexico, ³ NASA Langley Res. Ctr., USA. We present remote detection of biological life signs, including heartbeat, breathing, gross physical move- ment, and blood circulation conditions us- ing highly sensitive, speckle-tolerant pulsed laser vibrometer that allows interrogation from essentially anywhere of the subject's body.		QWF2 • 5:45 p.m. Effects of Turbulence on the Transverse Position-Momentum Entanglement of Biphotons, <i>Kam Wai Chan¹, Anand Jha¹,</i> <i>Malcolm N. O'Sullivan-Hale¹, Robert W.</i> <i>Boyd¹, Glenn A. Tyler¹, 'Inst. of Optics, Univ.</i> <i>of Rochester, USA, ²Optical Sciences Co., USA.</i> Entangled biphotons propagating through a turbulent medium are studied. We ana- lyze the dependence of the transverse posi- tion-momentum entanglement of the pho- tons on coherence diameter by taking a quadratic approximation to the wave-struc- ture function.	QWG4 • 5:45 p.m. Improvement of the Efficiency of Laser Cooling Using Type II Multiple QW's, Jacob B. Khurgin; Johns Hopkins Univ., USA. Type II multiple quantum wells exhibit strong anti-Stokes shift of the fluorescence. This phenomenon can used to achieve la- ser cooling with efficiency increased by a factor of few compared to bulk.
CWH3 • 6:00 p.m. Ultrahigh Electro-Optic Coefficient of 170pm/V and Low Vr of 1V at 1.55µm in Hybrid Polymer/Sol-Gel Waveguide Modulators, Yasufumi Enami ¹ , C. T. DeRose ¹ , D. Matbine ¹ , C. Loycbik ¹ , C. Greenlee ¹ , R. A. Norwood ¹ , R. Stegeman ¹ , T. D. Kim ² , J. Luo ² , Y. Tian ² , A. K-Y. Jen ² , N. Peygbambarian ¹ ; 'College of Optical Sci- ences, Univ. of Arizona, USA, ² Dept. of Ma- terial Science and Engineering, Univ. of Wasbington, USA. We demonstrated the highest EO coefficient with the highest pol- ing efficiency (~100%) in actual modulator devices. This breakthrough was accom- plished with contact poling of a crosslinkable EO polymer with an electrically conductive sol-gel cladding.	CW15 • 6:00 p.m. Optically Injection-Locked Optoelec- tronic Oscillators with Low RF Thresh- old Gain, Hyuk-Kee Sung, Erwin K. Lau, Xiaoxue Zbao, Devang Parekh, Connie J. Chang-Hasnain, Ming C. Wu; Univ. of Cali- fornia at Berkeley, USA. We experimentally investigate the optical and RF characteris- tics of optically injection-locked optoelec- tronic oscillators. With strong optical injec- tion and optimized frequency detuning, we have achieved a very low RF threshold gain of 7dB for optoelectronic oscillation.	JWE5 • 6:00 p.m. Multiterawatt Three-Cycle Optical Para- metric Chirped Pulse Amplifice, Franz Tavella, Laszlo Veisz, Andrius Marcin- kevicius, Ferenc Krausz; Max Planck Inst. für Quantenoptik, Germany. Optical para- metric chirped pulse amplification is one of the most promising techniques for the am- plification of few-cycle pulses. We show amplification and compression to the multiterawatt level of near transform-limited three-optical-cycle pulses.	CWJ6 • 6:00 p.m. Ultrafast Organic Photonic Crystal Op- tical Switching, Xiaoyong Hu, Ping Jiang, Hong Yang, Gong Qibuang: Peking Univ., Cbina. An all-optical switching with an ultrafast response time of femtosecond or- der is demonstrated in a two-dimensional polystyrene photonic crystal excited by a 9.7 MW/cm ² pump laser. High switching efficiency of about 70% is achieved.	CWK6 • 6:00 p.m. Multilayer Polymer Optical Backplanes for Frequency Multiplexed Phase Fluo- rometry Arrays, <i>Kevin S. Lee, Rajeev J.</i> <i>Ram; MIT, USA.</i> Fluorescence detection with dense sensor arrays is realized in a multi- layer large core polymer waveguide optical backplane. The multilayer backplane em- ploys optical vias combined with frequency domain multiplexing to facilitate 4:1 multi- plexing in the readout.		QWF3 • 6:00 p.m. Generation of Entangled Photon Pairs Based on Intra-Cavity Four-Wave-Mixing in Dual-Wavelength Fiber Ring Laser , <i>Jae</i> <i>Ho Han, Jin U. Kang: Johns Hopkins Univ.,</i> <i>USA.</i> We have experimentally demonstrated a compact and efficient source of entangled photon pairs by using intra-cavity four wave mixing (FWM) in dual-wavelength Erbium doped fiber ring laser for the application in quantum key distribution systems.	QWG5 • 6:00 p.m. Ultrafast Radiative Decay of Confined Excitons Due to Long-Range Coherent Coupling with Radiation Wave, Masayosbi Ichimiya ^{1,2} , Masaaki Asbida ^{1,2} , Hideki Yasuda ^{1,2,3} , Hajime Isbibara ^{1,3} , Tadasbi Itoh ^{1,2} , 'CREST, Japan Science and Technology Agency, Japan, 'Graduate School of Engineering Science, Osaka Univ., Japan, 'Graduate School of Engineering, Osaka Prefecture Univ., Japan. Transient grating spectrum and the delay time depen- dence are investigated in a CuCl thin film. The structures for complex eigenmodes and the ultrafast radiative decay rates of exci- tons below 200 fs are observed.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341		
QELS	C L E O					
WH • Photonic etamaterials—Continued	CWM • Free-Space and Multi-Mode Fiber Transmission—Continued	CWN • III-IV Nanophotonics—Continued	CWO • Microstructured Fibers and Applications— Continued	CWP • Joint Symposium on THz QCLs II—Continued		
WH5 • 5:45 p.m. tree-Dimensional Electromagnetic tamaterials with Non-Maxwellian Ef- trive Fields, Jongbua Sbin, Jung-Tsung en, Shanbui Fan; Stanford Univ., USA. We opose a new class of electromagnetic tamaterial systems, whose long-wave- ugh behaviors cannot be described by xwell's equations in a uniform media, and tead possess much richer properties.	CWM4 • 5:45 p.m. Simple SBS-Mitigating Waveforms for High-Power PPM Transmitters for Space Laser Communications, Neal W. Spellmeyer, Don M. Boroson, David O. Caplan, Bryan S. Robinson, Mark L. Stevens; MIT Lincoln Lab, USA. Simple waveforms with sub-pulse structure for mitigating stimu- lated Brillouin scattering in high-power fi- ber amplifiers using pulse-position-modu- lated data formats are presented. Experimen- tal measurements show good agreement with theory. The impact on lasercom trans- mitter design is discussed.	CWN5 • 5:45 p.m. Local On-Chip Temperature Tuning of InGaAs Quantum Dots , <i>Andrei Faraon¹</i> , <i>Dirk Englund¹</i> , <i>Ilya Fusbman¹</i> , <i>Jelena</i> <i>Vuckovic¹</i> , <i>Nick Stoltz²</i> , <i>Pierre Petroff²</i> ; <i>'Stanford Univ., USA, ²Univ. of California</i> <i>at Santa Barbara, USA.</i> Quantum network based on InGaAs quantum dots (QDs) rely on QDs being in resonance with each other. We developed a new technique based on temperature tuning to spectrally align QDs located on the same chip.	CWO4 • 5:45 p.m. Practical Design of Microstructured Op- tical Fibers for Surface Plasmon Reso- nance Excitation, Alireza Hassani, Maksim Skorobogatiy; Ecole Polytechnique de Montréal, Canada. Plasmons on the surface of large metallized holes containing analyte are excited by the fundamental mode of a microstructured fiber. Phase matching be- tween plasmon and core modes is facilitated by the perforation of fiber core.	CWP5 • 5:45 p.m. Electrical and Optical Characterization of Microdisk Quantum Cascade Lasers Emitting at Terahertz Frequencies, L. Andrea Dunbar ¹ , Giacomo Scalar ² , Lorenzo Strigu ² , Marcella Giovannini ² , Romuald Houdr ² , Jérôme Faist ² ; ¹ Inst. de Pbotonique et d'Electronique Quantique, Ecole Polytechnique Federale de Lausanne, Suit- zerland, ² Dept. of Pbysics, Univ. of Neuchâtel, Switzerland. Quantum cascade laser samples microdisks with double plas- mon waveguiding were fabricated (λ @80µm). High impedance mismatch be- tween the confined optical mode and sur- rounding free-space allows the existence of whispering gallery modes 'unobtainable' in standard dielectric microdisks.		
WH6 • 6:00 p.m. ree Wave Interaction in Negative Re- ctive Index Materials with Quadratic onlinearity, Andrei Maimistov', Ildar bitov', Elena Kazantseva'; 'Moscow En- ueering Physics Inst., Russian Federation, vit. of Arizona, USA. We examine waves opagation in negative refractive index terials with quadratic nonlinearity. We alyze the modulational instability of the ve with constant background. The soli- va wave solutions binding pump and sec- d harmonic waves are found.	CWM5 • 6:00 p.m. Mode Coupling: Why POF Supports 40Gbps , <i>Arup Polley, Kasyapa Balemarthy,</i> <i>Stephen E. Ralpb; Georgia Tech, USA.</i> We demonstrate experimentally and numerically that mode-coupling in graded index plastic optical fiber enables 40Gbps over 200m in the presence of dramatic refractive index errors.	CWN6 • 6:00 p.m. Littrow Lasing in Photonic Crystal Waveguides , Omer Kbayam ¹ , Melanie Ayre ¹ , Cyril Cambournac ¹ , Henri Benisty ¹ , Wolfram Pernice ² , Dominic Gallagber ¹ , ¹ Lab Charles Fabry de l'Inst. d'Optique, CNRS, Univ Paris Sud, France, ² Dept. of Engineer- ing Science, Univ. of Oxford, UK, ³ Pboton Design, UK. We propose Littrow based las- ing of band edge modes in an open resona- tor formed by broad photonic crystal waveguide. The concept is developed by plane wave and FDTD simulations of bulk crystal and waveguide.	CWO5 • 6:00 p.m. Index-Guiding, Single-Mode, Liquid- Core, Liquid-Cladding Photonic Crystal Fibers, Christiano J.S. de Matos ¹ , Cristiano M.B. Cordeiro ² , Alexandre Bozolan ¹ , Jack- son S.K. Ong ¹ , Eliane M. dos Santos ² , Carlos H. de Brito Cruz ² ; ¹ Unit. Presbiteriana Mackenzie, Brazil, ² UNICAMP, Brazil. In- dex-guiding, hollow-core photonic crystal fibers whose core and cladding have been filled with different liquids are theoretically and experimentally demonstrated. These waveguides present a single-mode opera- tion and applicability in sensing and non- linear optics of liquids.	CWP6 • 6:00 p.m. Terahertz Quantum Cascade Lasers: Novel Resonators and Linewidth Prop- erties, Lukas Mabler ¹ , Richard Green ¹ , Ji- Hua Xu ¹ , Alessandro Tredicucci ¹ , Guido Giuliani ² , Harvey E. Beere ³ , David A. Ritchie ³ ; ¹ Scuola Normale Superiore, Italy, ² Univ. di Pavia, Italy, ³ Cavendisb Lab, Univ. of Cambridge, UK. We report simulations and experimental results of THz QCLs with quasiperiodic resonators based on a Fi- bonacci sequence. We have also measured the linewidth enhancement factor of a THz QCL.		

ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
C L	E 0	JOINT		CLEO		QE	LS
CWH • Organic Optoelectronics—Continued	CWI • Mode-Locked Semiconductor Lasers II— Continued	JWE • High-Power Few- Cycle Sources—Continued	CWJ • Ultrafast Dynamics and Optical Switching— Continued	CWK • Biosensors— Continued	CWL • Panel on Solid-State Laser Power Scaling through Beam Combination—Continued	QWF • Entanglement— Continued	QWG • Laser Cooling and Other Effects in Semiconductors— Continued
CWH4 • 6:15 p.m. Photoconductive Properties of Regioregular Poly(3-hexylthiophene) , <i>Jonatban P. Laib, Hui Zhan, Jason A. Deibel,</i> <i>Daniel M. Mittleman, Jeff Worne, Douglas</i> <i>Natelson; Rice Univ., USA.</i> We investigate the photoconductivity of regioregular Poly(3- hexylthiophene) using 400 and 800 nm light. We observe a linear dependence of the pho- tocurrent on optical power at both wave- lengths.	CWI6 • 6:15 p.m. Bistable Lasing Wavelength in a Mode- Locked Two-Section Quantum-Dot Diode Laser, Mingming Feng ¹ , Steven T. Cundiff ¹ , Richard P. Mirin ² , Kevin L. Silverman ² ; 'Dept. of Physics, Univ. of Colorado, and JILA, NIST and Univ. of Colorado, USA, ² NIST, USA. We report a two-section mode-locked quantum dot laser with an emission wave- length that is bistable with respect to ap- plied reverse bias on the saturable absorber region.	JWE6 • 6:15 p.m. Few-Cycle Terawatt Optical Parametric Chirped-Pulse Amplification System Using an Yb:YLF Chirped-Pulse Ampli- fication Pump Laser, Makoto Aoyama ¹ , Yutaka Akabame ¹ , Kanade Ogauva ¹ , Koicbi Tsuji ¹ , Akira Sugiyama ¹ , Koicbi Yumakauva ¹ , Tetsuo Harimoto ² , Junji Kawanaka ³ , Hajime Nisbioka ⁴ , Masayuki Fujita ⁵ ; ¹ Japan Atomic Energy Agency, Japan, ² Faculty of Engineer- ing, Univ. of Yamanashi, Japan, ³ Inst. of Laser Engineering, Osaka Univ., Japan, ⁴ Inst. for Laser Science, Univ. of Electro-Commu- nications, Japan, ⁵ Inst. for Laser Technology, Japan. We present an ultra-broadband opti- cal parametric chirped-pulse amplification system with a 400 nm bandwidth pumped by two broadband pulses delivered from a liquid nitrogen cooled Yb:YLF chirped-pulse amplification laser.	CWJ7 • 6:15 p.m. Optical Spatially Quantized High Perfor- mance Analog-to-Digital Conversion, <i>Mona Jarrabi, David A. B. Miller, Fabian</i> <i>W. Pease, Thomas H. Lee; Stanford Univ.,</i> <i>USA.</i> We present an optical spatial quantized analog-to-digital converter (ADC) and ex- perimentally demonstrate 8-level quantiza- tion consuming only 7.2pJ per quantization operation. Measured 8ps full-width half- maximum photodetector outputs, promises the potential of realizing a 3bit 125GS/s ADC.	CWK7 • 6:15 p.m. Single Molecule Pulsed Interleaved Ex- citation Fluorescence Resonance Energy Transfer (PIE-FRET) inside Nanometer- Scale Apertures at Biologically Relevant Concentration, Samantba Fore', Thomas Huser', Yin Yuen', Lambertus Hesselink', 'Univ. of California at Davis, USA, 'Stanford Univ., USA. PIE-FRET offers significant ad- vantages over conventional single molecule FRET techniques, but it still requires the di- lution of samples to biologically low con- centrations. Here, we present FRET mea- surements inside nm-sized apertures at ~1000 times higher concentrations.		QWF4 • 6:15 p.m. Photon Pair Generation in Reverse-Pro- ton-Exchange Lithium Niobate Wave- guides with Mode Demultiplexing at a Pump Repetition Rate of 10 GHz, Xiuping Xie ¹ , Qiang Zbang ¹ , Carsten Langrock ¹ , Yoshibias Yamamoto ¹ , Martin M. Fejer ¹ , Hiroki Takesue ² , Sae Woo Nam ³ ; ¹ Stanford Univ., USA, ² NTT Basic Res. Labs, NTT Corp., Japan, ³ NIST, USA. We report correlated photon pair generation in periodically-poled reverse-proton-exchange lithium niobate waveguides with mode demultiplexing us- ing 10-ps-long laser pulses at a repetition rate of 10 GHz. We observed a visibility as high as 167.	QWG6 • 6:15 p.m. Resonant Energy Transfer Due to Exci- ton-Exciton Interaction in the Strong Coupling Regime in Hybrid InGaN Quan- tum Wells, Jianyou Li ¹ , Arup Neogi ¹ , Tenya Isbibara ² , Atsusbi Tackeucbi ³ , ¹ Univ. of North Texas, USA, ² RIKEN, Japan, ³ Waseda Univ., Japan. Resonant coupling of excitons in strongly confined hybrid perovskite con- jugated to InGaN quantum wells is observed. Temperature and time-resolved-photolumi- nescence (PL) reveal 10 times enhancement of recombination lifetime in strong-coupling regime due to resonant energy transfer.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341			
QELS	C L E O						
QWH • Photonic Metamaterials—Continued	CWM • Free-Space and Multi-Mode Fiber Transmission—Continued	CWN • III-IV Nanophotonics—Continued	CWO • Microstructured Fibers and Applications— Continued	CWP • Joint Symposium on THz QCLs II—Continued			
QWH7 • 6:15 p.m. Light Transfer, Parallel Focusing and Demultiplexing Using Negative Refrac- tion in Photonic Crystal, Takasbi Matsumoto, Tomobiko Asatsuma, Toshibiko Baba; Yokoham Natl. Univ., Japan. We ex- perimentally demonstrate three important functions utilizing the negative refraction of light in the photonic crystal slab, for the first time. They will be applicable to a sophisti- cated in-plane free space optical network.	CWM6 • 6:15 p.m. Twin-Spot Launch for Enhancement of Multimode-Fiber Communication Links, Qing Sun ¹ , Jonathan D. Ingbam ¹ , Richard V. Penty ¹ , Ian H. Wbite ¹ , David G. Cunningbam ² ; ¹ Univ. of Cambridge, UK, ² Arago Technologies, UK. A novel twin-spot launch is proposed for multimode-fiber (MMF) links. Experimental and theoretical investigation of the launch indicates a pen- alty reduction of ≈50% of the 10 Gigabit Ethernet allocation for EDC-enabled links over worst-case MMF.	CWN7 • 6:15 p.m. Topology Optimization for Photonic Crystal Waveguide Bends with Wide and Flat Bandwidths in Air-Bride Type Pho- tonic Crystal Slabs, Yoshinori Watanabe ¹ , Naoki Ikeda ^{1,2} , Yoshimasa Sugimoto ^{1,2} , Yoshiaki Takata ¹ , Yoshinori Kitagatua ¹ , Akio Mizutani ¹ , Nobubiko Ozaki ¹ , Kiyoshi Asakatua ¹ , ¹ Unit. of Tsukuba, Japan, ² AIST, Japan. Topology optimization method has been applied to design the waveguide bends in the air-bridge type two-dimensional pho- tonic crystal slab. We demonstrated that the optimized bends show good performance, comparable to the straight waveguide.	CWO6 • 6:15 p.m. R Supercontinuum in Compact Tellurite PCFs , Peter Domacbuk ¹ , Natalie A. Wolchover ¹ , Mark Cronin-Golomb ¹ , Fiorenzo Omenetto ¹ , K. K. Jang ² , Jaeucok Abn ² , Aimin Wang ³ , Alan C. George ³ , Jonathan Knigh ² , 'Tufts Univ., USA, ² Korea Advanced Inst. of Science and Technology, Republic of Korea, ³ Univ. of Bath, UK. We demonstrate two-octave supercontinuum generation in an 8 cm length of tellurite glass photonic crystal fiber. The high modal con- finement and nonlinearity of the tellurite PCF enables the short length of fiber used.	CWP7 • 6:15 p.m. Ultra-Low Threshold THz Microcavity Lasers with Sub-Wavelength Mode Vol- umes, Yamick Chassagneux ¹ , Jose Palomo ¹ , Raffaele Colombelli ¹ , Sukbi Dbillon ² , Stefano Barbieri ² , Carlo Sirtori ² , Harvey Beere ³ , Jessie Alton ³ , David Ricche ³ , ¹ Inst. d'Electronique Fondamentale, France, ² MPQ, France, ³ Cavendisb Lah, Univ. of Cambridge, UK. We demonstrate terahertz microcavity-lasers at λ =112µm with ultra-low current-thresholds of 4mA and mode-volumes of less than one- cubic-wavelength. Confinement in the lon- gitudinal direction is obtained using almost- circular micro-disk-resonators. Devices lase up to 70K/60K in pulsed mode/cw.			