R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	JOINT			CLEO			QELS
8:00 a.m. – 9:45 a.m. CMA • Short Wavelength NLO Majid Ebrahim-Zadeh; ICFO, Spain, Presider	8:00 a.m. – 9:45 a.m. JMA • Plasmonic Nanophotonics Vladimir M. Shalaev; Purdue Univ., USA, Presider	8:00 a.m. – 9:45 a.m. CMB • Ultrafast Processes Michael Damzen; Imperial College, UK, Presider	8:00 a.m. – 9:45 a.m. CMC • Fiber Lasers I Clifford Headley; OFS Labs, USA, Presider	8:00 a.m. – 9:45 a.m. CMD • Semiconductor Quantum Dot Lasers I Ann Catrina Bryce; Univ. of Glasgow, UK, Presider	8:00 a.m. – 9:45 a.m. CME • UV and Visible Semiconductor Optoelectronic Materials Nelson Tansu; Lebigh Univ., USA, Presider	8:00 a.m. – 9:45 a.m. CMF • 100 Years of LEDs: Past, Present and Future Marek Osinski; Univ. of New Mexico, USA, Presider	QMA • Ultrafast Dynamics in Quantum Wells Sarab Bolton; Williams College, USA, Presider
CMA1 • 8:00 a.m. Tunable Femtosecond Optical Paramet- ric Generator in the Vacuum Ultravio- let, Jiaan Zbeng, Mark Mero, Pancbo Tzankov, Oliver Steinhellner, Max Born Inst. for Nonlinear Optics and Sbort Pulse Spec- troscopy, Germany. Femtosecond pulses tunable between 168 and 181 nm are gen- erated at an energy of 100 nJ by mixing the third-harmonic of a Ti:Sapphire laser with pulses from an optical parametric amplifier in an argon-filled capillary.	JMA1 • 8:00 a.m. Invited Negative Refraction in Visible in 3-D Opal Photonic Crystals, Joshua Rous, Rabia Moussa, Ali Aliev, Awar A. Zakbidov; Univ. of Texas at Dallas, USA. We discuss the different spatial fluorescent patterns in terms of negative refraction in upper pho- toric bands, which have negative group velocity. We analyze fluorescence patterns of same size QD in inverted opals, and opals with strong disordering.	CMB1 • 8:00 a.m. Frequency Doubling in Femtosecond- Written Periodically-Poled Potassium Titanyl Phosphate Waveguides, Stuart Cambell', Robert R. Thomson ¹ , Duncan P. Hand ¹ , Ajoy K. Kar ¹ , Derryck T. Reid ¹ , Carlota Canalias ² , Fredrik Laurell ² , ¹ Heriot Watt Uniu., UK, ² Royal Technical Inst., Sue- den. Frequency doubling is demonstrated in femtosecond-laser-created single-mode waveguides written in a periodically-poled potassium titanyl phosphate crystal. Conver- sion efficiencies of 0.22%/W (0.02%/W) were obtained for first (third) order phasematching at 980nm (800nm).	CMC1 • 8:00 a.m. Towards the Short-Wavelength Limit at 1450 nm in a Widely Tunable Erbium- Doped Fiber Laser, Chi-Ming Hung ¹ , Nan- Kuang Chen ¹ , Yinchieb Lai ¹ , Sien Chi ^{1,2} ; 'Depl. of Photonics and Inst. of Electro-Op- tical Engineering, Natl. Chiao Tung Univ., Taitwan, "Depl. of Electrical Engineering, Yuan Ze Univ., Taitwan. We demonstrate a widely tunable fiber ring laser over 1451.9~1548.1 nm with temperature tuning efficiency as high as 57.3 nm/°C by using a 16-m-long standard silica-based erbium- doped fiber under 980-nm pump power of 208 mW.	CMD1 • 8:00 a.m. Three-Dimensional Quantization from an Ordered Nanopore Array Diode La- ser, V. C. Elarde, J. J. Coleman; Univ. of Illi- nois, U&A. The ordered nanopore array la- ser diode is a structure which exhibits three- dimensional carrier confinement similar to quantum dot lasers without the undesirable effects of spatially disconnected carrier pools. Simulation and experimental results will be presented.	CME1 • 8:00 a.m. Highly Efficient Resonance Energy Transfer in Ultrathin Organic-Inorganic Semiconductor Hybrid Films, Qiang Zbang ¹ , Tolga Atay ¹ , Jonathan Tischler ² , Scott Bradley ² , Vladimir Bulovic ² ; ¹ Div. of Engineering and Dept. of Physics, Brown Univ., USA, ² Dept. of Electrical Engineering and Computer Science, MIT, USA. We report on the optical study of efficient excitation transfer in organic-inorganic hybrid thin films composed of alternating monolayers of CdSe/ZnS QDs and J-aggregate of cyanine dyes, by steady-state and time-resolved pho- toluminescence spectroscopy study.	CMF1 • 8:00 a.m. Invited Visible LEDs: Past, Present and Future, George Craford; Philips Lumileds Lighting Co., USA. Red AllnGaP and blue InGaN LEDs have wallplug efficiencies of over 40%, and white LEDs luminous efficacies of 150 lm/ W. New applications are emerging and LEDs are on course to replace conventional light- ing.	QMA1 • 8:00 a.m. Optical Pumping Using Chirped Pulses of a Vertical-Cavity Surface-Emitting La ser (VCSEL), Sangam Chatterjee ¹ , Wende Wobllehen ²⁻³ , Christoph Lange ¹ , Marcux Motzkus ² , Wolfgang Stolz ¹ , Angela Tbränbardt ¹ , Eckbardt Kühn ¹ , Stepban W Koch ¹ , Wolfgang W. Rühle ¹ , 'Faculty of Phys ics and Material Sciences Ctr., Philipps-Univ Marburg, Germany, ² Faculty of Chemistry and Material Sciences Ctr., Philipps-Univ Marburg, Germany, ³ Polymer Physics Res., BASF AG, Germany, We study the response of a VCSEL after optical pumping using pulses with varying quadratic chirp. The data are in good agreement with a microscopic rate approximation model.
CMA2 • 8:15 a.m. Optimum Laser and Plasma Conditions for Achieving High-Order Harmonic Generation from Manganese Plume in the Range of 8.4nm, <i>Luc Bertrand Elouga Bom¹</i> , <i>R. A. Ganeer²</i> , <i>J. C. Kieffer¹</i> , <i>T. Ozaki¹</i> ; ¹ <i>Inst. Natl. de la Recherche Scientifique,</i> <i>Energie, Matériaux et Télécommunications,</i> <i>Canada,</i> ² <i>Scientific Association</i> <i>Akadempribar</i> , <i>Uzbekistan.</i> We present our recent results on the study of the optimum conditions for both laser and plasma char- acteristics for achieving the highest order harmonic generation in manganese plasma.		CMB2 • 8:15 a.m. Efficient High-Energy Femtosecond Pulse Compression in Quadratic Media with Flattop Beams, Jeffrey Moses ¹ , Eibab Albanmall ² , Jason M. Eichenbolz ² , Frank W. Wise ¹ , 'Cornell Univ., USA, 'Aveuport Corp., USA. USA, 'aveuport Corp., USA. Usa, 'aveuport Corp., USA. Usa, 'aveuport Corp., USA, 'aveuport Corp., 'aveuport Cor	CMC2 • 8:15 a.m. 396 fs, 2.5-12 GHz Asynchronous Mode- Locking Erbium Fiber Laser, Eduardo S. Boncristiano, Lucia AM Saito, Eunezio A. De Souza, Mackenzie Univ., Brazil. 396 fs pulses with adjustable repetition rate from 2.5 GHz to 12 GHz were directly generated by an asynchronous modelocked Er-fiber laser in conjunction with intracavity solitonic effect in a hybrid regime.	CMD2 • 8:15 a.m. Ground State Lasing at 1.34 μm from IAs Quantum Dots Grown on GAAs Sub- strate by Antimony-Mediated Metal Or- ganic Chemical Vapor Deposition, Denis Guimard ^{1,2,3} , Mitsuru Isbida ^{1,2} , Masao Nisbioka ^{1,2} , Shiro Tsukamoto ^{2,4} , Nobuaki Hatori ^{1,2} , Hisao Sudo ⁴ , Tsuyosbi Yamamoto ⁴ , Yosbiaki Nakata ^{1,2} , Hiroji Ebe ^{1,2} , Mitsuru Sugawara ^{4,5} , Yasubiko Arakawa ^{1,23,6} , ¹ Inst. of Industrial Science, Univ. of Tokyo, Japan, ² Nanodectronics Collaborative Res. Ctr., The Univ. of Tokyo, Japan, ³ Lab for Integrated Mechatronic Systems, CNRS UM, Japan, ⁴ Valitsu Labs Itd., Japan, ⁵ QD Laser Inc., Japan, ⁶ Res. Ctr. for Advanced Science and Technology, Univ. of Tokyo, Japan. Ground state lasing abobe 1.30 μm (1.34 μm) was obtained for the first time from InAs quan- um dots grown on GaAs substrate by metal organic chemical vapor deposition.	CME2 • 8:15 a.m. Near Field Optical Spectroscopy Studies of Carrier Localization in Al _x Ga _{1,x} N Al- loys, Pavel Capek ¹ , Naveen Jba ¹ , Liangcheng Zbou ¹ , Volkmar Dierol ¹ , A. V. Sampalb ² , M. Wraback ² , ¹ Lehigb Univ., USA, ² U.S. ARL, USA. Using UV-near-field optical spectros- copy and AlGaN layers that exhibit a strong, red-shifted emission band, we demonstrate the existence of different localization regions that can be excited selectively with excita- tion below the bandgap.		QMA2 • 8:15 a.m. Echo Peak Shift Spectroscopy of Quan- tum Well Excitons, Sam G. Carter, Zbigang Chen, Steven T. Cundiff; JILA, Univ. of Colo rado and NIST; USA. Three-pulse four-wave- mixing is used to observe the loss of optica phase memory in an inhomogeneous quan- tum well. The system's ability to form a photon echo is almost entirely lost due to spectral diffusion of excitons.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	NOTES
QE	ELS		CLEO		
8:00 a.m. – 9:45 a.m. QMB • Spatial Solitons Demetrios Christodoulides; CREOL, College of Optics and Photonics, Univ. of Central Florida, USA, Presider	8:00 a.m. – 9:45 a.m. QMC • EIT and Slow Light Presider to Be Announced	8:00 a.m. – 9:45 a.m. CMG • Filters Shayan Mookherjea; Univ. of California at San Diego, USA, Presider	8:00 a.m. – 9:45 a.m. CMH • Advanced Modulation Formats Pak S. Cho; CeLight, Inc., USA, Presider	8:00 a.m. – 9:45 a.m. CMI • Precision Spectroscopy I Thomas R. Schibli; JILA, USA, Presider	
QMB1 • 8:00 a.m. Incoherent Solitons in Effectively-In- stantaneous Nonlocal Nonlinear Media, Carmel Rotschild, Tal Schwartz, Oren Cohen, Mordechai Seger; Technion—Israel, Israel. We demonstrate incoherent spatial solitons in effectively instantaneous nonlocal nonlinear-media. This new kind of "en- semble-averaged solitons" has profound new features (e.g., random soliton's deflection) making it different than all previously-ob- served coherent and incoherent solitons.		CMG1 • 8:00 a.m. Low Loss and Low Crosstalk Multimode Polymer Waveguide Crossings for High- Speed Optical Interconnects, Nikolaos Bamiedakis', Joseph Beals', Richard V. Penty', Ian H. White', Jon V. DeGroot', Terry T. V. Clapp', 'Univ. of Cambridge, UK, 'Dow Corning Corp., USA. Multimode polymer waveguide crossings exhibiting the lowest reported excess loss of 0.006 dB/crossing and crosstalk values as low as -30 dB are presented. Their potential for use in high- speed dense optical interconnection archi- tectures is demonstrated.	CMH1 • 8:00 a.m. Invited Advanced LiNbO ₃ Modulation, Tetsuya Kauvanishi, Takabide Sakamoto, Akito Chiba, Masayuki Izutsu; Natl. Inst. of Infor- mation and Communications Technology, Japan. We describe integrated optical modu- lators based on LiNbO ₃ waveguide device technologies, which can be applicable for advanced modulation formats. Over 100 Gb/ s transmission can be acheived by differen- tial quadrature-shift-keying (DQPSK).	CMI1 • 8:00 a.m. Invited Optical Clocks Based on Single Ions and Atoms, <i>Fritz Rieble; Physikalisch-Technische Bundesanstalt (PTB), Germany.</i> Optical atomic clocks are beginning to outperform the best microwave clocks with respect to accuracy and stability. We report on PTB's optical atomic clocks based on a single ion and on neutral atoms.	
QMB2 • 8:15 a.m. Nonlocal Surface-Wave Solitons, Barak Alfassi ¹ , Carmel Rotschild ¹ , Ofer Manela ¹ , Mordechai Segev ¹ , Demetrios N. Christodoulides ² ; 'Technion - Israel Inst. of Technology, Israel, ² CREOL, Univ. of Central Florida, USA. We demonstrate, experimen- tally and theoretically, surface-wave solitons occuring at the interface between a dielec- tric medium (air) and a nonlinear material with high range of nonlocality.	QMC2 • 8:15 a.m. Slow Light and Matched Pulses in 4-wave Mixing, Vincent Boyer ¹ , Colin F. McCormick ¹ , Ennio Arimondo ² , Paul D. Lett ¹ ; 'NIST, USA, ² Univ. di Pisa, Italy. We have observed a very clean slow light ef- fects and matched pulse propagation in nondegenerate four-wave mixing in hot atomic vapor. Locking between probe and conjugate pulses gives some insight in the nonlinear dynamics.	CMG2 • 8:15 a.m. Wavelength-Independent Bent-Fiber Coupler to an Ultra-High Q Cavity Dem- onstrated over 850 nm Span, Steven Wang, Tal Carmon, Eric P. Ostby, Kerry J. Vabala; Caltech, USA. A bent tapered-fiber coupler is experimentally demonstrated to allow wavelength independent fiber-to-cav- ity coupling over an 850nm span; opening current technology of ultra-high Q cavities for applications spanning the UV to the IR band.			

	R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
ay 7	CLEO	JOINT			CLEO			QELS
Monday, M	CMA • Short Wavelength NLO—Continued	JMA • Plasmonic Nanophotonics—Continued	CMB • Ultrafast Processes—Continued	CMC • Fiber Lasers I— Continued	CMD • Semiconductor Quantum Dot Lasers I— Continued	CME • UV and Visible Semiconductor Optoelectronic Materials— Continued	CMF • 100 Years of LEDs: Past, Present and Future— Continued	QMA • Ultrafast Dynamics in Quantum Wells— Continued
	CMA3 • 8:30 a.m. Achromatic and Single-Beam Pulse Characterization Technique for Visible- UV Pulses Based on Direct UV Pulse Shaping and Cross-Polarized Wave Gen- eration, Nicolas Forget ¹ , Sébastien Coudreau ¹ , Fabien Lepeti ² , Olivier Albert ³ , Thomas Oksenbendler ¹ , 'Fastlite, France, ² DSM/DRECAM/SPAM CEA, France, ³ LOA, ENSTA, Ecole Polytechnique, CNRS UMR 7639, France, 40fs pulses at 397nm are char- acterized by a single-beam, achromatic, pro- grammable and self-compensated spectrally resolved interferometric autocorrelation technique based on the conjugate use of a broadband pulse shaper and crossed-polar- ized wave generation.	JMA2 • 8:30 a.m. Negative Index Metamaterial for Two Distinct Polarizations: Double Negative at 813 nm and Single Negative at 770 nm, Uday K. Chettiar, Alexander V. Kildishev, Hisiao-Kuan Yuan, Wenshan Cai, Vladimir Drachev, Vladimir M. Shalaev; Purdue Univ., USA. A negative index metamaterial demonstrating n=-1.0+0.8i with both nega- tive effective permittivity and permeability at 813 nm of linearly polarized light is fabri- cated. It also exhibits a negative refractive index at 770 nm for orthogonal polariza- tion.	CMB3 • 8:30 a.m. Direct Time-Domain Measurements of the Pulse Amplitude Statistics of a Fiber Supercontinuum Source, Daniel Solli, Babram Jalali; Univ. of California at Los Angeles, USA. We demonstrate a simple high- brightness all-fiber supercontinuum source that controllably produces amplitude-stable or unstable pulse trains. We present the first direct time-domain measurements of the amplitude statistics of a supercontinuum source in these distinct regimes.	CMC3 • 8:30 a.m. Mode-Locked, Multi-Wavelength Erbium- Doped Fiber Laser with 25 GHz Spacing, Laurence R. Chen ¹ , Alan L. K. Cheng ² , Chester Shu ² , Serge Doucet ³ , Sophie LaRochelle ³ ; ¹ MGill Univ., Canada, ² Chinese Univ. of Hong Kong, Hong Kong, ³ Univ. Laval, Canada. We demonstrate a mode- locked, multi-wavelength erbium-doped fi- ber laser with 25 GHz spacing and wave- length tunability operating at 1 GHz. Stable room-temperature operation is obtained by exploiting four-wave mixing in a length of highly nonlinear fiber.	CMD3 • 8:30 a.m. Invited Infrared Lasers Using Colloidal Quan- tum Dots, Edward Sargent, Sjoerd Hoagland; Univ. of Toronto, Canada. We report a 1.54 µm semiconductor laser pro- duced by processing from the solution phase. The approach, based on colloidal quantum dots, is compatible with spin-coat- ing onto an arbitrary substrate.	CME3 • 8:30 a.m. MOCVD Epitaxy and Optical Properties of Self-Assembled InGaN Quantum Dots via Stranski-Kastranow Growth Mode Emitting at 520-nm, Yik-Kboon Ee, Ronald A. Arif, Muhammad Jamil, Nelson Tansu; Lebigb Univ., USA. Self-assembled In _{0.35} Ga _{0.65} N quantum dots emitting at λ ~510- 520 nm were realized by metalorganic chemical vapor deposition via Stranski- Kastranow growth mode, with quantum dots density of 4 x 10° cm ⁻² .	CMF2 • 8:30 a.m. Micro-Pixellated Flip-Chip InGaN and AlInGaN Light-Emitting Diodes, <i>Chris</i> <i>Griffin, Haoxiang Zbang, Benoit Guilbabert,</i> <i>David Massoubre, Erdan Gu, Martin D.</i> <i>Dawson; Inst. of Photonics, Univ. of</i> <i>Stratbclyde, UK</i> . Flip-chip GaN-based micro- LED arrays have been fabricated consisting of 256 (16 x 16) micropixels, each of diam- eter 72µm. Output characteristics are com- pared to broad-area reference LED devices fabricated from the same wafers.	QMA3 • 8:30 a.m. Theory of Optical Gain from Four-Wave Mixing Instabilities in Quantum Wells Stefan Schumacher ¹ , Nai H. Kwong ¹ , Rol Binder ¹ , Arthur L. Smirf ² , ¹ College of Optical Sciences, Univ. of Arizona, USA, ² Lah fof Photonics and Quantum Electronics, Univ of Ioua, USA. We predict that in a typica pump-probe setup four-wave mixing insta- bilities associated with biexcitonic correla- tions in a single semiconductor quantum well can yield large optical gain in the probe and background-free four-wave mixing di- rections.
	CMA4 • 8:45 a.m. Tutorial Ultrafast X-Ray Studies, Roger Falcone; Univ. of California at Berkeley, USA. I will describe techniques which utilize time-re- solved X-ray scattering for understanding material dynamics at the atomic length-scale and ultrafast time-scale. Studies involve in- vestigations of atoms, molecules, liquids, solids, and plasmas subjected to excitation.	JMA3 • 8:45 a.m. Nanomechanical Control of an Optical Nanoantenna, Joerg Merlein, Matthias Kabl, Annika Zuschlag, Alexander Sell, Andreas Halm, Jobannes Boneberg, Paul Leiderer, Alfred Leitenstorfer, Rudolf Bratschitsch; Univ. of Konstanz, Germany. We mechanically tune the feedgap of a single gold bowtie antenna by precise nanomanipulation with the tip of an atomic force microscope. At the same time, its op- tical response is determined via dark-field scattering spectroscopy.	CMB4 • 8:45 a.m. All-Optical Delay of Images Using Slow Light, Ryan M. Camacho, Curtis J. Broadbent, Irfan Ali-Khan, John C. Houell; Univ. of Rochester, USA. Two-dimensional images are delayed in a cesium vapor cell. The transverse phase and amplitude pro- files of the images are shown to be pre- served, even at very low light levels.	CMC4 • 8:45 a.m. Dynamics of All-Fiber Self-Q-switched Ytterbium/Samarium Laser, Andrei Fotiadi ¹ , Andrei Kurkov ² , Igor Razdobreev ³ , ¹ Faculté Polytecbnique de Mons, Belgium, ² Fiber Optics Res. Cr. at the GPI of the Rus- sian Academy of Sciences, Russian Federa- tion, ³ Unit. des Sciences et Technologies de Lille, France. We have explored self-Q- switched operation of the fiber laser com- prising ytterbium and samarium fibers in the cavity. Regular pulses are attainable at any wavelength within the gain spectrum. Dy- namics of pulsation involves polarization mode switching.		CME4 • 8:45 a.m. High Resolution Utraviolet to Visible Image Conversion Using Self-Assembled CdSe/ZnCdMgSe Quantum Dots Photo- luminescence, Iosif Zeylikovicb ¹ , Maria C. Tamargo ² , R. R. Alfano ¹ ; 'Inst. for Ultrafast Spectroscopy and Lasers, Dept. of Physics, City College and Graduate Ctr. of the City Univ. of New York, USA, 'Dept. of Chemis- try, City College and Graduate Ctr. of the City Univ. of New York, USA, 'Dept. of Chemis- try, City College and Graduate Ctr. of the City Univ. of New York, USA. High resolution UV- to-visible image conversion using photolu- minescence emitted by quantum dots is pre- sented. The resolution limitations are dis- cussed and a high resolution optical system for the UV-to-visible image conversion is proposed.	CMF3 • 8:45 a.m. HVPE-Grown n-InGaN/p-GaN Single Heterostructure LED with p-Side down, Mereditb L. Reed ¹ , Eric D. Readinger ¹ , Anand V. Sampatb ¹ , Gregory G. Garrett ¹ , Paul Sben ¹ , Michael Wraback ¹ , Alexander Syrkin ² , Alexander Usikov ² , Vladimir A. Dmitriev ² , ¹ ARL, USA, ² Technology Device Intl., Inc., USA. An HVPE-grown n-InGaN/ p-GaN single heterojunction LED with p-side down and emission at ~480nm has been demonstrated. Benefits of the p-down ge- ometry for such an LED associated with polarity are discussed.	QMA4 • 8:45 a.m. Experimental and Theoretical Studies of Exciton Correlations Using Optical Two- Dimensional Fourier Transform Spec- troscopy, Tianbao Zbang ^{1,2} , Xiaoqin Li ^{1,2} , S. T. Cundiff ^{1,2} , R. P. Mirin ² , I. Kuznetsova ² , P. Tbomas ³ , T. Meier ³ , Tianbao Zbang ^{1,4} , 'IIA, Univ. of Colorado, USA, ² NIST, USA, ³ Dept. of Physics, Philipps Univ., Germany. Many- body correlations of excitons in semicon- ductors are explored experimentally with two-dimensional Fourier transform spectros- copy and modeled by a microscopic coher- ent χ ⁽³⁾ theory beyond the Hartree-Fock ap- proximation with qualitative agreements under different excitation conditions.
		JMA4 • 9:00 a.m. Magnifying Superlens in the Visible Fre- quency Range, Igor I. Smolyaninov, Yu-Ju Hung, Christopher C. Davis, Univ. of Mary- land, USA. We report on the experimental realization of a magnifying superlens work- ing in the visible frequency range. Our de- sign is based on a metal-dielectric plasmonic metamaterial, which consists of alternating positive and negative refractive index lay- ers.	CMB5 • 9:00 a.m. Ultrafast Mirrorless Optical Parametric Oscillator in Periodically Poled KTiOPO ₄ via Extended Phase Matching, Ye Pu, Jie Wu, Mankei Tsang, Demetri Psaltis; Callech, USA. We report an experimental demonstra- tion of an optical parametric generator in a periodically poled KTiOPO ₄ crystal based on the principle of mirrorless optical para- metric oscillation, with the highest down conversion efficiency ever reported for KTiOPO ₄ .	CMC5 • 9:00 a.m. Linearly-Polarized Yb-Doped Fiber Laser in an All-Fiber Configuration, Akira Shirakawa', Makoto Kamijo', Jun Ota', Ken- icbi Ueda', Kiminori Mizuucbi ² , Hiroyuki Furuya ² , Kazubisa Yamamoto ² ; ¹ Inst. for Laser Science, Unit. of Electro-Communica- tions, Japan. ² AV-Core Technology Develop- ment Chr., Matsusbita Electric Industrial Co., Id., Japan. Characteristics of polarization selection in Yb fiber laser by use of bire- fringent fiber-Bragg gratings are investigated. An 8W, 1064nm linearly-polarized fiber la- ser with 87% slope efficiency and <20pm bandwidth has been successfully demon- strated.	CMD4 • 9:00 a.m. Ultra-Low Threshold Lasing in a Quan- tum Dot Microdisk Cavity, Glenn Solomon ^{1,2,3} , Stephan Goetzinger ^{2,4} , Wei Fang ^{1,5} , Zbigang Xie ³ , Hui Cao ⁵ , ¹ NIST, USA, ² Ginzton Lab, Stanford Univ., USA, ² Ginzton Lab, Stanford Univ., USA, ² Ginzton Lab, Stanford Univ., USA, ⁴ ETH Zuricb, Switzerland, ³ Dept. of Physics and Astronomy, Norbwestern Univ., USA, We describe microdisk lasers exhibiting submicrowatt CW lasing thresholds from a small number of QD emitters. Changes in the cavity linewidth, second-order correla- tion measurements, and output emission versus input pumping are used to verify las- ing.	CME5 • 9:00 a.m. Angle Resolved Transmission Spectros- copy of ZnSe Based Microcavities Fabri- cated Using Epitaxial Liftoff Technique, Arran Curran, Jessica K. Morrod, Kevin A. Prior, Ajoy K. Kar, Richard J. Warburton; Heriot-Watt Univ., UK. We demonstrate level- repulsion of exciton-polaritons in ZnSe/ $Zn_{0.9}Cd_{0.1}$ Se quantum wells transferred to SiO ₂ /Ta ₂ O ₃ mirrors using epitaxial liftoff to fabricate our microcavities. The heavy-hole exciton oscillator strength is calculated to be 5.7 x 10 ¹² cm ² .	CMF4 • 9:00 a.m. The Characteristics of a High-Q GaN Mi- cro-Cavity Light Emitting Diode, Cbib- Chiang Kao, Tien-Chang Lu, Tsung-Ting Kao, Li-Fan Lin, Hao-Chung Kuo, Shing- Chung Wang; Dept. of Photonics and Inst. of Electro-Optical Engineering, Natl. Chiao Tung Univ., Taiwan. We report the charac- teristics of a GaN high-Q micro-cavity light- emitting diode (MCLED). The GaN MCLED showed a very narrow linewidth of 0.52 nm at 10 mA and a dominant emission peak wavelength at 465.3 nm.	QMA5 • 9:00 a.m. Coulomb-Enhanced Shift Currents from Symmetry Reduction in GaAs/AlGaAs Quantum Wells, Mark Bieler ¹ , Klaus Pier ² , Philip Dauson ² , Uwe Siegner ¹ ; 'Physikalisch- Technische Bundesanstalt, Germany, ² Univ: of Manchester, UK. We report a new shift current tensor element resulting from sym- metry reduction in semiconductor quantum wells. The shift current is strongly enhanced by Coulomb interaction and shows a pro- nounced maximum at the light-hole exci- ton resonance.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341			
QE	LS	CLEO					
QMB • Spatial Solitons— Continued	QMC • EIT and Slow Light— Continued	CMG • Filters—Continued	CMH • Advanced Modulation Formats— Continued	CMI • Precision Spectroscopy I—Continued			
QMB3 • 8:30 a.m. Quadratic Solitons in 2-D Nonlinear Pho- tonic Crystals, Katia Gallo ¹ , Alessia Pasquazi ² , Salvatore Stivala ² , Gaetano Assanto ² , ¹ Optoelectronics Res. Ctr., UK, Univ. of Soutbampton, ² Nonlinear Optics and Op- toelectronics Lab, Univ. Roma Tre, Italy. We report on the first observation of spatial soli- tons in a 2-D nonlinear photonic crystal. The experiments were performed in an hexago- nally poled LiNbO ₃ waveguide designed for second harmonic generation from ~1.55 µm.	QMC3 • 8:30 a.m. An Ultra-Dispersive Optically Controlled Atomic Prism, Hebin Li, Vladimir A. Sautenkov, Yuri V. Rostovtsev, Marlan O. Scully: Dept. of Physics, Texas A&M Univ., USA. We have experimentally demonstrated an ultra-dispersive atomic prism with the highest spectral angular dispersion ever shown (six orders of magnitude higher than glass prism). Its dispersion is optically con- trolled by a coherent driving field.	CMG3 • 8:30 a.m. Active Narrowband Multiple Wavelength Filters and Frequency Doublers in Aperiodically Poled Lithium Niobates, Chao-Hung Lin', S. W. Lin', Yen-Hung Chen', C. L. Chang', Yen-Chieb Huang ² , Jenq-Yang Chang', 'Dept. of Optics and Photonics, Natl. Central Univ., Taituan, 'Inst. of Photonics Technologies, Natl. Tsing-Hua Univ, Taituan. We report the first experi- mental demonstration of active narrowband multiple wavelength filters in aperiodically poled lithium niobate (APLN) crystals. Si- multaneous transmission of >90% (~100% in design) of 8 telecom wavelengths was achieved in this device.	CMH2 • 8:30 a.m. Performance Comparison of Duobinary and DQPSK Modulation Formats for Mixed 10/40-Gbit/s WDM Transmission on SMF and LEAF Fibers, Antoine Tan, Erwan Pincemin; France Telecom, France. Duobinary and DQPSK are considered as the best candidates for deployment of 40Gb/ s technology on existing 10Gb/s transmis- sion systems. We show that DQPSK (duobinary) is more adapted for mixed 10/ 40-Gb/s transmission on SMF (LEAF).	CMI2 • 8:30 a.m. Experimental Study Comparing EIT in V and I. Schemes in Acetylene-Filled HC. PCF, Philip S. Light, Fetab Benabid, Francois Couny, Greg Pearce, David M. Bird; Univ. of Bath, UK. We report detailed experimen- tal and theoretical results comparing elec- tromagnetically-induced-transparency ob- tained in V and A configurations in acety- lene-filled-hollow-core PCF. For the same experimental conditions, the EIT in V- scheme shows a stronger peak but larger linewidth.			
QMB4 • 8:45 a.m. Cusp Solitons in Exponentially Nonlin- ear Nanosuspensions, Ramy A. El- Ganainy ¹ , Konstantinos Makris ¹ , Demetrios Christodoulides ¹ , Carmel Rotschild ² , Mordecbai Segev ² , ¹ College of Optics and Photonics, CREOL and FPCE, USA, ² Physics Dept., Technion-Israel Inst. of Technology, Israel. We show that cusp-like solitons are possible in exponentially nonlinear nano- particle suspensions. The dynamics and sta- bility properties of this new class of waves are examined in detail.	QMC4 • 8:45 a.m. Laser-Noise-Induced Correlations in Electromagnetically Induced Transpar- ency, Paulo Valente ¹ , Luciano S. Cruz ¹ , Daniel Felinto ¹ , Katiuscia N. Cassemiro ¹ , Marcelo Martinelli ¹ , José G. Aguirre Gomez ¹ , Arturo Lezama ² , Paulo A. Nussenzveig ¹ ; ¹ Inst. de Fisica, Univ. de Sao Paulo, Braz ¹ ; ¹ Inst. de Fisica, Facultad de Ingenieria, Univ. de la Republica, Uruguay. We observed a change from correlation to anti-correlation between pump and probe fields in Electro- magnetic Induced Transparency (EIT) in Rb vapor, and explain it by competition be- tween EIT and Raman processes.	CMG4 • 8:45 a.m. Bandwidth-Tunable Add-Drop Filters Based on MEMS-Actuated Single-Crystal- line Silicon Microtoroidal Resonators, Jin Yao, Ming C. Wu; Univ. of California at Berkeley, USA. A bandwidth-tunable filter has been demonstrated by MEMS-actuated single-crystalline silicon microtoroidal reso- nator. Bandwidth is tuned from 2.8 to 78.4 GHz by voltage control. A 21.8 dB extinc- tion ratio is attained as a dynamic add-drop filter.	CMH3 • 8:45 a.m. Bi-Directional DPSK Transmission over 230-km SSMF Employing Innovative Bi- Directional Amplification, Ming Fang Huang ¹² , Jianjun Yu ² , Gee-Kung Chang ¹ , Jason (Jyebong) Chen ² , Sien Chi ²⁴ , ¹ School of Electrical and Computer Engineering, Georgia Tech, USA, ² Dept. of Photonics, Natl. Chiao-Tung Univ., Taitwan, ³ NEC Lab America, USA, ⁴ Dept. of Electrical Engineer- ing, Yuan Ze Univ., Taitwan, A novel bi-di- rectional DPSK transmission system with 50- GHz channel spacing is experimentally dem- onstrated using a four-port interleaver to enable uni-directional amplification. After 230-km SSMF, RZ-DPSK transmission im- proved power penalty by 2-dB than NRZ- DPSK at 10-Gb/s.	CMI3 • 8:45 a.m. High Accuracy Photon-Counting Detec- tor Calibration and Independent Verifi- cation of a Correlated-Photon Calibra- tion Technique, Sergey V. Polytakov ^{1,2} , Alan L. Migdall ^{1,2} , ¹ Optical Technology Div., NIST, USA, ² Joint Quantum Inst., Univ. of Mary- land, USA. We characterized a two-photon method to calibrate photon-counting detec- tors. We verified this method by compari- son to a national primary standard detector scale. This comparison showed agreement of the two methods to 0.14(14) % (k=1).			
QMB5 • 9:00 a.m. Spontaneous Pattern Formation upon Incoherent Waves: From Modulation- Instability to Dynamic Equilibrium, <i>Liad</i> <i>Levi, Tal Schwartz, Ofer Manela, Mordechai</i> <i>Segev; Technion–Israel Inst. of Technology,</i> <i>Israel.</i> We study long-range propagation of spatially-incoherent light in non-instanta- neous nonlinearities, and show that the sys- tem eventually reaches dynamic equilibrium, which depends only on the initial coher- ence, and not on the strength of the nonlinearity.	QMC5 • 9:00 a.m. An Atomic Clock Based on a VCSEL- Driven CPT Resonance and a Small ⁸⁷ Rb Vapor Cell, Matan Kabanov, Ido Ben- Aroya, Gadi Eisenstein; Technion, Israel. We report a high performance frequency stan- dard based on Coherent Population Trap- ping, incited by a modulated VCSEL in the ⁸⁷ Rb-D ₂ line. Short-term stabilities of $\sigma_y=3x10^{-11}/\sqrt{r}$ and relative frequency devia- tions below $10^{-11}/day$ were demonstrated.	CMG5 • 9:00 a.m. Synthesis of the Transfer Function of a Spectral Bragg Filter Using Electro-Op- tical Phase-Shift Keying, Poonam Arora ^{1,2} , A. S. Kozlov ² , I. V. Ilichev ² , A. V. Chamray ² , V. M. Petrov ^{1,2} , J. Petter ¹ , T. Tscbudi ¹ , M. P. Petrov ² , ¹ Inst. of Applied Physics, TU Darmstadt, Germany, ² A.F. Ioffe Physical Technical Inst., Russian Federation. The synthesis of the transfer function of an inte- grated spectral Bragg filter using the tech- nique of electro-optical phase-shift keying is reported. The demonstrated time of syn- thesis is less than 1 µs.	CMH4 • 9:00 a.m. QPSK-Homodyne Transmission Using a Multi-Wavelength Fabry-Perot Laser Di- ode, Moriya Nakamura, Yukiyosbi Kamio, Tetsuya Miyazaki; Natl. Inst. of Information and Communications Technology (NICT), Japan. We demonstrate ultimate linewidth- tolerant 20-Gbps QPSK homodyne transmis- sion using a spectrum sliced Fabry-Perot laser diode signal light source. DGD toler- ance was clarified, and BER characteristics less than 10-8 after 80-km transmission was successfully attained.	CMI4 • 9:00 a.m. Magnetic Field-Induced Spectroscopy of Optical Clock Transitions in an Ellipti- cally Polarized Lattice Field, Aleksei V. Taichenachev ^{1,2} , Valeriy I. Yudin ^{1,2} , Chris W. Oates ³ , Leo Hollberg ³ , ¹ Inst. of Laser Physics SB Russian Academy of Sciences, Russian Federation, ² Novosibirsk State Univ., Russian Federation, ³ NIST, USA. We demonstrate a method to suppress potentially troublesome frequency shifts in lattice-based atomic clocks with alkaline-earth-like atoms. Sup- pression of these shifts would remove a potential barrier from path to the next gen- eration of atomic clocks.			

CLEO/QELS and PhAST 2007, May 6-11, 2007 • Baltimore Convention Center, Baltimore, Maryland

ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	JOINT			CLEO			QELS
	JMA • Plasmonic Nanophotonics—Continued	CMB • Ultrafast Processes—Continued	CMC • Fiber Lasers I— Continued	CMD • Semiconductor Quantum Dot Lasers I— Continued	CME • UV and Visible Semiconductor Optoelectronic Materials— Continued	CMF • 100 Years of LEDs: Past, Present and Future— Continued	QMA • Ultrafast Dynamics in Quantum Wells— Continued
	JMA5 • 9:15 a.m. Compensation of Loss in Propagating Surface Plasmon by Optical Gain, G. Zhu', M. Mayy', M. Baboura', J. A. Adegoke', V. A. Podolskiy', M. A. Noginot', 'Norfolk State Univ., USA, 'Oregon State Univ., USA. We experimentally demonstrate ~30% elon- gation of the surface plasmon propagation length and show that the full compensation of the surface plasmon loss by optical gain is within the reach.	CMB6 • 9:15 a.m. Group Velocity Control by Atomic Non- linear Response in a Laser Cavity, Ladan Arissian, Jean-Claude Diels, Andreas Velten; Center for Higb Technology Materials, Univ. of New Mexico, USA. Group velocity modifi- cation through nonlinear index of the atomic medium is used as a purely optical feed- back in a mode locked ring laser. The dis- persion associated with the dark line acts as an error signal.	CMC6 • 9:15 a.m. Phase Locking of Nanosecond Pulses of Stimulated Brillouin Scattering in a Two- Element Fiber Laser Array, Fanting Kong ^{1,2} , Liping Liu ^{1,2} , Charlotte E. Sanders ^{1,2} , Ying-Chib Chen ^{1,2} , Kotik K. Lee ³ , 'Dept. of Physics and Astronomy, Hunter College, 'Graduate School, The City Univ. of New York, USA, 'Ilockbeed Martin Coberent Tech- nology, USA. Phase locking of nanosecond Brillouin backscattering pulses has been demonstrated through diffractive coupling and spatial filtering mechanisms in a two- element fiber laser array, despite the sto- chastic dynamics of short nonlinear pulse generation.	CMD5 • 9:15 a.m. Low:Threshold Current Injection Single- Mode Lasing in T-Shaped Quantum Wires with Parallel Doping Layers, Shu- man Liu', Masahiro Yoshita', Makoto Okano', Toshiyuki Ibara', Hirotake Itob', Hidefuni Akiyama'², Loren N. Pfeiffer², Ken W. West, Kirk W. Balduiri?, 'Inst. for Solid State Physics, Univ. of Tokyo, Japan, 'Bell Labs, Lucent Technologies, USA. CW single- mode lasing from 30K to 70K with the low- est threshold current of 0.27mA has been demonstrated in 20-period T-shaped quan- tum-wire laser diodes with parallel p and n doping layers.	CME6 • 9:15 a.m. Nanophotonic Switch Using One-Di- mensional ZnO Double-Quantum-Well Structures, Takasbi Yatsui ¹ , Suguru Sangu ² , Tadasbi Kauazoe ¹ , Motoicbi Obtsu ² , Sungfin An ⁴ , Jinkyoung Yoo ⁴ , Gyu-Chul Yi ⁴ , ¹ Japan Science and Technology Agency, Japan, ² Ricob Co., Ltd., Japan, ³ Univ. of Tokyo, Ja- pan, ⁴ POSTECH, Republic of Korea. We ob- served spectral switching and evaluated its dynamics by controlling the dipole-forbid- den optical near-field energy transfer among resonant exciton states using 1D-ZnO nanorod double-quantum-well structures.	CMF5 • 9:15 a.m. Enhancement of Radiative Efficiency of Nitride-Based LEDs via Staggered InGaN Quantum Wells Emitting at 420-500 nm, Ronald A. Arif, Yik-Kboon Ee, Nelson Tansu; Lebigb Univ., USA. Polarization band engi- neering via staggered InGaN quantum well allows enhancement of radiative recombi- nation rate, leading to significant improve- ment of luminescence and LEDs output power by > ~4 times.	QMA6 • 9:15 a.m. Coherent Nonlinear Optical Effects in Semiconductor QWs Induced by Intense Single-Cycle THz Pulses, Yun-Shik Lee ¹ , Jeremy R. Danielson ¹ , Johannes Steiner ² , Mackillo Kira ² , Stephan Koch ² , John P. Prineas ¹ , Oregon State Univ., USA, ² Philipps Univ., Germany, ³ Univ. of Ioura, USA. We investigate coherent THz-induced dynam- ics for optical excitation in semiconductor quantum-wells via THz-pump and optical- probe experiments. Strong single-cycle THz pulses induce transient spectral-shifts and broadening of the light-hole and heavy-hole excitonic resonances in GaAs/AlGaAs quan- tum-wells.
	JMA6 • 9;30 a.m. Plasmonic Quantum Cascade Laser An- tenna, Nanfang Yu, Ertugrul Cubukcu, Laurent Diebl, Kenneth Crozier, Federico Gaasso; Harvard Univ., USA. We demon- strate the plasmonic quantum cascade laser antenna, that can confine mid-infrared ra- diation beyond the diffraction limit, by inte- grating gold optical antennas on the laser facet.	CMB7 • 9;30 a.m. High Pulse Energy Supercontinuum Ra- diation Generated in a Single-Mode Fi- bre and Its Application to Near-IR Ab- sorption Spectroscopy, Rosalynne S. Watt, Clemens F. Kaminski, Joban Hult; Univ. of Cambridge, UK. High pulse energy, near-IR supercontinuum radiation is generated in a single-mode fibre. The supercontinuum pulses are dispersed to generate a rapid wavelength sweep, and employed to carry out broadband, real-time absorption mea- surements in gas samples.	CMC7 • 9;30 a.m. Spectral Beam Combining of Yb-Doped Fiber Amplifiers with Excellent Beam Quality, Sandro Klingebiel', Fabian Röser ¹ , Bülent Ortac ¹ , Jens Limpert ¹ , Andreas Tünnermann ^{1,2} , ¹ Friedrich Scbiller Univ. Jena, Germany, ² Fraunbofer Inst. for Applied Optics and Precision Engineering, Germany. We present a setup for spectral combina- tion of three individual fiber laser beams with a total output power of 153 W and beam quality of 1.2. Thus this setup pro- vides excellent opportunities for brightness scaling.	CMD6 • 9;30 a.m. InP/AlGaInP on GaAs Quantum Dot La- sers, Peter M. Smouton ¹ , Mohammed Al- Ghamdl ¹ , Andrey B. Krysa ² , ¹ Cardiff Univ., UK, ² Sheffield Univ., UK. MOVPE grown InP q-dot lasers have low 300K threshold cur- rent density (195 Acm ² for 2000µm long device) and T ₀ ⁻ =105K (10-85°C) for 725- 740nm emission. Homogenous broadening appears to be more pronounced than in InGaAs q-dots.	CME7 • 9:30 a.m. ZnO p-n Junction Photodetectors, Lingbui Li ¹ , Jorge Lubgunan ¹ , Ping Yu ¹ , Henry White ¹ , Yungryel Ryu ² , Tae-Seok Lee ² ; ¹ Dept. of Physics and Astronomy, Univ. of Missouri-Columbia, USA, ² MOXtronics Inc., USA. We report optical and electrical char- acterizations of newly developed ZnO p-n junction photodiode detectors. The spectral photoresponse and I-V properties show the detector is a promise candidate for UV de- tection.	CMF6 • 9:30 a.m. Influence of the Quantum-Confined Stark Effect of an InGaN/GaN Quantum Well on Its Coupling with Surface Plasmons for Emission Enhancement, Cheng-Yen Chen, Dong-Ming Yeb, Yen- Cheng Lu, Chi-Feng Huang, Tsung-Yi Tang, Jeng-Jie Huang, C. C. Yang; Natl. Taiwan Univ., Taiwan. The effects of the screening of the quantum-confined Stark effect in an InGaN/GaN quantum well, in which the photoluminescence spectrum blue shifts with excited carrier density, on the surface plasmon coupling are identified and quan- tified.	QMA7 • 9;30 a.m. Superfluorescence from High-Density Magneto-Plasmas: Mixing, Temperature, and Excitation Pulsewidth Dependence, Young-Dabl Jbo ¹ , X. Wang ¹ , J.H. Lee ¹ , D.H. Reitze ¹ , J. Kono ² , A.A. Belyanin ³ , V. V. Kocharovsky ³ , G.S. Solomon ⁴ ; 'Unit. of Florida, USA, ² Rice Univ., USA, ³ Texas A&M, USA, ⁴ Stanford Univ., USA. Cooperative re- combination from dense electron-hole plas- mas in quantum wells is reported as a func- tion of energy level mixing, temperature, and excitation pulse width under strong magnetic fields (up to 31 T).

9:45 a.m. – 10:15 a.m. COFFEE BREAK, 300 LEVEL FOYER

OPE-ID	R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	NOTES
Net Septent Solitors CultureNet Set Tan Slov Light CultureChe Se Filters—ContinueChe Advance CultureChe Set Solitor CultureNet Solitors Cale Solitors Control Solitors<	QE	LS		CLEO		
 MR + 91 + 20. MR + 91	QMB • Spatial Solitons— Continued	QMC • EIT and Slow Light— Continued	CMG • Filters—Continued	CMH • Advanced Modulation Formats— Continued	CMI • Precision Spectroscopy I—Continued	
 MRT * 30 a.m. MAXS EXENTION of Two-Dimensional grants and Gab Soliton Trains, Ingin Yao, Yaona W. MR Yang, Yao, Yaona W. MR Yang, Yao, Yaona W. MR Yao, Yao Yao, Yao, Yao, Yao, Yao, Yao,	QMB6 • 9:15 a.m. Soliton Transitions in Optical Lattices, <i>Konstantinos Makris¹, Demetrios</i> <i>Christodoulides¹, Or Peleg², Mordechai</i> <i>Segev²; ¹College of Optics/CREOL, USA,</i> ² <i>Technion-Israel Inst. of Technology, Israel.</i> It is theoretically shown that Bloch (band to band) and soliton (gap to gap) transitions are possible in optical lattices. This can be achieved in waveguide arrays with modu- lated channel widths along the propagation direction.	QMC6 • 9:15 a.m. Low Light Level Saturated Absorption in Tapered Fiber Embedded in Alkali Va- por, Gour Pati ¹ , Sean Spillane ² , Raymond Beausolei ² , Kennetb Salit ¹ , Mattbew Hall ¹ , Prem Kumar ¹² , Selim M. Shabrica ¹ ; ¹ North- western Univ., USA, ² HP Labs, USA. We dem- onstrate ultra-low light level saturated ab- sorption in a tapered fiber embedded in an atomic vapor. This shows the potential for extremely low light level optical switching and quantum information processing with such a device.	CMG6 • 9:15 a.m. Group Delay Ripple in Fiber Bragg Grat- ings: Electronic Equalization, Kasyapa Balemarthy ¹ , Stephen E. Ralph ¹ , Paul Westbrook ² , Robert L. Lingle ² , ¹ Georgia Tech, USA, ² OFS, USA. We systematically investi- gate the impact of electronic equalization on fiber Bragg gratings (FBG) with group delay ripple at 40Gbit/s. Correlating with measured FBGs, we report that the associ- ated penalty reduction may be limited in practice.	CMH5 • 9:15 a.m. Parameters Affecting the Performance of WDM-DPSK Systems Based on SOA Amplifiers, Ernesto Ciaramella, Valentina Donzella, Antonio D'Errico; Scuola Superiore Sant'Anna, Italy. We determine the key physical parameters affecting the design of SOA-based WDM-DPSK systems. System limitations critically depend on the interplay of accumulated fiber dispersion, the SOA input power and the DPSK detec- tion technique.	CM15 • 9:15 a.m. Optical Frequency Measurements in the Far- and Mid-infrared Range, Peter Gaal', Markus B. Raschke ^{1,2} , Klaus Reimann', Michael Woerner', ¹ Max-Born-Inst. Berlin, Germany, ² Univ. of Washington, USA. Opti- cal frequencies in the mid- and far-infrared spectral range are directly measured by electro-optic sampling with a femtosecond oscillator. This technique is demonstrated for the case of a cw CO ₂ laser.	
CMG8 • 9:45 a.m. Analysis of Filter-Assisted 160 Gb/s Wavelength Converter Using a Single Semiconductor Optical Amplifier, Zbonggui Li ¹ , Javier Molina Vázquez ¹ , Yong Liu ¹ , Eduward Tangdiongga ¹ , Sbaoxian Zbang ¹ , Djan Kboe ¹ , Harm Dorren ¹ , Daan Lenstra ² , 'Eindboven Uniu. of Technology, Netberlands. '2Delft Univ. of Technology, Netberlands. We present for the first time a systematic analysis of the Q-factor and eye opening for wavelength conversion based on a single semiconductor optical amplifier and a detuned filter at 160 Gb/s.	QMB7 • 9:30 a.m. On-Axis Excitation of Two-Dimensional Gap Solitons and Gap Soliton Trains, Jianke Yang ¹ , Cibo Lou ^{2,3} , Xiosheng Wang ² , Liqin Tang ³ , Jingjun Xu ³ , Zibgang Chen ^{2,3} , ¹ Univ. of Vermont, USA, ³ San Francisco State Univ., USA, ³ TEDA Applied Physical School, Nankai Univ., China. We demonstrate two- dimensional gap solitons/soliton-trains by single-beam on-axis excitation in a self- defocusing "backbone" photonic lattice. In- terferograms and k-space spectra indicate staggered structure of the gap solitons aris- ing from M-symmetry points of the first Bloch band.	QMC7 • 9:30 a.m. EIT with Counter Propagating Probe- Coupling Beams in Acetylene Filled HC- PCF, Philip S. Light, Fetah Benabid, Francois Couny, Greg J. Pearce, David M. Bird; Univ. of Bath, UK. We present experimental re- sults demonstrating for the first time to our knowledge the observation of electromag- netically-induced-transparency using a counter-propagating beam configuration in an acetylene filled hollow-core PCF gas-cell, in both V and A energy-level schemes.	CMG7 • 9:30 a.m. Apodisation of Photo-Induced Waveguide Gratings with Double-Expo- sure of Reversely Varied Duty Cycles, <i>Xuewen Shu, Kate Sugden, Ian Bennion;</i> <i>Aston Univ., UK.</i> We present a novel apodisation scheme for photo-induced waveguide gratings. The apodisation is implemented with double exposures that have reversely varying duty-cycles. We have successfully applied the scheme to remove the sidelobes of long-period gratings.	CMH6 • 9:30 a.m. Noise-Induced Spectral Shifts in Pseudo- Linear Fiber-Optic Communication Sys- tems, Armando N. Pinto ¹ , Govind P. AgrawaP; ¹ Inst. of Telecommunications, Univ. of Aveiro, Portugal, ² Inst. of Optics, Univ. of Rochester, USA. Signal and noise interaction mediated by the Kerr effect in fibers produces random pulse central fre- quency shifts. We show that strong correla- tion between signal and noise evolution makes this effect noteworthy even in pseudo-linear systems.	CMI6 • 9:30 a.m. A Broadband Circular Dichroism Spectroscopy Using a Femtosecond White- Light Continuum, Anton A. Trifonov, Ivan C. Buchvarov, Torsten Fiebig, Boston Col- lege, USA. We demonstrate a new approach to broad band circular dichroism spectros- copy using polarization controlled femtosecond white-light generation. The proposed method is evaluated by measur- ing the ground state circular dichroism spec- trum of [Ru(bpy) ₃] ²⁺ .	
			CMG8 • 9:45 a.m. Analysis of Filter-Assisted 160 Gb/s Wavelength Converter Using a Single Semiconductor Optical Amplifier, Zbonggui L ⁱ , Javier Molina Väzquez ¹ , Yong Liu ¹ , Eduward Tangdiongga ¹ , Sbaoxian Zbang ¹ , Djan Kboe ¹ , Harm Dorren ¹ , Daan Lenstra ² , 'Eindboven Univ. of Technology, Netherlands, 'Delft Univ. of Technology, Netherlands. We present for the first time a systematic analysis of the Q-factor and eye opening for wavelength conversion based on a single semiconductor optical amplifier and a detruped filter at 160 Gb/s			
		0:45 a m 11	and a detuned inter at 100 Gb/s.		_	

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	JOINT			CLEO			QELS
10:15 a.m. – 12:00 p.m. CMJ • Parametric Devices <i>Presider to Be Announced</i>	10:15 a.m. – 12:00 p.m. JMB • Resonators and Photonic Crystals Presider to Be Announced	10:15 a.m. – 12:00 p.m. CMK • Ultrafast Parametric Amplification I Brent C. Stuart; LLNL, USA, Presider	10:15 a.m. – 12:00 p.m. CML • Fiber Lasers II Jens Limpert; Inst. of Applied Physics, Germany, Presider	10:15 a.m. – 12:00 p.m. CMM • Semiconductor Quantum Dot Lasers II Edward Sargent; Univ. of Toronto, Canada, Presider	10:15 a.m. – 12:00 p.m. CMN • Near-Infrared Semiconductor Materials John Prineas; Univ. of Iowa, USA, Presider	10:15 a.m. – 12:00 p.m. CMO • Nanocrystalline and Organic Light Emitters Michael Wraback; ARL, USA, Presider	10:15 a.m. – 12:00 p.m. QMD • Nonlinear Optics of Semiconductors Federico Capasso; Harvard Univ., USA, Presider
CMJ1 • 10:15 a.m. Envited New Light from Gallium Arsenide: Mi- cro-Structured GaAs for Mid-IR and THz- Wave Generation, Konstantin Vodopyanov ¹ , J. E. Schaar ¹ , P. S. Kuo ¹ , M. M. Fejer ¹ , X. Yu ¹ , J. S. Harris ¹ , V. Kozlov ² , W. C. Hurlbu ² , Y-s Lee ³ , C. Lyncb ⁴ , D. Bliss ⁴ ; ¹ Stanford Univ., USA, ² Microtech Instru- ments, Inc., USA, ³ Oregon State Univ., USA, ⁴ AFRL, USA. We review nonlinear-optical applications of micro-structured quasi- polarization-insensitive devices, as well as sources of tunable terahertz radiation, based on optical rectification or intracavity fre- quency mixing.	JMB1 • 10:15 a.m. Invited Micro- and Nano-Photonics for Chip- Scale Solid-State and Atomic Cavity QED, Oskar Painter; Caltech, USA. In this talk I will describe our progress in developing integrated atom-photon chips and mono- lithic semiconductor quantum dot- microcavity systems for chip-scale cavity QED.	CMK1 • 10:15 a.m. Tutorial Optical Parametric Amplifiers: Towards Ultrashort Light Pulses of Extreme Power, Algis Piskarskas; Vilnius Univ., Litbuania. Abstract not available.	CML1 • 10:15 a.m. Synchronised Pulsed Pumped Fiber Amplifiers, Christian Bohling ¹ , Hartmut Zimmermann ² , Konrad Hobmann ¹ , Wolfgang Schippers ¹ , Wolfgang Schade ¹ ; 'Technische Univ. Claustbal, Germany, ² Crylas GmbH, Germany. An Yb fiber am- plifier is seeded by a Cr ⁴⁺ Nd ⁵⁺ :YAG micro- chip laser. Due to improvement of the slope efficiency and suppression of ASE a pulsed diode laser is used as pump source of the active fiber.	CMM1 • 10:15 a.m. Two-Section Quantum Dot Lasers with 20-dB Modulation Efficiency Improve- ment, Yan Li ¹ , Nader A. Naderl ¹ , Yongchun Xin ¹ , Vassilios Kovanis ² , Luke F. Lester ¹ ; ¹ Univ. of New Mexico, USA, ² AFRL/SNDP, USA. A 20-dB enhancement in the ampli- tude modulation efficiency and a gain lever of 30 is observed in a two-section quantum dot laser. A novel modulation response equation is derived to explain the device behavior.	CMN1 • 10:15 a.m. Angle-Resolved Entanglement Spectros- copy for Semiconductor Applications, Walter Hoyer, Peter Bozsoki, Mackillo Kira, Peter Thomas, Stephan W. Koch; Philipps- Univ. Marburg, Germany. Angle and energy resolved single-photon correlation measure- ments of luminescence emitted from semi- conductor nanostructures are modeled. A simple reconstruction procedure is shown to yield the long-range disorder fluctuations with high fidelity.	CMO1 • 10:15 a.m. Efficient All-Inorganic Colloidal Quan- tum Dot LEDs, Vanessa Wood, Jean-Michel Caruge, Jonaiban E. Halpert, Moungi G. Bawendi, Vladimir Bulovic; MIT, USA. We present the first all-inorganic QD-LEDs con- sisting of radio-frequency sputtered metal- oxide charge transport layers and a colloi- dal quantum dot electroluminescent region. These devices manifest a 100-fold increase in external quantum efficiency over previ- ously reported structures.	QMD1 • 10:15 a.m. Superfluorescence of Biexcitons in Cut Quantum Dots under Two-Photon Ress nant Excitation, Kensuke Miyajima ^{1,2} , Yu Kagotani ¹ , Koubei Sakurai ¹ , Sbingo Saito Masaaki Asbida ^{1,2} , Tadasbi Itoh ^{1,2} , 'Gradi ate School of Engineering Science, Osak Univ., Japan, ² CREST, Japan Science an Technology Agency, Japan, ³ Nall. Inst Imformation and Communications Techno ogy, Japan. Time-resolved photolumine cence of biexcitons in CuCl quantum do has been performed by optical Kerr-ga method. Pulse-shaped luminescence lif superfluorescence has been observed un der resonant two-photon excitation of th biexcitons.
			CML2 • 10:30 a.m. Pulsed, Fiber-Based Laser with Widely Tunable Repetition Rate, Fixed Pulse Duration, and Minimal Nonlinear Ef- fects, Jean-Philippe Feve ¹ , Paul E. Schrader ² , Roger L. Farrout ² , Dabu A. Kliner ² , Nicolas Landru ¹ ; 'Teem Photonics, France, ² Sandia Natl. Labs, USA. We report a pulsed, fiber- amplified microlaser providing high peak and average powers, widely tunable repeti- tion rate (7.1-27 kHz), constant pulse dura- tion (1.0 ns), linear output polarization, dif- fraction-limited beam quality, and minimal distortion by nonlinear effects.	CMM2 • 10:30 a.m. Dynamics of Quantum Dot Photonic Crystal Lasers, Bryan C. Ellis, Ilya Fushman, Dirk Englund, Bingvang Zhang, Yoshibisa Yamamoto, Jelena Vuckovic; Stanford Univ., USA. A rate equation model is used to predict the maximum modulation rate of a quantum dot photonic crystal la- ser. We predict that the modulation rate is limited by the carrier capture rate into the dots.	CMN2 • 10:30 a.m. Strong Lateral Confinment in Ga(AsSb)/ GAAs/(AlGa)As Heterostructures, Swantje Horst ¹ , Sangam Chatterjee ¹ , Kristian Hantke ¹ , Peter J. Klar ¹ , Igor Nemeth ¹ , Wolfgang Stolz ¹ , Kerstin Volz ¹ , Cbristina Bückers ¹ , Angela Tbränbardt ¹ , Stepban W. Koch ¹ , Gunnar Blume ¹ , Gerbard Weiser ¹ , Wolfgang Rüble ¹ , Sbane R. Jobnson ² , Jiangbo Wang ² , Yong -Hang Zbang ² , 'Pbilips Univ. Marburg, Germany, 'Arizona State Univ., USA. We investigate a series of Ga(AsSb)/ GaAs/AlGaAs quantum wells, that show an additional inplane confinement. This is at- tributed to the formation of self-organized GaAsSb quantum-islands during growth with confinement energies of several hundred meV.	CMO2 • 10:30 a.m. Synthesis and Characterization of ZnO Colloidal Nanocrystals, Melisa R. Greenberg ¹ , Gennady A. Smolyakov ¹ , Timo- thy J. Boyle ² , Marek Osinski ¹ ; 'Univ. of New Mexico, USA, 'Sandia Nall. Labs, USA. Col- loidal synthesis of ZnO nanocrystals (NCs) from zinc alkoxide precursors in the 1-me- thyl imidazole/H ₂ O coordinating solvent is reported. The results of NC structural and optical characterization are presented.	QMD2 • 10:30 a.m. 100X Enhancement of the Nonlinea Refractive Index of Suffur-Doped CX over Pure CS ₂ Raymond Edziab ¹ , Elai N. Lalanne ¹ , Antbony M. Johnson ¹ , Sudb Trived ² ; ¹ Univ. of Maryland, Baltimor County, USA, ² Brimrose Corp. of America USA. Preliminary Z-scan measurements of variable concentration sulfur-doped CS ₂ in dicate a two-order of magnitude enhance ment of the nonlinear index (n ₂) over CS The laser repetition rate will be varied to determine any thermal contribution to n ₂ .

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QE	ELS		CLEO	
10:15 a.m. – 12:00 p.m. QME • Spatial Confinement and Microcavity Stefan Wabnitz; Univ. de Bourgogne, France, Presider	10:15 a.m. – 12:00 p.m. QMF • Cavity QED I <i>Luis A. Orozco; Univ. of</i> <i>Maryland, College Park,</i> <i>USA, Presider</i>	10:15 a.m. – 12:15 p.m. CMP • Switches and Modulators Patrick LiKamWa; Univ. of Central Florida, USA, Presider	10:15 a.m. – 11:45 a.m. CMQ • Signal Processing for Optical Communications David Moss; JDS Uniphase Corp., Canada, Presider	10:15 a.m. – 12:00 p.m. CMR • Precision Spectroscopy II Gesine Grosche; PTB, Germany, Presider
QME1 • 10:15 a.m. Nonlinear Scattering and Trapping by Local Photonic Potentials, Yoav Linzon ¹ , Sbimshon Barad ¹ , Roberto Morandott ² , Maite Volatie ³ , Vincent Aimez ³ , Richard Ares ³ , 'School of Physics and Astronomy, Tel Aviv Univ., Israel, ³ INRS-Energie et Materiaux, Univ. of Quebec, Canada, ³ Univ. de Sberbrooke, Canada. We experimentally study nonlinear scattering by local photo- nic potentials embedded in continuous Kerr media, and demonstrate nonlinear trapping in guiding potentials and resonant transmis- sion in anti-guiding potentials. The results are verified by numerical simulations.	QMF1 • 10:15 a.m. Tutorial Scalable Quantum Networks with Atoms and Photons , <i>H. Jeff Kimble; Caltech, USA</i> . Scalable quantum networks for quantum computation, communication, and metrol- ogy require new capabilities for interfacing quantum states of matter and light. I will provide an overview of recent theoretical and experimental progress in this area.	CMP1 • 10:15 a.m. Novel Si-Based Optoelectronic Switching Device: Light to Latch, Ali K. Okyay, Abbijit J. Pethe, Duygu Kuzum, Salman Latif, David A. Miller, Krishna C. Saraswat; Stanford Univ., USA. A novel, high performance op- toelectronic switch is introduced. The de- vice is a Si-MOSFET with Ge gate that can be fabricated at the nanoscale with very low capacitance. Current gain of up to 1000x is demonstrated.	CMQ1 • 10:15 a.m. First 10Gb/s Small Form Factor Pluggable (XFP) Optical Transceiver for 140km DWDM Transmission, Sunil Priyadarsbi, Hsu-Feng Chou, Sheng Z. Zhang, Hua Yang, Todd Rope, Near Margalit, Alexis Black; LuminentOIC Inc, USA. A 10Gb/s EDC-based optical transceiver module for DWDM application is realized within the small-form-factor-pluggable (XFP) platform. The developed transceiver meets 140km (2400 ps/nm) transmission in uncom- pensated SSMF and has low power con- sumption and small footprint.	CMR1 • 10:15 a.m. Invited Accurate Optical Clocks Based on Single Trapped Ion, Jim Bergquist; NIST, USA. Optical clocks based on narrow transitions of single ions have long promised unprec- edented stability and accuracy but only lately has this potential begun to be realized. We will report our latest results.
QME2 • 10;30 a.m. Dispersive, Superfluid-like Shock Waves in Nonlinear Optics: Properties and In- teractions, Wenjie Wan, Shu Jia, Jason W. Fleischer, Princeton Univ., USA. We experi- mentally demonstrate dispersive optical shock waves in 1-D and 2-D, characterize their nonlinear properties, and observe the complex interactions when two such shocks collide.		CMP2 • 10:30 a.m. High-Speed MEMS Micromirror Switch- ing, Gregory N. Nielson, Roy H. Olsson, Paul R. Resnick, Olga B. Spabn; Sandia Natl. Labs, USA. We report a high-speed MEMS micromirror that switches in 225 ns using 22 V. Switch repetition rates of up to 100 KHz have been demonstrated. These per- formance characteristics significantly extend the application space of micromirrors.	CMQ2 • 10:30 a.m. Envited Advanced Modulation Formats and Digi- tal Signal Processing in Optical Commu- nications, Joseph Kahn, Ezra Ip; Stanford Uniw., USA. Performance and implementa- tion complexity of various modulation and detection techniques are compared. Non- binary modulation with coherent detection maximizes spectral efficiency and enables effective, low-complexity digital compensa- tion of chromatic and polarization-mode dispersions and other transmission impair- ments.	

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	JOINT			CLEO			QELS
CMJ • Parametric Devices—Continued	JMB • Resonators and Photonic Crystals— Continued	CMK • Ultrafast Parametric Amplification I—Continued	CML • Fiber Lasers II— Continued	CMM • Semiconductor Quantum Dot Lasers II— Continued	CMN • Near-Infrared Semiconductor Materials— Continued	CMO • Nanocrystalline and Organic Light Emitters— Continued	QMD • Nonlinear Optics of Semiconductors— Continued
CMJ2 • 10:45 a.m. GaAs Optical Parametric Oscillator with a Circularly Polarized Pump, Paulina S. Kuo', Konstantin L. Vodopyanov', Martin M. Fejer', Xiaojun Yu', Angie C. Lin', James S. Harris', David F. Bliss', Candace L. Lyncb'; 'Stanford Univ., USA, 'AFRL, USA. We dem- onstrated an optical parametric oscillator based on GaAs with a circularly polarized pump. The threshold was lower and con- version efficiency was higher than with a [001]-linearly polarized pump, which is con- sistent with GaAs symmetry.	JMB2 • 10:45 a.m. Opto-Mechanical Modal Spectroscopy: Opto-Excited Vibrations of a Micron- Scale On-Chip Resonator, <i>Tal Carmon,</i> <i>Kerry J. Vabala; Caltech, USA.</i> Centrifugal ra- diation pressure excites vibrational modes of cavity at the GHz range. Many spectral lines associated with high-order vibrational modes are measured. Perturbation is ob- served to induce fine split of the spectral line.		CML3 • 10:45 a.m. Shot Noise Limited Fiber Laser Source by Frequency Locking to a Fiber Ring Cavity, Jong H. Chou, David E. McClelland, Malcolm B. Gray; Australian Natl. Univ., Australia. We present experimental results using a passive, high Q, fiber ring resonator to suppress laser intensity noise, resulting in a stabilized fiber laser output that ap- proaches the shot noise limit over most of its spectrum.	CMM3 • 10:45 a.m. Characterization of the Static and Dy- namic Parameters in a 1.3-µm Quantum Dot Mode-Locked Laser, Yongchun Xin ¹ , Luke F. Lester ¹ , Allen L. Gray ² , Lei Zhang ² ; ¹ Univ. of New Mexico, USA, ² Zia Laser Inc., USA. The static and dynamic parameters governing pulse width in the Haus Master- Equation are measured using LI curves, pulsed performance and the segmented- contact method. The relationship between QD-MLL performance and QD parameters is studied.	CMN3 • 10:45 a.m. Time-Resolved Photoluminescence of Nitrogen-Cluster States in Diluted Ga(Nas)/GaAs Heterostructures, Kristian Hantke ¹ , Swantje Horst ¹ , Kapil Kobli ¹ , Sangam Chatterjee ¹ , PeterJ. Klar ¹ , Wolfgang Stolz ¹ , Wolfgang W. Rüble ¹ , Francesco Masia ² , Giorgio Pettinarr ² , Antonio Poliment ² , Mario Capizzi ² , 'Philipps-Univ. Marburg, Germany, 'Sapienza Univ. di Roma, Italy. We investigate time-resolved photoluminescence in Ga(Nas)/GaAs. We find that energy relaxation of optically ex- cited carriers from the conduction band into nitrogen-related cluster states depends on temperature, excitation density, and effec- tive nitrogen concentration after hydroge- nation.	CMO3 • 10:45 a.m. InGaN/GaN MQW Nanorods LED Fabri- cated by ICP-RIE and PEC Oxidation Pro- cesses, Fang-I Lai ¹ , H. W. Huang ² , Ching- Hua Chiu ² , C. F. Lai ² , T. C. Lu ² , H. C. Kuo ² , S. C. Wang ² , 'Depl. of Electrical Engineer- ing, Yuan-Ze Univ., Taiwan, 'Depl. of Photonics and Inst. of Electro-Optical Engi- neering, Natl. Chiao Tung Univ., Taiwan. The InGaN/GaN nanorods LED was success- fully fabricated by ICP-RIE and PEC pro- cesses. Compared with as-grown sample, the PL and EL peak-wavelengths of the nanorods with PEC show 8.6 and 10.5 nm blue-shift, respectively.	QMD3 • 10:45 a.m. Nonlinear Optical Interactions on Oxi- dized Birefringent Porous Silicon, Georgi Petrov ¹ , Vladislav V. Yakovlev ¹ , Leonid Golovan ² , Dmitriy Ivanov ² , Vasiliy Melnikov ² , Yuriy Timosbenko ² , Alexei Zbeltkov ² , Pavel Kashkarov ² ; ¹ Univ. of Wis- consin at Milwaukee, USA, ² Moscow State Univ., Russian Federation. Nonlinear opti- cal interactions in a novel optical material, oxydized birefringent porous silicon, are studied for the first time. The controlled bi- refringence and broad transparency range of this material lead to the phase-matched nonlinear-optical interactions.
CMJ3 • 11:00 a.m. Energy Scaling of a White-Light-Seeded Noncollinear Optical Parametric Ampli- fier, Jiaan Zbeng ¹ , Mark Mero ¹ , Pancho Tzankou ¹ , Dario Polli ² , Cristian Manzon ² , Giulio Cerullo ² , ¹ Max Born Inst. for Nonlin- ear Optics and Short Pulse Spectroscopy, Germany, ² Dept. di Fisica, Politecnico de Milano, Italy. Scaling of the pulse energy of a white-light-continuum-seeded two-stage noncollinear optical parametric amplifier to the 300-µJ level is demonstrated. Sub-25-fs pulses tunable between 520 and 650 nm were generated at 1 kHz.	JMB3 • 11:00 a.m. Measurement of Optical Forces within a High-Q Microcavity-Waveguide System, Matt Eicbenfield, Oskar Painter; Caltech, USA. Optical forces arising from the intense stored field within a high-Q microdisk cav- ity are measured through the displacement of a moveable, micron-scale fiber taper in- put waveguide. Tunable waveguide-cavity coupling is demonstrated at sub-mW input powers.		CML4 • 11:00 a.m. Dye-Doped Microstructured Polymer Optical Fibre Laser with High Numeri- cal Aperture Air-Clad, Kang Li, Xinghua Yang, Lili Wang, Wei Zbao; State Key Lab of Transient Optics and Photonics, Xi'an Inst. of Optics and Precision Mechanics, China. We demonstrated a Hemicyanine dye-doped microstructured polymer optical fibre laser generating up to 200 mW output power with a slope efficiency of 20% and a high nu- merical aperture air-clad at the wavelength of 578 nm.	CMM4 • 11:00 a.m. Gain Dynamics after Ultrashort Pulse Trains in Quantum Dot Based Semicon- ductor Optical Amplifiers, Sabine Dommers ¹ , Vasily V. Temnov ¹ , Ulrike Woggon ¹ , Jordi Gomis Brescö ² , Juan Martínez Pastor ² , Mattbias Laemmlin ³ , Di- eter Bimberg ¹ , ¹ Univ. Dortmund, Germany, ² Univ. de València, Spain, ³ Technische Univ. Berlin, Germany. We study the gain dynam- ics in QD-based SOAs after excitation with fs-pulse trains of up to THz repetition rates. A complete ground-state gain recovery is found for 200GHz repetition rates and in- jection currents around 90mA.	CMN4 • 11:00 a.m. N-Rich and Dilute-Nitride GaN _x (AsSb) _{1x} on InP Substrates, Luke J. Maust ¹ , Dapeng Xu ¹ , Juno Yu-Ting Huang ¹ , Joo Hyung Park ¹ , Manisb Ratbi ² , Tbomas F. Kuecb ² ; ¹ Dept. of Electrical and Computer Engineering, Univ. of Wisconsin at Madison, USA, ² Dept. of Chemical and Biological Engineering, Univ. of Wisconsin at Madison, USA. GaAsNSb al- loys have been demonstrated using MOCVD growth over the entire span of nitrogen com- position. Dilute-nitride alloys hold poten- tial for mid-IR emission using GaAsSbN/ GaAsSb type-II QWs.	CMO4 • 11:00 a.m. Invited Recent Progress in Phosphorescent White Organic Light-Emitting Devices for Displays and Lighting, Vadim Adamovich, B. W. D'Andrade, M. S. Weaver, J. J. Broun; Universal Display Corp., USA. A phosphorescent white organic light-emitting device (WOLED ^{IIA}) with 14% η_{ex} at 1,000 cd/m ² (25% EQE with outcoupling enhance- ments), CIE coordinates (0.46±0.01, 0.46±0.01) and a 50% lifetime 21,000 hours at an initial luminance of 1,000 cd/m ² has been demonstrated.	QMD4 • 11:00 a.m. Evidence of Many-Body, Fermi-Energy Edge Singularity in InN Films Grown on GaN Buffer Layers, Xiaodong Mu ¹ , Yujie J. Ding ¹ , Kejia Wang ² , Debdeep Jena ² , Jacob B. Khurgin ³ ; 'Lebigh Unitu., USA, ² Unitu. of Notre Dame, USA, ³ Johns Hopkins Unitu., USA. We observed the strong enhancement of photoluminescence intensities close to electron Fermi energy as the result of the breakdown of k-selection rule for radiative recombination due to the localization of holes in InN films.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
Q	ELS		CLEO	
QME • Spatial Confinement and Microcavity— Continued	QMF • Cavity QED I— Continued	CMP • Switches and Modulators—Continued	CMQ • Signal Processing for Optical Communications— Continued	CMR • Precision Spectroscopy II—Continued
QME3 • 10:45 a.m. Collapse and Stability of Necklace Beams in Kerr Media, Taylor D. Grow, Amiel A. Isbaaya, Luat T. Vuong, Alexander L. Gaeta; Cornell Univ., USA. We experimentally in- vestigate necklace beams in Kerr media. For powers greater than one critical power for self-focusing per bead, we observe a transi- tion from collective behavior to indepen- dent collapse of each of the beads.				CMR2 • 10:45 a.m. A 4-Hz Fundamental Linewidth On-Chig Microlaser, Lan Yang, Tao Lu, Tal Carmon Bumki Min, Kerry J. Vabala; Caltech, USA A compact laser source on a silicon chij with Shawlow-Townes linewidth (i.e., quan tum limited) down to a few Hertz is dem onstrated in this work. The fundamenta linewidth is observed to decrease with in verse optical power.
QME4 • 11:00 a.m. Vector Pi Pulse Soliton in Coherent Op- tical Amplifiers, Elena V. Kazantseva ¹ , Andrei I. Maimistov ² , Sergei O. Elyutin ² , Stefan Wabnitz ¹ ; ¹ Univ. de Bourgogne, France, ² Moscow Engineering Physics Inst., Russian Federation. We found a novel type of vector soliton pulse in a medium with linear loss and nonlinear gain from the co- herent resonant interaction of light with two- level atoms exhibiting a degenerate upper state.		CMP3 • 11:00 a.m. GaAs/AlGaAs Five-Layer Asymmetric Coupled Quantum Well (FACQW) Mach- Zehnder Modulator, Taro Arakawa ¹ , Koji Takada ¹ , Fumiyuki Tadano ¹ , Takebiro Arima ¹ , Joo-Hyong No ⁶ , Kunio Tada ³ ; ¹ Yokobama Natl. Univ., Japan, ² Yokogawa Electric Corp., Japan, ³ Kanazawa Inst. of Technology, Japan, Two types of Mach- Zehnder modulators with GaAs FACQWs were fabricated, and their static modulation characteristics were measured. A half-wave voltage and estimated dn/dF in the FACQW were 1.7 V and 3.3 x 10 ³ cm/kV, respectively.	CMQ3 • 11:00 a.m. PMD Compensation Using LDPC Coding Based Turbo Equalization, Ivan B. Djordjevic ¹ , Hussam Batsbon ¹ , Milorad Crijetic ² , Lei Xu ² , Ting Wang ³ , ¹ Univ. of Ari- zona, USA, ² NEC Corp. of America, USA ³ NEC Labs America, USA. An iterative equal- ization scheme suitable for electronic PMD- compensation based on BCJR-equalizer and a novel class of LDPC codes is proposed. The first order PMD with differential-group- delay up to two bit-periods can be com- pletely compensated for.	CMR3 • 11:00 a.m. Low Phase Noise 250 MHz Repetition Rate Fiber fs Laser for Frequency Comf Applications, Tobias Wilken ¹ , Theodor W Hänsch ¹ , Ronald Holzwarth ¹ , Peter Add ² Michael Mei ² , ¹ Max-Planck-Inst., Germany ³ Menlo Systems GmbH, Germany. Et ^a -dopec fiber-lasers efficiently generate frequency combs for optical frequency metrology. W succeeded for the first time in increasing the repetition rate to 250 MHz and decreas ing the carrier envelope offset phase noise well below 1 rad.

	ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
ay 7	CLEO	JOINT			CLEO			QELS
Monday, M	CMJ • Parametric Devices—Continued	JMB • Resonators and Photonic Crystals— Continued	CMK • Ultrafast Parametric Amplification I—Continued	CML • Fiber Lasers II— Continued	CMM • Semiconductor Quantum Dot Lasers II— Continued	CMN • Near-Infrared Semiconductor Materials— Continued	CMO • Nanocrystalline and Organic Light Emitters— Continued	QMD • Nonlinear Optics of Semiconductors— Continued
	CMJ4 • 11:15 a.m. A Very Simple and Versatile Dual-Signal Wave Optical Parametric Oscillator, <i>Luca</i> <i>Tartara; Univ. degli Studi di Pavia, Italy.</i> A picosecond optical parametric oscillator able to deliver a signal pulse at two different wavelengths either simultaneously or even one at a time is presented. The operation relies on a simple cavity-length adjustment.	JMB4 • 11:15 a.m. Nanowire Coupling to Photonic Crystal Nanocavities for Single Photon Sources, Christian Grillet ¹ , Christelle Monat ¹ , Cameron Smith ¹ , Benjamin J. Eggleton ¹ , Dalacu ² , Philip Poole ³ , Jean Lapointe ³ , Geof Aers ³ , Robin L. Williams ^{1,1} , ¹ Chr, for Ultra- bigb-Bandwidth Devices for Optical Systems, Univ. of Sydney, Australia, ² Inst. Natl. de la Recherche Scientifique, Univ. du Quebec, Canada, ³ Inst. for Microstructurale Sciences, Univ. of Outewc, Canada, ¹ Physics Depl., Univ. of Ottawa, Canada. We demonstrate highly efficient evanescent coupling via a silica loop-nanowire, to ultra-small quantum- dot photonic-crystal cavities. It enables the tuning of both the Q-factor and the wave- length of the cavity mode independently.	CMK2 • 11:15 a.m. Development of a Few-Cycle Infrared OPCPA System and Its Use in High-Har- monic Generation, Nobubisa Isbii ¹ , Xun Gu ¹ , Takao Fuji ^{1,2} , Martin Schultze ¹ , V. Peruak ¹ , Ronald Holzwarb ¹ , Rytis Butkus ³ , H. Isbizuki ¹ , T. Taira ⁴ , R. Hartmann ⁵ , Stefan Rothbe ⁶ , Markus Kitzle ⁴ , A. Baltuska ⁶¹ , A. Piskarskas ³ , Ferenc Krausz ¹ , ¹ Max-Planck- Inst. für Quantenoptik, Germany, ² RIKEN, Japan, ³ Vilnius Univ., Litbuania, ⁴ Inst. for Molecular Science, Japan, ⁵ MPI Halbleiterlabor, Germany, ⁶ Technische Univ. Wien, Austria. We report the latest progress on the development of a 1-KHz OPCPA sys- tem, generating carrier-envelope-phase-sta- bilized 350-µJ 20-fs pulses at 2.1 µm with suppressed superfluorescence. A proof-of- principle high-harmonic generation experi- ment in argon was conducted.	CML5 • 11:15 a.m. Dynamic Surface Emitting Fiber Laser, Ofer Sbapira ¹ , Alexander Stolyarov ¹ , Nicho- las D. Orf ¹ , Ken Kuriki ² , Ayman F. Abouraddy ¹ , Jobn D. Joannopoulos ¹ , Yoel Fink ¹ , ¹ MIT, USA, ² General Electric, Japan. We report on the conceptual framework and development of a radially surface-emitting fiber laser that is capable of dynamic tuning of both the gain medium position along the fiber axis and the direction of emission.	CMM5 • 11:15 a.m. All-Epitaxial VCSELs with Tunnel- Coupled QDs-QW InAs-InGaAs Active Medium, Vadim Tokranov, Michael Yakimov, Jobert van Eisden, Serge R. Oktyabrsky; College of Nanoscale Science and Engineering, USA. Tunnel-coupled pairs of InGaAs quantum well (QW) grown on top of InAs quantum well (QW) grown on top of InAs quantum dots (QDs) were opti- mized. All-epitaxial QDs-QW VCSELs dem- onstrated CW-mode lasing (Ith= 1.8mA, Pmax.= 0.7mW) at QD ground state emis- sion wavelength, 1135nm.	CMN5 • 11:15 a.m. Photovoltaic Detectors in the GaN/AIN Intersubbandsystem Operating at 1.55 μm, Estber Baumann ¹ , Fabrizio R. Giorgetta ¹ , Fabien Guillot ² , Eva Monroy ² , Daniel Hofstetter ¹ , 'Univ. of Neucbatel, Swit- zerland, ² CEA Grenoble, France. We present a nitride prototype photovoltaic intersubband detector operating in the tele- communication wavelength range. At room temperature the device was capable of de- tecting a sinusoidally modulated laser beam at frequencies up to 2.37 GHz.		QMD5 • 11:15 a.m. Anti-Stokes Raman Scattering of Photo- luminescence Phonon Replica in GaN Heterostructures: An Effective Tech- nique for Probing Hot Phonons, Suranta K. Tripathy ¹ , Xiaodong Mu ¹ , Yujie J. Ding ¹ , Kejia Wang ² , Debdeep Jena ² , Jacob B. Khurgin ² , 'Lebigb Uniu., USA, 'Uniu. of Notre Dame, USA, 'Johns Hopkins Uniu., USA. We have observed anti-Stokes Raman scattering of photoluminescence phonon replica in GaN heterostructures by non-equi- librium longitudinal-optical phonons. We demonstrate that such a process can be used to monitor the distribution of hot longitudi- nal-optical phonons.
	CMJ5 • 11:30 a.m. Deep Domain Inversions in X-Cut MgO:LiNbO₃ for Efficient Infrared Gen- eration , <i>Francis Genereux^{1,2}</i> , <i>Georges</i> <i>Baldenberger¹</i> , <i>Bruno Bourliaguet¹</i> , <i>Réal</i> <i>Vallée²</i> ; ¹ <i>NO</i> , <i>Canada</i> , ² <i>Univ</i> . <i>Laval</i> , <i>Canada</i> . A new technique is presented to improve the depth of domains formed in x- cut MgO doped LiNbO ₃ . Based on this ap- proach, a second harmonic conversion effi- ciency in excess of 36%/W/cm ² was achieved near 1.5 µm.	JMB5 • 11:30 a.m. Three-Dimensional Photonic Crystals Fabricated by Double-Angled Plasma Etching, Shigeki Takabashi, Takeshi Nakamori, Makoto Okano, Masabiro Imada, Susumu Noda, Dept. of Electronic Science and Engineering, Kyoto Univ., Japan. Three- dimensional photonic crystals with a depth of two lattice constants are successfully fab- ricated by a two-stage angled plasma etch- ing method. The sample showed ~90% re- flectance and ~10dB attenuation around the photonic bandgap wavelength region.	CMK3 • 11:30 a.m. 1.2-mJ, 1-kHz OPCPA System toward Few-Cycle Pulse, Shunsuke Adachi, Hiroki Ishii, Teruto Kanai, Shuntaro Watanabe; Inst. for Solid State Physics, Univ. of Tokyo, Japan. We demonstrate an optical paramet- ric chirped-pulse amplification (OPCPA) sys- tem with the pulse energy of 1.2 mJ at a 1- kHz repetition rate, and its spectrum is broad enough toward a few-cycle regime.	CML6 • 11:30 a.m. Evanescent-Wave Pumped Microfiber Knot Laser, Xiaoshun Jiang', Limin Tong', Qingbai Song', Lei Xu ² ; 'Zbejiang Uniu, Cbina, 'Eudan Uniu, China. We demon- strate a microfiber laser formed by immers- ing a microfiber knot in a rhodamine 6G dye solution. When the dye is evanescently pumped at 532-nm wavelength, laser out- put around 570- and 580-nm wavelength is observed.	CMM6 • 11:30 a.m. Selectively Populating a Quantum Dot Ensemble Using a Tunnel Injection Structure, Adrian A. George ¹ , Peter M. Smowton ¹ , Zetian Mi ² , Pallab Bbattacharya ² , ¹ Cardiff Uniz., UK, ² Univ. of Micbigan, USA. We have analysed the car- rier distribution of a tunnel injection quan- tum dot laser to reveal features which sug- gest dots of a particular size are preferen- tially populated during the tunnel injection process.	CMN6 • 11:30 a.m. Sub-Band Energy Level Controlling of QDs Using InGaAs Gradient Composi- tion Strain-Reducing Layer, Takeru Amano ¹ , Sbobgo Yamauchi ² , Takeyoshi Sugaya ¹ , Kazushiro Komori ^{1,2} , 'IAST, Japan, ² CREST-JST, Japan. We propose the sub- band energy level controlling of QDs using an InGaAs GC-SRL. We were able to realize a large sub-band shift of 70 meV using a GC-SRL at the fourth-order energy level.	CMO5 • 11:30 a.m. White Light Generation with Azide Functionalized Polyfluorene Hybridized on Near-UV Light Emitting Diode, Ozge Ilkem Huyal, Tuncay Ozel, Sedat Nizamoglu, Unsal Koldenir, Donus Tuncel, Hilmi Volkan Demir; Bilkent Univ., Turkey. We present white light generation using poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis-(6- azidohexyl)fluorene] (PFA) for the first time. Hybridizing PFA on near-UV LED, we dem- onstrate high color rendering index up to 91.0.	QMD6 • 11:30 a.m. Bistability and Cavity Solitons in Semi- conductor Resonator with Exciton- Polariton Nonlinearity, Yevgeniya Larionova ¹ , Wolfgang Stolz ² , Carl Otto Weiss ¹ , 'Physikaliscb-Tecbnische Bunde- sanstalt, Germany, 'Philipps Univ., Ger- many. Optical bistability and observation of bright and dark spatial resonator solitons are reported for a semiconductor microresonator in which the nonlinearity stems from exci- ton polaritons.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QE	LS		CLEO	
QME • Spatial Confinement and Microcavity— Continued	QMF • Cavity QED I— Continued	CMP • Switches and Modulators—Continued	CMQ • Signal Processing for Optical Communications— Continued	CMR • Precision Spectroscopy II—Continued
QME5 • 11:15 a.m. Multiple-Beam Collapse in Kerr Media, Amiel A. Isbaaya, Taylor D. Grow, Luat T. Vuong, Alexander L. Gaeta; Cornell Univ., USA. We investigate the spatial collapse dy- namics of several coupled beams in Kerr media. Depending on the initial beam con- figuration, we observe sharp transitions to either fusion or annihilation of the collaps- ing beams.	QMF2 • 11:15 a.m. Cross-Correlations and Entanglement in a Cavity QED System, Mattbew L. Terraciano', Rebecca Olson', David Norris', Jietai Jing', Luis A. Orozco', James P. Clemens', Perry R. Rice', 'Univ. of Maryland, USA, 'Miami Univ., USA. We measure the cross-correlation between transmitted light out of a cavity QED system and spontane- ous emission into the orthogonal polariza- tion cavity mode. The result is an entangle- ment witness between the two modes of the cavity.	CMP4 • 11:15 a.m. 1.3 μm Quantum-Dot Electro-Absorption Modulator, Yuanliang Chu ¹ , Mark G. Th- ompson ¹ , Richard V. Penty ¹ , Ian H. White ¹ , Alexey R. Kotsb ² ; 'Cambridge Univ., UK, ² NL Nanosemiconductor GmbH, Germany. The electro-absorption properties and Stark-shift of 1.3μm InGaAs quantum dot waveguide modulators are characterized under reverse bias. 2.5Gb/s data modulation is demon- strated for the first time with Clear eye dia- grams and error-free back-to-back perfor- mance.	CMQ4 • 11:15 a.m. Massively Parallel Transmission over Multimode Fiber Applied to 100 Gigabit Ethernet with Random-Coding, Maxim Y. Greenberg, Moshe Nazarathy, Meir Orenstein; Technion, Israel. We propose a novel MMO multimode fiber technique re- alizing for the first time random coding motivated by Shanon's noisy channel theo- rem, using silicon photonics in the trans- mitter and maximum likelihood electronic detection in the receiver.	CMR4 • 11:15 a.m. Laser-Mode Dynamics Measurement and Control of Mode-Locked Er-Fiber Lasers, Yobei Kobayashi', Dai Yoshitomi', Youichi Sakakibara', Hiromichi Kataura', Hideyuki Takada', Masayuki Kakebata', Kenji Torizuka', Taketo Onuma', Hideki Yokof, Takuro Sekiguchi', Shinki Nakamura', 'Ivatl. Inst. of Advanced Industrial Science and Technology (AIST), Japan, 'Shibaura Inst. of Technology, Japan, 'Ibaraki Univ., Japan. Dynamics of laser mode of femtosecond Er- fiber lasers were investigated by using a beat signal between two mode-locked lasers. The beat linewidth was controlled to 8 mHz.
QME6 • 11:30 a.m. "Instantaneous" Frequency Shift of a High Q Planar Photonic Crystal Microcavity Mode, Murray W. McCucheon', Georg W. Rieger', Alexandre M. Zagoskin ^{1,2} , Jeff F. Young'; 'Dept. of Phys- ics and Astronomy. Univ. of British Colum- bia, Canada, ² DML, FRS, RIKEN, Japan. A high Q mode in a silicon planar photonic crystal microcavity is dynamically perturbed by injection of free carriers, and modelled by a damped harmonic oscillator which undergoes an instantaneous frequency and lifetime shift.	QMF3 • 11:30 a.m. Cooling Atoms in a Bistable Optical Resonator, Mark Y. Vilensky, Yebiam Prior, Ilya Sb. Averbukb; Dept. of Chemical Phys- ics, Weizmann Inst. of Science, Israel. We propose a generic approach for nonresonant laser cooling of atoms/molecules based on their interaction with a bistable optical cav- ity. The cooling mechanism is of Sisyphus type, and it does not require high-finesse cavities.	CMP5 • 11:30 a.m. Duty-Cycle and Chirp Diagnosis of All- Optical Format Conversion Data in Multi- and Single-Wavelength Inverse Optical Comb Injected Semiconductor Optical Amplifier, Kun-Chieb Yu ¹ , Yu- Sheng Liao ¹ , Gong-Ru Lin ² , ¹ Dept. of Photonics and Inst. of Electro-Optical Engi- neering, Natl. Chiao Tung Univ., Taiwan, ² Graduate Inst. of Electro-Optical Engineer- ing, Natl. Taiwan Univ., Taiwan, Compari- son on shortened falling-time, reduced chirp and improved on/off extinction ratio of 10Gbit/s all-optical data-format converted pulse-stream in single- and multi-wavelength inverse-optical-comb injected semiconduc- tor optical amplifiers with temporally re- shaped gain-window is demonstrated.	CMQ5 • 11:30 a.m. Optical Error Correction Using Passive Optical Logic Gates Demodulators in Differential Demodulation, Yannick K. Lize ^{1,2,3} , Louis C. Christen ¹ , Scott Nuccio ¹ , Xiaoxia Wu ¹ , Alan E. Willner ¹ , Raman Kashyap ³ , Mathieu Faucher ¹ ; Dept. of Elec- trical Engineering, Univ. of Southern Cali- fornia, USA, ² ITF Labs-Advanced Modula- tion Formats Devices, Canada, ³ Ecole Polytechnique de Montréal, Canada. We propose and demonstrate an error-correc- tion technique with no overhead for differ- entially encoded modulation formats. The method improves FEC equipped systems, increasing chromatic dispersion tolerance by 25% while reducing the penalty of imper- fect optical filtering.	CMR5 • 11:30 a.m. Terahertz Frequency Comb for High- Accuracy, High-Resolution Terahertz Spectroscopy, Sbuko Yokoyama, Yasubiro Kabetani, Takesbi Yasui, Tsutomu Araki, Osaka Univ., Japan. We report a terahertz frequency-comb technique for high-accu- racy, high-resolution terahertz spectroscopy by combination of two mode-locked-fre- quency-stabilized femtosecond lasers and multi-frequency-heterodyning photoconduc- tive detection.

	ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
ay 7	CLEO	JOINT			CLEO			QELS
londay, M	CMJ • Parametric Devices—Continued	JMB • Resonators and Photonic Crystals— Continued	CMK • Ultrafast Parametric Amplification I—Continued	CML • Fiber Lasers II— Continued	CMM • Semiconductor Quantum Dot Lasers II— Continued	CMN • Near-Infrared Semiconductor Materials— Continued	CMO • Nanocrystalline and Organic Light Emitters— Continued	QMD • Nonlinear Optics of Semiconductors— Continued
	CMJ6 • 11:45 a.m. Ultrafast Pump-Probe Experiment Based on Extremely Broadband Second-Har- monic Generation, Yen-Cheng Lu, Hsiang- Chen Wang, Cheng-Yen Chen, C. C. Yang: Natl. Taiwan Univ., Taiwan. We use a non- degenerate pump-probe scheme of an ex- tremely broad probe spectrum to monitor the ultrafast carrier relaxation process from the excitation levels down to the free-car- rier and the localized states in an InGaN thin-film.	JMB6 • 11:45 a.m. Experimental Observation of Inflection- Point Slow Light Modes in Photonic Crystal Coupled Waveguides, Shib-Chieb Huang ¹ , Masao Kato ² , Eiicbi Kuramoch ² , A Chien-Ping Lee ¹ , Masaya Notom ² ; 'Nall Chiao Tung Univ., Taiwan, 'NTT Basic Res. Labs, Japan. We report on the time-domain measurement of inflection-point slow light modes in a photonic crystal coupled waveguide. The S type band structure for the waveguide mode allows a unique op- portunity for slow light measurement.	CMK4 • 11:45 a.m. Generation of High Repetition Rate Few- Cycle Pulses from a Noncollinear Opti- cal Parametric Amplifier, Andy Steinmann, Guido Palmer, Une Morgner; Inst. für Quantenoptik, Leibniz Univ. Hannover, Germany. We demonstrate the generation of few-cycle pulses with 45 nJ pulse energy from a noncollinear optical parametric amplifier (NOPA) with a repeti- tion rate of 1 MHz based on a diode-pumped Yb:KYW laser oscillator with cavity-dump- ing.	CML7 • 11:45 a.m. 2.1 µm CW Raman Source in GeO, Fiber, B. A. Cumberland', J. C. Travers', S. V. Popov', J. R. Taylor', O. I. Medvedkov ² , S. A. Vasilier ² , E. M. Dianov ² , 'Femtosecond Optics Group, Physics Dept., Imperial College London, UK, 'General Physics Inst., Russian Federation. We report a Raman laser with an output power of 4.2W at 2.1µm based upon a 75 mol.% GeO ₂ doped fiber pumped with CW Thulium doped fiber laser. Potential of 2.3µm operation is discussed.	CMM7 • 11:45 a.m. Y-Junction-Coupled S-Section InAs/ InGaAs/GAS Quantum-Dot Ring Lasers with High Unidirectionality, Nathan Witbers ¹ , Hongjun Cao ¹ , Gennady A. Smolyakov ¹ , Allen L. Gray ² , Luke F. Lester ¹ , Marek Osinski ¹ ; ¹ Univ. of New Mexico, USA, ² Zia Laser, Inc., USA. Fabrication and char- acterization of Y-junction-coupled S-section InAs/InGaAs/GaAs quantum dot ring lasers with high unidirectionality is reported. The new design suppresses the unwanted counterpropagating modes more effectively than in the previous S-section-racetrack de- sign.	CMN7 • 11:45 a.m. InAs/GaAs Quantum Dot Saturable Ab- sorber Mirror for Passive Mode-Locking of Nd:YVO ₄ Lasers at 1064 nm, C. Scurtescu ⁷ , Z. Y. Zbang ¹ , A. J. Alcock ² , R. Fedosejeus ¹ , M. Blumin ³ , I. Savelieu ³ , S. Yang ³ , H. E. Ruda ³ , Y. Y. Tsui ¹ ; ¹ Univ. of Alberta, Canada, ³ Natl. Res. Council of Canada, Canada, ³ Univ. of Toronto, Canada. An InAs/GaAs Quantum Dot Satu- rable Absorber Mirror was developed to passively mode-lock a Nd:YVO ₄ laser at the wavelength of 1064.6nm. CW mode-locked pulses of 24ps duration at a repetition rate of 65 MHz were obtained.	CMO6 • 11:45 a.m. Inorganic/Organic Hybrid Optical Upconversion Device, Dayan Ban ¹ , Sijin Han ² , Z. H. Lu ² , A. J. SpringThorpe ³ , H. C. Liu ³ , ¹ Univ. of Waterloo, Canada, ² Univ. of Toronto, Canada, ³ Natl. Res. Council of Canada, Canada. We report a hybrid opti- cal upconversion device that emits visible light upon the detection of input near infra- red light through direct tandem integration of an inorganic InGaAs/InP photodetector with an organic light emitting diode.	QMD7 • 11:45 a.m. Pulse-Induced Mutual Coherence of the Self-Assembled Quantum Dots Photohu- minescence, Iosif Zeylikovich ^{1,2} , R. R. Alfano ^{1,2} , ¹ Inst. for Ultrafast Spectroscopy and Lasers, Dept. of Physics, City College, USA, 'Graduate Ctr. of the City Univ. of New York, USA. Experiments show that a quantum dots ensemble's emission is partially mutually coherent under a laser excitation pulses with duration shorter than 600 fs. A possible pulse-induced coherent superradiance pre- dicted by Dicke is discussed.
				12:00 p.m. – 1:30 p.m. L	UNCH BREAK (on your own)			

www.cleoconference.org • www.phastconference.org

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
Q	LS		CLEO	
QME • Spatial Confinement and Microcavity— Continued	QMF • Cavity QED I— Continued	CMP • Switches and Modulators—Continued		CMR • Precision Spectroscopy II—Continued
QME7 • 11:45 a.m. Strongly Nondegenerate Parametric Os- cillations in a Whispering Gallery Mode Resonator, Anatoliy A. Sauchenkou, Andrey B. Matsko, Makan Mobageg, Dmitry Strekalov, Lute Maleki; JPL, USA. We dem- onstrate optical continuous wave paramet- ic oscillations in crystalline whispering gal- ery mode resonators fabricated with lithium niobate. The required phase matching is tchieved by geometrical confinement of the whispering gallery modes.	QMF4 • 11:45 a.m. Integration of a Tunable Optical Micro- Cavity for Single Atom Detection on an Atom Chip, Carsten O. Gollasch ⁷ , Zakaria Mokładir ⁷ , Gareth Lewis ¹ , Michael Kraft ⁷ , Michael Trupke ⁷ , Stefan Eriksson ² , Ed A. Hinds ² , ¹ Univ. of Southampton, UK, ² Impe- rial College, UK. Recent experiments dem- onstrated single-atom detection using mi- croscopic optical cavities. Here we present an optical micro-cavity whose length can be tuned using an electrostatic comb-drive. This design is suitable for integration into a silicon atom chip.	 CMP6 • 11:45 a.m. High Speed Response of Optical Nonlinear Phase Shifter Based on 1.55 μm VCSEL, Satosbi Suda¹, Fumio Koyama¹, Nobubiko Nishiyama², Catherine Caneau¹, Chung-En Zab³; Tokyo Inst. of Technology, Japan, ² Dept. of Electrical and Electronic Engineering, Tokyo Inst. of Technology, Japan, ³Corning Inc., USA. We demonstrate the fast transient response of a nonlinear optical phase-shifter based on a reverse-biased 1.55μm InGaAlAs QW VCSEL. The modeling and experiment on the nonlinear phase-shift show a dynamic response time of below 10ps. CMP7 • 12:00 p.m. Electro-Optic Ti:PPLN Waveguides as Efficient Optical Wavelength Filters and Mode Polarization Converters, C. Y. Huang¹, Chao-Hung Lin¹, Yen-Hung Chen¹, Yen-Chieb Huang²; ¹Dept. of Optics and Photonics, Nall. Central Univ., Taiwan, ³Inst. of Photonics Technologies, Nall. Tsing-Hua Univ., Taiwan, We report the first experimentally demonstrated active Sole-type optical wavelength filters based on Ti:PPLN waveguides. A peak spectral transmittance of ~99% at a bandwidth of ~2.6 mm in telecom bands was obtained in this device. 		CMR6 • 11:45 a.m. Doubly Modulated Interferometry for Trace Gas Detection, Steven M. Hugbes, Dana Z. Anderson; JILA, Univ. of Colorado, USA. A double modulation scheme enhances low-frequency trace-gas-induced path-length changes in a miniature (2 cm ³) adaptive in- terferometer. Path-length sensitivity is 0.2 pm/Hz ^{1/2} .

12:00 p.m. – 1:30 p.m. LUNCH BREAK (on your own)

	ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
ay 7	CLEO	JOINT			CLEO			QELS
Monday, M	1:30 p.m. – 3:15 p.m. CMS • Cubic Nonlinearity and Applications Vladimir V. Shkunov; Raytheon Corp., USA, Presider	1:30 p.m. – 3:15 p.m. JMC • Integrated Nanophotonics Mikbail Noginov; Norfolk State Univ., USA, Presider	1:30 p.m. – 3:15 p.m. CMT • Ultrafast Parametric Amplification II Igor Jovanovic; LLNL, USA, Presider	1:30 p.m. – 3:15 p.m. CMU • Femtosecond Fiber Oscillators and Applications <i>Jay E. Sharping; Cornell</i> <i>Univ., USA, Presider</i>	1:30 p.m. – 3:15 p.m. CMV • Semiconductor Photonic Crystal Lasers Igor Vurgafiman; NRL, USA, Presider	1:30 p.m. – 3:15 p.m. CMW • Lasers and Laser Materials William S. Brocklesby; Univ. of Southampton, UK, Presider	1:30 p.m. – 3:15 p.m. CMX • Attosecond Metrology and Wavepacket Dynamics Ronald Holzwarth; Menlo Systems GmbH, Germany, Presider	1:30 p.m. – 3:15 p.m. QMG • Dispersion Engineering Mark I. Stockman; Georgia State Univ., USA, Presider
	CMS1 • 1:30 p.m. Degenerate Four-Wave Mixing with Defocusing Nonlinearity, Sbu Jia, Wenjie Wan, Jason W. Fleischer, Princeton Uniu, USA. We experimentally demonstrate degen- erate four-wave mixing effects in a defocusing nonlinear photorefractive me- dium, in both one and two transverse di- mensions.	JMC1 • 1:30 p.m. Invited Nanostructured Optics and Optoelec- tronics for Dense Optical Interconnects, David A. Miller; Stanford Univ., USA. Quan- tum well structures in dielectrics and metals promise future optics, optoelectron- ics and electronics, all possibly combined in one silicon-compatible platform. Chal- lenges, approaches and recent progress are summarized.	CMT1 • 1:30 p.m. Invited Generation of Terawatt Sub-10 fs Laser Pulses Using Optical Parametric Chirped Pulse Amplification, <i>Kjeld S. Eikema</i> ; <i>La-</i> <i>ser Ctr. Vrije Univ., FEW, Netberlands.</i> Gen- eration of 2 TW few-cycle laser pulses (7.6 fs) is demonstrated using optical parametric chirped pulse amplification at a 30 Hz rep- etition rate. Aspects such as fluorescence, pulse contrast, phase stability and applica- tions are discussed.	CMU1 • 1:30 p.m. Invited Fiber Laser Frequency Combs, Nathan R. Newbury, W. C. Swann, NIST, USA. We dis- cuss the contributions to the linewidth and frequency noise of the individual modes of a mode-locked fiber laser. Much of this noise can be suppressed through feedback to form a stable frequency comb.	CMV1 • 1:30 p.m. Invited Electrically Pumped Photonic Crystal Lasers, Yong Hee Lee; KAIST, Republic of Korea. Electrically-driven single-cell photo- nic crystal lasers operating at room tempera- ture are discussed. Two nondegenerate reso- nant modes with a central node are investi- gated. Several schemes suitable for efficient photon out-coupling will also be discussed.	CMW1 • 1:30 p.m. All Taper Coupled Novel Fluoride Glass Microspherical Light Source for Microphotonics, Danny G. O'Shea ^{1,2} , Jonathan M. Ward ^{2,3} , Brian J. Shortt ^{2,3} , Sile Nic Chormaic ^{1,2} , ¹ Unit. College Cork, Ire- land, ² Tyndall Natl. Inst., Ireland, ³ Cork Inst. of Technology, Ireland. We theoretically study and experimentally demonstrate a novel fibered multicolor light source in the range 320-850 nm in Er ³⁺ doped ZBLALiP and 405-850 nm in Er ³⁺ doped ZBNA fluo- ride glass microspheres.	CMX1 • 1:30 p.m. Tutorial Attosecond Metrology, Paul Corkum; Natl. Res. Council of Canada, Canada. Light and electrons interact coherently in attosecond technology and metrology. As well as open- ing a new time domain, optics gains the ability to measure Angstrom scale features. I will describe both aspects of attosecond metrology.	QMG1 • 1:30 p.m. "Slow" Light in Media of "Zero" Dimen- sion, Nikitas Papasimakis ¹ , Vassili A. Fedotov ¹ , Nikolay I. Zbeludev ¹ , Sergey L. Prosvirnin ² ; IEPSRC Nanophotonics Portfo- lio Ctr., Optoelectronics Res. Ctr., Univ. of Southampton, UK, ² Inst. of Radio Astronomy, Natl. Acad. of Sciences of Ukraine, Ukraine. Electromagnetic pulses propagating through a thin metal film, structured on the sub-wave- length scale, are significantly delayed and re-shaped.
	CMS2 • 1:45 p.m. Transient Two-Wave Mixing via Dy- namic Phase Gratings in Yb-Doped Fi- bers with Saturable Absorption, Serguei Stepanov ¹ , Andrei A. Fotiadi ² , Patrice Mégret ² ; ¹ CICESE, Mexico, ² Faculté Polytechnique de Mons, Belgium. Two-wave mixing of phase modulated waves via dy- namic population gratings in Yb-doped fi- bers is reported. The unshifted gratings re- corded at 1064nm were predominantly of phase type, which ensured efficient linear energy exchange at mW-scale power.					CMW2 • 1:45 p.m. Rare Earth Doped Silver Halide Crystals: A New Candidate for Mid-IR Solid State Lasers and Fiber Lasers and Amplifiers, Ofer Gayer, Irena Sbafir, Ariel Nause, Lev Nagli, Abrabam Katzir, Tel Aviv Univ., Is- rael. The optical properties of rare earth doped silver halide crystals were studied in the middle infrared spectral range. The re- sults indicate that these materials are prom- ising candidates for development of mid-IR fiber lasers and amplifiers.		QMG2 • 1:45 p.m. Observation of Heavy Photon State in Ultrahigh-Q Photonic Crystal Coupled Resonator Chain, Eiicbi Kuramochi ^{1,2} , Takasumi Tanabe ^{1,2} , Hideaki Taniyama ^{1,2} , Masao Kato ^{1,2} , Masaya Notomi ^{1,2} , ¹ NTT Ba- sic Res. Laks, Japan, ² CREST-JST, Japan. Ul- trahigh-Q (10 ⁵ -10 ⁶) resonant modes of 10 sequentially coupled photonic crystal reso- nators are successfully demonstrated. Evalu- ated dispersion curves reveal a very small coupling factor (~0.0003), which corre- sponds to a very slow light mode.
	CMS3 • 2:00 p.m. 2-KW Average Power CW Phase-Conju- gate Solid-State Laser, Yuri A. Zakbarenkov, Todd O. Clatterbuck Vladimir V. Sbkunov, Alexandr A. Betin, David M. Filgas, Eric P. Ostby, Fritz P. Strobkendl, David A. Rockwell, Robert S. Baltimore; Raytbeon Corp., USA. We report the first demonstration of a kW-class CW-input solid- state phase-conjugate master oscillator, power amplifier system. The 2-kW Yb-YAG system included a 200 W loop phase-conju- gate miror, and it produced a nearly dif- fraction-limited output beam.	JMC2 • 2:00 p.m. Visible 2-Dimensional Photonic Crystal Laser, Zhaoyu Zhang ¹ , Tomoyuki Yoshie ² , Victor Liu ¹ , Ting Hong ¹ , Axel Scherer ¹ ; 'Caltech, USA, ² Duke Unit., USA. Visible 2- dimensional photonic crystal lasers were fabricated within membranes of InGaP/ InGaAIP quantum well material emitting around 670nm. These red photonic crystal lasers with ultra-small mode volumes (~ 0.01µm3) are ideally useful for spectroscopic sources.	CMT2 • 2:00 p.m. 1 mJ, Multi-kHz, Sub-500 fs Diode- Pumped Ytterbium Laser Amplifier, Mar- tin Delaigue ¹ , Inka Manek-Hönninger ¹ , Clemens Hönninger ² , Antoine Courjaud ² , Eric Mottay ² ; ¹ CELIA-PALA, France, ² Ampli- tude Systèmes, France. We demonstrate a directly diode-pumped Yb:KYW femtosecond laser amplifier with > 1 mJ pulse energy and pulse repetition rates higher than 5 kHz. The pulse duration was 480 fs and the M ² better than 1.2.	CMU2 • 2:00 p.m. Self-Referenced Yb-Fiber-Laser Fre- quency Comb Using a Dispersion Micromanaged Tapered Holey Fiber, Ingmar Hart ^B , Martin E. Fermann ¹ , Parama Pa ^P , Wayne H. Knox ² , 'IMRA America, Inc., USA, ² Inst. of Optics, USA. We simultaneously phase-lock the repetition frequency and carrier-envelope-offset frequency of a Yb- fiber laser CPA system to a stable RF refer- ence to demonstrate a Yb-fiber laser based frequency comb centered at 1040nm.	CMV2 • 2:00 p.m. Room-Temperature CW Lasing Charac- teristics in Photonic Crystal Nanolasers and Their Thresholdless Behavior, <i>Kengo</i> <i>Nozaki, Sbota Kita, Tosbibiko Baba;</i> <i>Yokobama Natl. Univ., Japan.</i> We report the detail of the ultralow threshold CW lasing characteristics in two types of photonic crys- tal nanolasers. The thresholdless behavior was obtained by a moderately low Q as well as the Purcell effect.	CMW3 • 2:00 p.m. Energy Transfer Analysis between Th ³⁺ and Yb ³⁺ Codoped in Silicate Glasses under the 0.98 µm Excitation, <i>Tatsuya</i> Yamasbita ^{1,2} , Yasutake Obisbi ¹ ; 'Toyota Technological Institute, Japan, ² Toyota Cen- tral R&D Labs Inc., Japan. The energy trans- fer efficiency as high as 68 % between Tb ³⁺ and Yb ³⁺ in Tb ³⁺ . Yb ³⁺ -codoped silicate glasses was obtained for green emission. The energy transfer mechanisms were ana- lyzed by rate equation formalism.		QMG3 • 2:00 p.m. Dispersion and Loss Limitation on the Performance of Optical Delay Lines Based on Coupled Resonant Structures, Jacob B. Khurgin; Johns Hopkins Univ., USA. Relative importance of group velocity dis- persion and loss in limiting performance of optical delay lines based on coupled reso- nator structures is investigated. Both factors play roughly comparable role for the bit rates of 2.5-40GBs.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	NOTES
C	ELS		CLEO		
1:30 p.m. – 3:15 p.m. QMH • THz and Other χ ² Effects <i>Chi H. Lee; Univ. of</i> <i>Maryland, USA, Presider</i>	1:30 p.m. – 3:15 p.m. QMI • Cavity QED II <i>Presider to Be Announced</i>	1:30 p.m. – 3:00 p.m. CMY • Photodetectors <i>Michael Krainak; NASA</i> <i>Goddard Space Flight Ctr.,</i> <i>USA, Presider</i>	1:30 p.m. – 3:15 p.m. CMZ • Optical Regeneration Scott A. Hamilton; MIT Lincoln Lab, USA, Presider	1:30 p.m. – 3:15 p.m. CMAA • Optical Manipulation of Cells Changhuei Yang; Caltech, USA, Presider	
QMH1 • 1:30 p.m. THZ Radiation from Optically-Induceet Magnetization in GaAs, Ryan W. Neuson Jens Hübner, Henry M. van Driel, Free Nastos, John E. Sipe; Univ. of Toronto Canada. A transient magnetization is in duced in a semiconductor via optical spi injection by 100 fs, 800 nm circularly polar ized pulses. The weak emitted THz radia tion is identified against that from a much stronger photogalvanic source.	QMI1 • 1:30 p.m. Invited Strong-Coupling Cavity QED with Nitrogen Vacancy Centers and Silica Microspheres, Hailin Wang, Young-Sbin Park, Yumin Shen, Ansrew Cook; Univ. of Oregon, USA. We report experimental dem- nostration of strong-coupling in a cavity QED system, in which nitrogen vacancy centers in diamond nanocrystals are coupled to whispering gallery modes in a deformed silica microsphere.	CMY1 • 1:30 p.m. Characterization of a Sub-THz Photonic Transmitter Based on a Separated-Trans- port-Recombination Photodiode, <i>Jin</i> . Wei Sbi ¹ , Yu-Tai L ² , Ci-Ling Pan ² , CH. Chiu ¹ , W S. Liu ¹ , JI. Cbyi ¹ ; ¹ Dept. of Electrical Engineering, Natl. Central Univ., Taiwan, ² Dept. of Photonics, Natl. Chaio Tung Univ., Taiwan. By incorporating low-temperature- grown GaAs based separated-transport-re- combination photodiode with micromachined antenna, such photonic- transmitter can radiate strong sub-THz waves at designed frequency (~500GHz) without using Si-lens. Problems of device saturation under high bias voltage were also elimi- nated.	CMZ1 • 1:30 p.m. Invited Regeneration Using an SOAMZI in a 100- Pass 10,000-km Recirculating Fiber Loop, Jade P. Wang ¹ , Shelhy J. Savage ¹ , Bryan S. Robinson ¹ , Scott A. Hamilton ¹ , Erich P. Ippen ² , Ruomei Mu ³ , Hongsbeng Wang ³ , Leo Spiekman ² , Boris B. Stefanov ³ , ¹ MT Lin- coln Lab, USA, ² MIT, USA, ³ Alpbion Corp., USA. We demonstrate all-optical regenera- tion in an SOA-MZI on a 10-Gb/s picosec- ond pulse train over 10,000 km in a 100-km recirculating loop. The bit-error rate after 100 loop-passes shows a 0.5-dB penalty.	CMAA1 • 1:30 p.m. Invited The Guiding Light: Holographic Manipu- lation of Mesoscopic Systems, David G. Grier, New York Univ., USA. Optical trapping offers exceptional control over matter rang- ing in scale from nanometers to millime- ters. This talk describes new applications for extensive three-dimensional optical trap- ping arrays created with computer-gener- ated holography.	
QMH2 • 1:45 p.m. Terahertz Field Induced Midinfrared Gain and Absorption in n-type GaAs Peter Gaal ¹ , Klaus Reimann ¹ , Michae Woerner ¹ , Thomas Elsaesser ¹ , Rudolf Hey ² Klaus H. Ploog ² ; ¹ Max-Born-Inst. Berlin Germany, ² Paul-Drude-Inst., Germany Ultrafast acceleration of free carriers in a strong THz field results in an oscillatory occurrence of midinfrared gain/Absorption with the LO phonon frequency. This quan tum kinetic phenomenon is studied in non linear THz-pump—midinfrared-probe ex periments.		CMY2 • 1:45 p.m. High Gain ZnO Nanowire Photo- transistor, Arthur Zhang, Cesare Soci, Bin Xiang, Jung Park, Deli Wang, Yu-Huva Lo; Univ. of California at San Diego, USA. We demonstrate the potential of nanowires as phototransistors with internal gain. Two-ter- minal single ZnO nanowire devices have been fabricated, which under UV illumina- tion, show high photoconductive gain (ap- proaching 10 ¹⁰) due to hole-trapping at sur- face states.			
QMH3 • 2:00 p.m. Invited Terahertz Difference Frequency Generat tion in Quantum Cascade Lasers, Mikhai A. Belkin ¹ , Federico Capasso ¹ , Alexep Belyanin ² , Deborah L. Sivco ³ , ¹ DEAS, USA ² Texas A&M, USA, ³ Bell Labs, USA. We dem onstrate intra-cavity terahertz difference-fre quency generation in quantum cascade la sers. A two-wavelength quantum cascade laser with monolithically integrated optica nonlinearity emitting at 7.6 and 8.7 µm was used to generate difference frequency at 62 µm.	QMI2 • 2:00 p.m. Normal Mode Splitting and Purcell En- hancement of Local Rayleigh Scattering in a Microsphere Resonator, Andrea Mazzei ¹ , Oliver Benson ¹ , Leonardo de S. Menezes ² , Stephan Götzinger ³ , Vahid Sandogbdar ³ ; 'Humboldt Univ. of Berlin, Germany, ² Univ. Federal de Pernambuco, Brazil, ³ ETH Zirich, Switzerland. Induced coupling between counterpropagating modes in a microresonator is studied under controllable conditions. Transition from weak to strong coupling is observed, simi- lar to coupled systems composed of a single atom and a single cavity mode.	CMY3 • 2:00 p.m. Silicon-Germanium p-in Photodetectors at Telecommunication Wavelengths Grown Directly on Silicon, Dyan Ali ¹ , Pbillip Thompson ² , Julius Goldbar ¹ , Joseph DiPasquale III ¹ , Cbristopher J.K. Richardson ¹ ; ¹ Lah for Physical Sciences, Univ. of Maryland, USA, ² NRL, USA. We re- port on Si-rich Si _{1-x} Ge, p-i-n waveguide de- tectors with responsivities greater than 0.74A/W at 1.3µm and 20K. We present two photodetector designs for 1.3µm detection on Silicon without virtual buffer relaxation layers.	CMZ2 • 2:00 p.m. Coherent Interference 2R Regeneration of Optical CDMA Based on MZI SOA, Tiago G. Silveira ¹ , Antonio Teixeira ² , Nobuyuki Kataoka ³ , Ana Ferreira ² , Naoya Wada ³ , Xu Wang ³ , Tetsuya Miyazake ³ , Paulo Monteiro ¹ ; ¹ SIEMENS SA, Portugal, ² Inst. de Telecomunicações, Portugal, ³ NICT, Japan. We demonstrate 2R regeneration using a SOA based MZI for OCDMA signal with dis- tortion caused by coherent Multiple Access Interference. Experimental regeneration of a 10 Gb/s OCDMA signal is achieved.	CMAA2 • 2:00 p.m. Optofluidic Transport in Liquid Core Photonic Crystal Fibers, <i>Sudeep Mandal,</i> <i>David Erickson; Cornell Univ., USA.</i> We de- scribe optofluidic transport of polystyrene spheres in liquid core photonic crystal fi- bers (LC-PCFs). The collection of particles into distinct bands is demonstrated and we report the first measurements of the veloc- ity distribution.	

	R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
May 7	CLEO	JOINT			CLEO			QELS
Monday, N	CMS • Cubic Nonlinearity and Applications— Continued	JMC • Integrated Nanophotonics—Continued	CMT • Ultrafast Parametric Amplification II—Continued	CMU • Femtosecond Fiber Oscillators and Applications—Continued	CMV • Semiconductor Photonic Crystal Lasers— Continued	CMW • Lasers and Laser Materials—Continued	CMX • Attosecond Metrology and Wavepacket Dynamics—Continued	QMG • Dispersion Engineering—Continued
	CMS4 • 2:15 p.m. Stability of Polarization Vortices in Self- Focusing Kerr Media, Amiel A. Isbaaya, Luat T. Vuong, Taylor D. Grou, Alexander L. Gaeta; Cornell Univ., USA. We investigate the collapse dynamics and polarization sta- bility of radially and azimuthally polarized vortex beams in Kerr media. The beams break up into distinct collapsing filaments with the initial local polarization distribu- tion being maintained.	JMC3 • 2:15 p.m. Photonic Crystal Surface Mode Laser, Hatice Altug ^{1,2} , Dirk Englund ¹ , Jelena Vuckovic ¹ ; ¹ Stanford Univ., USA, ² Boston Univ., USA, ¹ We demonstrated lasing from a high quality-factor photonic crystal surface mode, which brings several advantages for easy fabrication and efficient coupling. Tem- poral measurements indicate nearly ring- down time limited response.	CMT3 • 2:15 p.m. Ultrabroadband Femtosecond Con- tinuum Amplification in Crystals of Bis- muth Triborate, Ivailo Nikolov ¹ , Ivan Buchvarov ¹ , Frank Noack ² , Valentin Petrov ² , Pancho Tzankov ² , ¹ Sofia Univ., Bulgaria, ² Max-Born-Inst., Germany. Ultrabroadband amplification of white-light continuum in the near-IR (~100 THz, 1.2-2.4 µm) is demon- strated in BiB ₃ O ₆ , pumped by 45 fs long pulses at 800 nm, achieving an energy of 50 µJ at 1 kHz.	CMU3 • 2:15 p.m. 91 fs Pulses from an Yb-Doped Figure- Eight Fiber-Laser Dispersion Compen- sated with Higher-Order-Mode Fiber, Jef- frey W. Nicbolson, Siddbarth Rama- chandran, Samir Gbalmi; OFS Labs, USA. Modelocking in Yb-doped figure-eight fiber lasers is demonstrated utilizing dispersion compensation from a higher-order-mode module with anomalous dispersion. Pulses were compressed to 91 fs, the shortest dem- onstrated pulses for a Yb-doped figure-eight fiber laser.	CMV3 • 2:15 p.m. 60 MicroWatts of Fiber-Coupled Peak Output Power from an Edge-Emitting Photonic Crystal Heterostructure Laser, Ling Lu, Tian Yang, Adam Mock, Min Hsiung Sbib, Eui Hyun Huang, Mabmood Bagberi, Andrew Stapleton, Stepban Farrell, John O'Brien, P. Daniel Dapkus; Univ. of Southern California, USA. An array of double-heterostructure photonic crystal QW membrane lasers was fabricated in which number of cladding periods was varied. 60µW peak output power was collected from the facet of one device by a bare fiber.	CMW4 • 2:15 p.m. Confocal Micro-Fluorescence and Raman Spectroscopy across Grain Boundaries in Transparent Nd:YAG Ce- ramics Laser Gain Media, Mariola O. Ramirez, Adam Stevenson, Joe Stitt, Gary L. Messing, Venkatraman Gopalan, Pennsylva- nia State Univ., USA. Confocal Micro-Raman and Micro-Fluorescence studies have been performed on unetched Nd ³⁺ :YAG transpar- ent ceramic laser media. Evidence of Nd ³⁺ segregation at grain boundaries and the possibility of generating 3-D spatial map- ping across the sample are demonstrated.		QMG4 • 2:15 p.m. Optical Isolator/Polarizer Based on a Rectangular Waveguide with Helical Grooves, Gennady Sbvets, Simeon Trendafilov; Univ. of Texas at Austin, USA. Rectangular waveguide with slanted grooves in its sidewalls can be used as an optical isolator/polarizer due to the chirality effect. Even the crudest implementations of chirality are shown to exhibit high circular dichro- ism.
	CMS5 • 2:30 p.m. Nonlinear Diffractive Optical Elements, Ofer Manela, Mordechai Segev; Technion- Israel Inst. of Technology, Israel. We propose diffractive optical elements with spatially- varying nonlinear refractive index. As spe- cific examples, we study three types of non- linear Fresnel phase zone plates.	JMC4 • 2:30 p.m. Single Photon Source on Demand Based on Single-Colloidal-Quantum-Dot Fluo- rescence in Chiral Photonic Bandgap Liquid Crystal Hosts, <i>Luke J. Bissell, Zhimin</i> <i>Shi, Heedeuk Shin, Svellana G. Lukishova,</i> <i>Sean White, Robert W. Boyd, Carlos R.</i> <i>Stroud; Inst. of Optics, Univ. USA.</i> A single- photon source based on single CdSe quan- tum-dot fluorescence in a chiral-photonic- bandgap liquid-crystal host manifests itself in observed fluorescence antibunching. Chiral-photonic-bandgap structures will pro- vide deterministically handed, circular-po- larized fluorescence, even for emitters with- out a dipole moment.	CMT4 • 2:30 p.m. Tunable Phase-Stable Few-Optical-Cycle Visible Pulses by Parametric Amplifica- tion of a Self-Phase-Stabilized Seed, Cristian Manzoni, Dario Polli, Giovanni Cirmi, Daniele Brida, Sandro De Silvestri, Giulio Cerullo; Physics Dept., Politecnico di Milano, Italy. The passively phase-stabilized idler of an IR optical parametric amplifier is spectrally broadened and seeds a blue- pumped non-collinear optical parametric amplifier. Few-optical cycle phase-stable pulses with broad tunability in the visible are generated.	CMU4 • 2:30 p.m. Properties of All-Normal-Dispersion Femtosecond Fiber Lasers, Andy Chong, William H. Renninger, Frank W. Wise; Cornell Univ., USA. The behavior and per- formance of femtosecond fiber lasers with- out any anomalous dispersion in the cavity is presented. Experimental results agree with numerical simulations. 8-nJ and 210-fs pulses are generated, and significant performance improvements are expected.	CMV4 • 2:30 p.m. Radially Polarized Doughnut Beam Emit- ted by a Two-Dimensional Photonic- Crystal Laser, Kyosuke Sakai ¹⁷ , Kyoko Kitamura ¹ , Eiji Miyai ¹⁷ , Dai Obnisbi ^{1/2} , Wataru Kunisbi ^{1/2} , Susumu Noda ¹ ; ¹ Kyoto Univ., Japan, ² ROHM Co., Ltd., Japan. Di- rect generation of a radially polarized dough- nut beam from a single-chip semiconductor laser is demonstrated for the first time by using a two-dimensional photonic crystal, which leads to various super-resolution ap- plications in compact optical systems.	CMW5 • 2:30 p.m. Low-Loss Al ₂ O ₃ Waveguides for Active Integrated Optics, Kerstin Worboff, Jonathan DB Bradley, Feridun Ay, Markus Pollnau; Univ. of Twente, Netberlands. Re- actively co-sputtered amorphous aluminum oxide layers with low loss (0.11 dB/cm at NIR wavelength) have been fabricated. Channel waveguides with steep, smooth side walls have been etched by a dry process.	CMX2 • 2:30 p.m. Invited Rydberg Wavepacket Metrology and Dynamics, <i>Robert Jones; Univ. of Virginia,</i> <i>USA</i> . The ability to characterize and manipu- late Rydberg electron wavepackets is a key capability for exploiting their exagerated properties to investigate a variety of prob- lems, from time-dependent electron-electron correlation in atoms to quantum decoherence suppression.	QMG5 • 2:30 p.m. Far-Field Investigation of Slow-Light Propagating below the Light Cone in Planar Photonic Structures, Nicolas Le Thomas ¹ , Romuald Houdre ¹ , Lars H. Frandsen ² , Jacob Fage-Pedersen ² , Andrei Lavrinenko ² , Peter Bore ¹ ² ; ¹ Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland, ² COM.DTU, Denmark. A far- field technique is used to investigate the properties of optical waves propagating below the light cone in nanophotonic struc- tures. As an example, dispersion curves for slow-light in photonic crystal waveguides are retrieved.
	CMS6 • 2:45 p.m. Optical Limiting in Solid-Core Photonic Crystal Fibers, James J. Butler ¹ , Stacey R. Sueoka ¹ , Steven R. Montgomer ² , Steven R. Flom ³ , Richard G.S. Pong ³ , James S. Sbirk ³ , Thierry E. Taunay ³ , Barbara M. Wright ³ , Jonathan Hu ⁴ , Curtis R. Menyuk ⁴ , ¹ Pacific Univ., USA, ⁴ Univ. of Maryland, Baltimore County, USA, ⁴ Univ. of Maryland, Baltimore photonic crystal fibers filled with reverse- saturable absorbers has been observed. A sharp change in limiting threshold was found for materials in the fiber holes with refrac- tive indices near n = 1.44.	JMC5 • 2:45 p.m. Invited Near-Field Characterization of Plasmon Polariton Propagation along Periodi- cally Nano-Structured Metal Thin Films, J. C. Weeber, Univ. de Bourgogne, France. We operate a near-field optical microscope to investigate the properties of periodically nano-structured metal thin films designed to control at the micron scale the propaga- tion or the excitation of surface plasmon polaritons.	CMT5 • 2:45 p.m. Tunable 20 fs Red Pulses with up to 200 nJ Energy from a 2 MHz Yb-Doped Fi- ber Oscillator/Amplifier System, Chris- tian Scbriever, Stefan Lochbrunner, Eberbard Riedle; LS BioMolekulare Optik, LMU München, Germany. We demonstrate the efficient generation of 20 fs pulses tun- able from 700 to 950 nm in a noncollinear optical parametric amplifier pumped by 10µJ pulses at 1035nm with a repetition rate of up to 2MHz.	CMU5 • 2:45 p.m. Subpicosecond Soliton Outputs from an Entirely Normal-Dispersion Fiber Laser, Janet W. Lou ^{1,2} , Marc Currie ¹ , Fredrik K. Fatemi ¹ ; ¹ NRL, USA, ² SFA, Inc., USA. We ex- perimentally demonstrate chirped solitary pulses from an entirely normal dispersion mode-locked Yb-doped fiber laser. Using frequency-resolved optical gating, we study the pulse amplitude and phase before and after the mode-locker and after pulse com- pression.	CMV5 • 2:45 p.m. Experimental Observation of Band-Edge Lasing in Broad Planar 2-D Photonic Crystal Waveguides, Cyril Cambournac ¹ , Omer Kbayam ¹ , Melanie Ayre ¹ , Lucio Martinelli ¹ , Henri Benisty ¹ , Romain Brenof ² , F. Pommereau ² , F. Poingl ² , E. Derouin ² , O. Drisse ² , O. Le Gouezigou ² , L. Le Gouezigou ² , Guanghua Duan ² ; ¹ LCFIO, CNRS, Univ Paris-Sud, France, ² Alcatel-Tbalès III-V Lab, France. We report preliminary experiments on in-plane lasing in large-area planar 2-D photonic crystal waveguides used as open resonators. Lasing is attributed to an unex- pected feedback mechanism originating from Littrow diffraction at the photonic crys- tal walls.	CMW6 • 2:45 p.m. Ultraviolet Emission in Doped α-Nano- Alumina , <i>Samuel L. Oliveira, Bin Li, Stepben</i> <i>C. Rand; Univ. of Micbigan, USA</i> . Ultravio- let emission properties of Al ₂ O ₃ nanopowders with Mg, Cr, and Sc are in- vestigated. We show that in Sc-doped alu- mina, efficient UV-C luminescence can be achieved by minimizing color center con- centration and controlling the alumina phase.		QMG6 • 2:45 p.m. Observation of Fast and Slow Light in a Microsphere-Optical Fiber System, Kouki Totsuka, Makoto Tomita; Sbizuoka Univ., Japan. We observed both -8ns negative and 21ns positive delays in the optical pulse propagation through a microsphere-fiber system on the under and over coupling con- ditions, respectively, which are explained by a directional coupling theory.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	NOTES
QE	LS		CLEO		
QMH • THz and Other χ^2 Effects—Continued	QMI • Cavity QED II— Continued	CMY • Photodetectors— Continued	CMZ • Optical Regeneration—Continued	CMAA • Optical Manipulation of Cells— Continued	
	QMI3 • 2:15 p.m. Microcavities Using Holey Fibers, Scott Hendrickson, T. B. Pittman, J. D. Franson; Univ. of Maryland, Baltimore County, USA. Microcavities have been formed by placing mirrors on the ends of a short section of holey fiber. These microcavities may be use- ful for enhancing nonlinear effects at single- photon intensities.	CMY4 • 2:15 p.m. Si/SiGe-Based Photodiode on a Standard Silicon Substrate for 10-Gbit/s Short- Reach Fiber Communication at 830nm Wavelength, Y.S. Wu, Jin-Wei Sbi, Z.L. Li; Dept. of Electrical Engineering, Natl. Cen- tral Univ., Taituan. We report a Si/SiGe- based vertical-illuminated photodiode at 830nm wavelength. Wide 3-dB bandwidth (>10GHz), high responsivity (1.38A/W), and high output current (2.35mA) under ava- lanche operation can be achieved simulta- neously without using silicon-on-insulator (SOI) substrate.	CMZ3 • 2:15 p.m. Recirculating:Loop Study of Dispersion- Managed 2R Regeneration, Pallavi G. Patki ¹ , Veronika Stelmakb ¹ , Mutbiab Annamalai ¹ , Taras I. Lakoba ² , Micbael Vasilyev ¹ ; ¹ Univ. of Texas at Arlington, USA, ² Univ. of Vermont, USA. We develop an ul- tra-short recirculating loop that emulates a modified Mamyshev's regenerator comprised of multiple "nonlinear fiber + dispersion compensation" sections (1 loop = 1 section), and experimentally demonstrate eye-open- ing improvement by this regenerator.	CMAA3 • 2:15 p.m. Mega-Pixel Laser Chips of Photonic Quantum Ring Holes for Optical Ma- nipulation of Biological Cells, S. E. Lee, J. H. Yoon, J. K. Ku, O'Dae Kuron; Pobang Univ. of Science and Technology, Republic of Korea. We report on a new, simple, ef- fective and fast cell sorting method for mas- sive micro-manipulation of biological cells or small particles in microfluidic channel involving a sorter-on-mega photonic quan- tum ring (PQR) hole laser chip scheme.	
QMH4 • 2:30 p.m. Cerenkov THz Emission from Femtosecond Filamentation in Air, Aurélien Houard ¹ , Ciro D'Anico ¹ , Micbel Franco ¹ , Bernard Prade ¹ , Andre Mysyrowicz ¹ , Arnaud Couairon ² , Vladimir Tikbonchuk ³ ; ¹ Lab d'Optique Appliquée, ENSTA - Ecole Polytechnique, France, ² Ctr. de Polysique Théorique, CNRS, Ecole Polytechnique, France, ⁴ CELIA, Univ. Bor- deaux ¹ , France. We measure a strong for- ward THz emission from femtosecond fila- ments in air and we attribute it to a Ceren- kov emission from the ionization front mov- ing at superluminal velocity.	QMI4 • 2:30 p.m. Coupling of Single InAs Quantum Dots at 1.3µm to a Photonic Crystal Defect Cavity Mode, Laurent Balet ¹ , Marco Francardf ² , Annamaria Gerardino ² , Nicolas Chautin ¹ , Blandine Alloing ¹ , Carl Zinont ¹ , Christelle Monat ¹ , Lianbe H. Li ¹ , Nicolas Le Thomas ¹ , Romuald Houdré ¹ , Andrea Fiore ¹ , ² , 'Inst. of Photonics and Quantum Electronics, EPFL, Switzerland, ² Inst. of Photonics and Nanotechnology, CNR, Italy. We show coupling between single 1.3 µm InAs quantum dots (QDs) and photonic crys- tal nanocavities with quality factors up to 16500. We demonstrate increased sponta- neous emission rate for the first time in tele- communication wavelengths QDs.	CMY5 • 2:30 p.m. Germanium-on-SOI Photo-Detector Based on an FET Structure, Subal Sabni ¹ , Eli Yablonovitch ¹ , Jian Lin ² , Ya-bong Xie ² ; ¹ Dept. of Electrical Engineering, Univ. of California at Los Angeles, USA, ² Dept. of Materials Science and Engineering, Univ. of California at Los Angeles, USA. An integrated Ge-on-SOI photo-detector with an FET struc- ture, based on secondary photo-conductiv- ity is demonstrated. The Ge gate absorbs ~100nW of 1.55µm light, thereby modulat- ing the conductance of the Silicon channel by a factor of 25.	CMZ4 • 2:30 p.m. Phase Regeneration of DPSK Signals Based on Symmetric-Pump Phase-Sen- sitive Amplification in Bismuth Oxide Highly Nonlinear Fiber, Kevin A. Croussore, Guifang Ii, College of Optics and Photonics, Univ. of Central Florida, USA. Phase regeneration of a phase-noise de- graded NRZ-DPSK signal is demonstrated experimentally using a symmetric-pump phase-sensitive amplifier in bismuth oxide highly nonlinear fiber. Record phase-sensi- tive gain of more than 12 dB is obtained.	CMAA4 • 2:30 p.m. Circulating Optical Particle Trapping through the Integration of Fiber Optics and Microfluidics, J. Thomas Blakely, Reuven Gordon, David Sinton; Univ. of Victoria, Canada. A dual-fiber optic trap is integrated with microfluidics, and stable cir- culatory particle trapping is observed. The unique circulating and flow-dependant na- ture of the trap enables active microfluidic mixing as well as particle sorting and con- trol.	
QMH5 • 2:45 p.m. Enhanced Second Order Nonlinearity in AlGaAs Microring Resonators, Zhenshan Yang, Philip Chak, Rajiu Iyer, J. Stewart Aitchison, John Sipe; Univ. of Toronto, Canada. Second order nonlinear effects, such as second harmonic generation and parametric amplification, can be dramatically enhanced in microring resonator structures. The quasi-phase-matching is achieved based on the position dependence of polarization inside the ring resonator.	QMI5 • 2:45 p.m. Generation of Quantum Correlated Pho- ton Pairs from a Vertical Triple Microcavity, Carole Diederichs ¹ , Charles Leyder ¹ , David Taj ¹ , Jerome Tignon ¹ , Alberto Bramati ¹ , Elisabeth Giacohino ¹ , Cristiano Ciuti ¹ , Aristide Lemaître ² , Jacqueline Bloch ² , Philippe Roussignol ¹ , Claude Delalande ¹ ; ¹ Ecole Normale Supérieure, France, ² CNRS, France. We study the statistics of twin pho- tons emitted by a vertical triple microcavity. We measured the intensity correlations of the signal and idler by measuring the noise spectra. Quantum correlated photon modes are observed.	CMY6 • 2:45 p.m. Enhancing Infrared Photodetection with a Circular Metal Grating, Ravi D. R. Bbat ¹ , Nicolae C. Panoiu ¹ , Richard M. Osgood ¹ , Steven R. J. Brueck ² ; 'Columbia Univ., USA, ² Univ. of New Mexico, USA. We use finite-difference time-domain simulations to demonstrate enhanced infrared absorp- tion in a photodetector topped with a metal film having a hole and a circular grating. The enhancement far exceeds comparable linear gratings.	CMZ5 • 2:45 p.m. Using a Newly Developed Long-Period Grating Filter to Improve the Timing Tolerance of a 320 Gb/s Demultiplexer, Leifk. Oxenlowe ¹ , Michael Galili ¹ , Hans C.H. Multval ¹ , Palle Jeppsen ¹ , Radan Slavik ² , Josè Azana ³ , Yonguoo Park ³ ; ¹ COM-DTU, Den- mark, ² Inst. of Radio Engineering and Elec- tronics, Acad. of Sciences of the Czech Re- public, Czech Republic, ³ Inst. Natl. de la Re- cherche Scientifique—Éinergie, Matériaux et Télécommunications (EMT-INRS), Canada. A 0.8 ps flat top pulse is generated using a long-period fibre grating and used as con- trol pulse for the first time in a 320 Gb/s demultiplexer. The effect is an increased error-free timing tolerance.	CMAA5 • 2:45 p.m. Integrated, All-Optical, Particle Charac- terization and Sorting in Microfluidic Systems, Robert W. Applegate ³ , Jeff Squier ² , Tor Vestad ² , John Oakey ³ , David W. M. Marr ² , Pbilippe Bado ³ , Mark A. Dugan ² , Ali A. Said ³ ; ¹ Colorado School of Mines, USA, ² Metafluidics, USA, ³ Transhume Inc, USA. We demonstrate an integrated, microfluidic, all- optical characterization and sorting system. The integrated optical system is created by femtosecond micromachining, and the par- ticle manipulation is performed with a novel optical trapping system.	

ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
CLEO	JOINT			CLEO			QELS
CMS • Cubic Nonlinearity and Applications— Continued		CMT • Ultrafast Parametric Amplification II—Continued	CMU • Femtosecond Fiber Oscillators and Applications—Continued	CMV • Semiconductor Photonic Crystal Lasers— Continued	CMW • Lasers and Laser Materials—Continued	CMX • Attosecond Metrology and Wavepacket Dynamics—Continued	QMG • Dispersion Engineering—Continued
CMS7 • 3:00 p.m. Dynamics of Thermally Induced Opti- cal Bistability in Yb ³⁻ -Er ³⁺ Co-Doped Phosphate Glass Microspherical Lasers, Danny G. O'Sbea ^{1,2} , Jonathan M. Ward ^{2,3} , Brian J. Shortt ^{2,3} , Sile G. Nic Chormaic ^{1,2} , ¹ Univ. College Cork, Ireland, ² Tyndall Natl. Inst., Ireland, ³ Cork Inst. of Technology, Ire- land. We theoretically study and experimen- tally demonstrate thermally induced optical bistability in Yb ³⁺ -Er ³⁺ phosphate glass microspheres at 295K. Thermal avalanche in Yb ³⁺ ions is concomitant with bistability in Er ⁴⁺ fluorescence and lasing behavior, and chromatic switching.		CMT6 • 3:00 p.m. An 11-fs, 5-kHz Optical Parametric/ Ti:sapphire Hybrid Chirped Pulse Am- plification System, Xiangyu Zbou, H. Lee, T. Kanai, S. Adachi, S. Watanabe; Inst. for Solid State Physics, Japan. A high average power (1.5 W), 11-fs source has been de- veloped at 5 kHz by a non-collinear optical parametric/Ti:sapphire hybrid system with adaptive phase control.	CMU6 • 3:00 p.m. Optically Assisted Deposition of Carbon Nanotube Saturable Absorbers, <i>Jeffrey W.</i> <i>Nicholson; OFS Labs, USA</i> . We demonstrate a simple and practical method for incorpo- rating carbon nanotubes on the end-face of optical fibers enabled by optical radiation propagating in the fiber. Modelocking is shown in both Erbium and Ytterbium-doped fiber lasers.	CMV6 • 3:00 p.m. Single Mode Operation of Integrated Photonic Crystal Nanocavity Coupled Surface Emitting Lasers, Shib-Chieb Huang, Tsung-Hua Yang, Chien-Ping Lee, Sheng-Di Lin; Dept. of Electronics Engineer- ing, Natl. Chiao Tung Univ., Taiwan. We demonstrate integrated surface emitting la- sers with coupled photonic crystal nanocavities. Single mode emission with high Q factors was obtained with electrical pumping. Dual wavelength emission from two side-by-side photonic crystal nanocavities was also demonstrate.	CMW7 • 3:00 p.m. Nala(WQ,)₂ and NaY(WQ,)₂ Raman Con- verters for Picosecond Pulses, <i>Valdas</i> <i>Pasiskevicius¹</i> , <i>Stefan Bjursbagen¹</i> , <i>Maria D.</i> <i>Serrano²</i> , <i>Alberto García²</i> , <i>Mauricio Rico²</i> , <i>Carlos Zaldo²</i> ; <i>'Royal Inst. of Technology</i> , <i>Sweden, 'Inst. de Ciencia de Materiales</i> , <i>Spain</i> . Quasi-steady state SRS with 1.7 ps pulses is investigated in tetragonal NaY(WQ ₄) ₂ and NaLa(WQ ₄) ₂ crystals in the regimes of collinear and noncollinear SRS- assisted four-wave-mixing, Single-pass con- version efficiency of 31% is reported.	CMX3 • 3:00 p.m. Table Top Extreme Ultraviolet Hologra- phy, Przenysław W. Wachulak, Randy A. Bartels, Mario C. Marconi, Carmen S. Menoni, Jorge J. Rocca; Colorado State Uniw, USA. Table top holography with EUV laser was demonstrated. The hologram recorded in a photoresist was digitized with an AFM. The image was reconstructed achieving 380 nm spatial resolution determined using wavelet analysis and image correlation.	QMG7 • 3:00 p.m. Diffraction and Trapping of Light at the Interface between Two Discrete Media, Sergiy Suntsov ¹ , Konstantinos Makris ¹ , Demetrios Christodoulides ¹ , George Stegeman ¹ , Roberto Morandotti ² , Maite Volatier ¹ , Vincent Aimez ¹ , Richard Arès ¹ ; ¹ College of Optics and Photonics, CREOL and FPCE, USA, ² Univ. du Quebec, Canada, ³ Univ. de Sherbrooke, Canada. We have studied numerically and experimentally the linear diffraction and trapping of light at the hetero-interface between two different 1-D AlGaAs waveguide arrays. A new ⁻ breather ⁿ state guided by the interface was observed.

3:15 p.m. – 3:45 p.m. COFFEE BREAK, 300 LEVEL FOYER

NOTES

• Cavity QED II— inued • 3:00 p.m. • Polaritons at Room Tempera- Dielectric Microcavities Exhibit- bit-Splitting Exceeding QR>100 mathan R. Tischler, M. Scott Brad- ubiro Sbirasaki, Vladimir Bulovic; A. Exciton-Polaritons states are gen- th room temperature in planar sput- ed dielectric microcavities contain- mn thick film of J-aggregated dye as ic layer exhibiting Rabi-splitting > v and empty cavity Q factor > 700. 3:15 p.m 3	Fra- bit- 100 aad- wic; ren- g > 00. - 3:45 p.m.	C L E O CMZ • Optical Regeneration—Continued CMZ • 3:00 p.m. Experimental Demonstration of Optical Testbed with Label Rewriting, Bo Xiang, Xuqing Zbu, Haijun Yang, S. J. Ben Yoo; Def. of Electrical and Computer Engineer- ing, Univ. of California at Davis, USA. We demonstrate optical-ITL-based selective-3R regeneration in an OLS testbed with OLS routers, which intelligenty apply 3R only when necessary. The experiment achieves error-free operation with all-optical burst- node clock recovery.	CMAA • Optical Manipulation of Cells— Continued CMAA6 • 3:00 p.m. Fiber Optical Tweezers for Cell Manipu- lation and Force Sensing, Yuxiang Liu, Miao Yu; Univ. of Maryland, USA. We in- vestigated the cell manipulation using single and three-dimentional dual fiber tweezers. The effective spring constant of the dual fi- ber tweezers was obtained. This setup can be used to perform force sensing with sub- picoNewton resolutions.
• Cavity QED II— inued 3:00 p.m. • Polaritons at Room Tempera- Dielectric Microcavities Exhibito bi-Splitting Exceeding ΩR>100 mathan R. Tischler, M. Scott Brad- ubiro Shirasaki, Vladimir Bulovic; A. Exciton-Polaritons states are gen- ti room temperature in planar sput- ed dielectric microcavities contain- nm thick film of J-aggregated dye as ic layer exhibiting Rabi-splitting > 7 and empty cavity Q factor > 700. 3:15 p.m. – 3	era- bit- 100 <i>rad-</i> <i>wic;</i> ren- put- ain- e as g > 30. - 3:45 p.m. COFFEE BREAK, 30	CLEEO CMZ • Optical Regeneration—Continued CMZ • 3:00 p.m. Market Selective-3R in OLS Network Testbed with Label Rewriting, Bo Xiang, Xiqing Zbu, Haijun Yang, S. J. Ben Yoo; Popt. of Electrical and Computer Engineering, Unit, of California at Davis, USA we demonstrate optical-TTL-based selective-3R regeneration in an OLS testbed with OLS routers, which intelligently apply 3R ohives index clock recovery. DEVELENCE	CMAA • Optical Manipulation of Cells— Continued CMAA • 3:00 p.m. Tiber Optical Tweezers for Cell Manipu- Iation and Force Sensing, Yuxiang Liu, Miao Yu; Univ. of Maryland, USA. We in- vestigated the cell manipulation using single and three-dimentional dual fiber tweezers. The effective spring constant of the dual fi- ber tweezers was obtained. This setup can be used to perform force sensing with sub- picoNewton resolutions.
• Cavity QED II— inued 3:00 p.m. a-Polaritons at Room Tempera- Dielectric Microcavities Exhibit- bi-Splitting Exceeding ΩR>100 matban R. Tischler, M. Scott Brad- ubiro Sbirasaki, Vladimir Bulovic; A. Exciton-Polaritons states are gen- tt room temperature in planar sput- ed dielectric microcavities contain- nn thick film of J-aggregated dye as ic layer exhibiting Rabi-splitting > 7 and empty cavity Q factor > 700. 3:15 p.m 3	2ra- bit- 100 rad- vic; teen- put- ain- ain- ain- g > 300 3:45 p.m. COFFEE BREAK, 30	CMZ • Optical Regeneration—Continued CMZ • 3:00 p.m. Experimental Demonstration of Optical TL Based Selective-3R in OLS Network Testbed with Label Rewriting, Bo Xiang, Zuging Zhu, Haijun Yang, S. J. Ben Yoo, Det of Electrical and Computer Engineer- ing, Uni: of California at Daris, USA. We demonstrate optical-TTL-based selective-3R regeneration in an OLS testbed with OLS routers, which intelligently apply 3R only when necessary. The experiment achieves error-free operation with all-optical burst- mode clock recovery.	CMAA • Optical Manipulation of Cells— Continued CMAA • 3:00 p.m. The Optical Tweezers for Cell Manipu- tation and Force Sensing, Yuxiang Liu, Miao Yu; Univ. of Maryland, USA. We in- vestigated the cell manipulation using single and three-dimentional dual fiber tweezers. The effective spring constant of the dual fi- ber tweezers was obtained. This setup can be used to perform force sensing with sub- picoNewton resolutions.
• Cavity QED II— inued 3:00 p.m. n-Polaritons at Room Tempera- Dielectric Microcavities Exhibit- bi-Splitting Exceeding ΩR>100 mathan R. Tischler, M. Scott Brad- ubiro Shirasaki, Vladimir Bulovic; A. Exciton-Polaritons states are gen- tt room temperature in planar sput- ed dielectric microcavities contain- nm thick film of J-aggregated dye as ic layer exhibiting Rabi-splitting > ' and empty cavity Q factor > 700. 3:15 p.m. – 3	era- bit. 100 <i>ad- vic;</i> gen- put- e as g > 300. — 3:45 p.m. COFFEE BREAK, 30	CMZ • Optical Regeneration—Continued CMZ • 3:00 p.m. Kyerimental Demonstration of Optical The Based Selective-3R in OLS Network Testbed with Label Rewriting, Bo Xiang, Xiaqing Zhu, Haijun Yang, S. J. Ben Yoo; Deft. of Electrical and Computer Engineer- ing, Univ. of California at Davis, USA. We demonstrate optical-TTL-based selective-3R regeneration in an OLS testbed with OLS voters, which intelligently apply 3R only when necessary. The experiment achieves error-free operation with all-optical burst- mode clock recovery.	CMAA • Optical Manipulation of Cells— Continued Continue
3:00 p.m. n-Polaritons at Room Tempera- Dielectric Microcavities Exhibit- bi-Splitting Exceeding ΩR>100 matban R. Tischler, M. Scott Brad- ubiro Sbirasaki, Vladimir Bulovic; A. Exciton-Polaritons states are gen- tt room temperature in planar sput- ed dielectric microcavities contain- nn thick film of J-aggregated dye as ic layer exhibiting Rabi-splitting > 7 and empty cavity Q factor > 700. 3:15 p.m 3	era- bit- 100 <i>rad-</i> vic; tgen- put- ain- e as g > 00. - 3:45 p.m. COFFEE BREAK, 30	CMZ6 • 3:00 p.m. Experimental Demonstration of Optical TL Based Selective-3R in OLS Network Testbed with Label Rewriting, Bo Xiang, Zuging Zhu, Haijun Yang, S. J. Ben Yoo; Dept. of Electrical and Computer Engineer- ing, Univ. of California at Daris, USA. We demonstrate optical-TTL-based selective-3R regeneration in an OLS testbed with OLS routers, which intelligently apply 3R only when necessary. The experiment achieves error-free operation with all-optical burst- mode clock recovery.	CMAA6 • 3:00 p.m. Fiber Optical Tweezers for Cell Manipu- lation and Force Sensing, Yuxiang Liu, Miao Yu; Univ. of Maryland, USA. We in- vestigated the cell manipulation using single and three-dimentional dual fiber tweezers. The effective spring constant of the dual fi- ber tweezers was obtained. This setup can be used to perform force sensing with sub- picoNewton resolutions.
3:15 p.m. – 3	– 3:45 p.m. COFFEE BREAK, 30	0 LEVEL FOYER	

ľ	ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
				CLEO				QELS
	3:45 p.m. – 5:30 p.m. CMBB • Second Harmonic Generation Yujie J. Ding; Lebigh Univ., USA, Presider	3:45 p.m. – 5:30 p.m. CMCC • Nanoparticles and Rheology James Tunnell; Univ. of Texas at Austin, USA, Presider	3:45 p.m. – 5:30 p.m. CMDD • Nonlinear Ultrafast Propagation Presider to Be Announced	3:45 p.m. – 5:30 p.m. CMEE • Ultrashort Pulse Fiber Amplification Ingmar Hartl; IMRA America, Inc., USA, Presider	3:45 p.m. – 5:30 p.m. CMFF • GalnNAs and Interband Cascade and GaSb-Based Lasers Adrienne D. Stiff-Roberts; Duke Univ., USA, Presider	3:45 p.m. – 5:30 p.m. CMGG • Electro-Optic and Nonlinear Optic Materials A. H. Kung; Inst. of Atomic and Molecular Sciences, Taiwan, Presider	3:45 p.m. – 5:30 p.m. CMHH • Nonlinearities in Photonic Structures Jay E. Sbarping; Cornell Univ., USA, Presider	3:45 p.m. – 5:30 p.m. QMJ • Fundamentals of Metamaterials Evgenii Narimanov; Princeton Univ., USA, Presider
	CMBB1 • 3:45 p.m. Ultraviolet Second Harmonic Genera- tion in beta-BaB ₀ , Waveguides, <i>Riccardo</i> <i>Degl'Innocenti, Gorazd Poberaj, Peter</i> <i>Ginter, ETH Zirich, Inst. of Quantum Elec-</i> <i>tronics, Switzerland.</i> Continuous-wave UV laser light at 278 nm has been generated by optical second harmonic generation in β- BaB ₂ O, waveguides produced by He ⁺ ion implantation with 0.1 % W ⁺¹ conversion ef- ficiency.	CMCC1 • 3:45 p.m. Tutorial Microrheology and the Mechanics of Cells and Biopolymers, Scot Kuo; Johns Hopkins Univ., USA. Microrheology mea- sures the microscopic mechanical proper- ties of various materials, including cells and biopolymers. Current methodologies, includ- ing laser-based and video-based approaches, and their limitations will be discussed, with emphasis on biological applications.	CMDD1 • 3:45 p.m. Generation of 5fs, 0.7mJ Two-Cycle Pulses at 1kHz with CEP Controlled through Cascade Filamentation, Xiaowei Chen, Xiaofang Li, Jun Liu, Pengfei Wei, Ruxin Li, Zhizban Xu; Shangbai Inst. of Optics and Fine Mechanics, China. Two- cycle optical pulses with duration of 5fs and energy of 0.7mJ have been generated at 1kHz by compressing the 38fs output pulses directly from a CEP controlled Ti:sapphire laser system through cascade filament com- pression technique.	CMEE1 • 3:45 p.m. Bi ₂ O ₃ -Based Erbium Doped Double Core Fiber for Short Pulse Amplification, <i>Seiki</i> <i>Obara</i> , <i>Tatsuo Nagashima</i> , <i>Naoki Sugimoto</i> ; <i>Asabi Glass Co., Lid., Japan.</i> We have de- veloped Bi ₂ O ₃ -based Erbium doped double core fiber and demonstrate short pulse am- plification and compared with silica-based EDF. The short length of Bi ₂ O ₃ -based EDF shows highly nonlinear tolerance and su- perior short pulse amplification perfor- mances.	CMFF1 • 3:45 p.m. GalnNAs Distributed Feedback (DFB) Laser Diode, Jun-icbi Hashimoto, Kenji Koyama, Takashi Isbizuka, Yukibiro Tsuji, Kousuke Fuji, Takashi Yamada, Chie Fukuda, Yutaka Onisbi, Tsukuru Katsuyama; Sumitomo Electric Industries, Iud., Japan. First successful operation of a buried-ridge-type GalnNAs-DFB laser was realized. Under CW condition, it could os- cillate up to 110 °C with good I-L linearity and with SMSR > 40 dB.	CMGG1 • 3:45 p.m. Large-Angle, Low-Voltage Electro-Optic Beam Scanner by Kerr Effect and Space- Charge-Controlled Electrical Conduc- tion in KTa _{1x} Nb ₂ O ₉ , <i>Koicbiro Nakamura</i> , <i>Jun Miyazu</i> , <i>Masabiro Sasaura</i> , <i>Kazuo</i> <i>Fujiura</i> ; <i>NTT Photonics Labs</i> , <i>Japan</i> . An electro-optic beam scanner with an unprec- edented performance is demonstrated. Full deflection angle of 250 mrad has been achieved by applying only ±250 V to 0.5- mm-thick KTa _{1x} Nb ₂ O ₃ crystal with an inter- action length of 5.0 mm.	CMHH1 • 3:45 p.m. All-Optical Nonlinear Switching in Ac- tive Microdisks, <i>Kuldeep Amarnath</i> , <i>The</i> <i>Nan Ding, Ping-Tong Ho; Univ. of Maryland</i> , USA. We demonstrate all-optical pump-probe switching in electrically-pumped microdisks fabricated on InGaAsP/InP using gain-satu- ration optical non-linearity to achieve switch- ing at lower powers than in passive devices. A pseudo-microdisk design combines the best of microrings and disks.	QMJ1 • 3:45 p.m. Invited Fabrication and Characterization of a Negative-Index Photonic Metamaterial with Three Functional Layers, Stefan Lin- den', Gunnar Dolling', Martin Wegener', Costas M. Soukoulis', ¹ Univ. Karlsrube, Ger- many, ² lowa State Univ., USA. We report on the fabrication and characterization of nega- tive-index photonic metamaterials with up to three functional layers. The effective material properties of the photonic metamaterials do not change significantly with the number of functional layers.
	CMBB2 • 4:00 p.m. Observation of Second-Harmonic Gen- eration from Wurzite Al _x Ga _{1,x} N Multilayers in Reflection Geometry, Zban Fu ¹ , Yujie J. Ding ¹ , Jeremy D. Acord ² , Joan M. Reduring ² , 'Lebigb Univ., USA, ² Pennsylvania State Univ., USA. We have observed second-harmonic generation from Al _x Ga _{1,x} N multilayers in reflection geometry and measured the ratio between two ele- ments of the second-order susceptibility ten- sor.		CMDD2 • 4:00 p.m. Spatio-Temporal Structure of Sub-10-fs Pulses Generated in a Self-Compressed White-Light Filament, Stefan Skupin ¹ , Gero Stibenz ² , Luc Bergé ¹ , Falk Lederer ³ , Thomas Sokollik ³ , Mattbias Schnürer ² , Nickolai Zbavoronkov ² , Günter Steinmeyer ² ; ¹ Dept. de Physique Théorique et Appliquée, CEA/DAM, Ile de France, France, ² Max- Born-Inst., Germany, ³ Inst. for Condensed Matter Theory and Solid State Optics, Ger- many. Self-compression in white-light fila- ments offers a remarkably simple way for generation of multi-mJ pulses with sub-10- fs duration. We show that optimum com- pression is achieved at the verge of spatial and temporal break-up of the pulse.	CMEE2 • 4:00 p.m. Diffraction Limited Amplification of Pi- cosecond Pulses at 1.55 µm Wavelength to 14 kW Peak Power in a Single Stage Core-Pumped Er Fiber Amplifier, Jayesb C. Jasapara, Matt Andrejco, Jeff W. Nicbolson, Andrew D. Yablon; OFS Labs, USA. Amplification by >30-dB of 6-ps, 70-pJ pulses at 1.55-um wavelength in a core pumped single stage fiber amplifier consist- ing of a record 875-µm ² effective area Er- bium fiber generates record peak powers >14-kW with M ² -1.1.	CMFF2 • 4:00 p.m. Tunable Red Laser Emission by Intra- Cavity Frequency-Doubling of a GaInNAs VECSEL, Stepbane Caluez ¹ , Stepbanie Giel ¹ , Alan J. Kemp ¹ , Jennifer E. Hastie ¹ , Martin D. Dauson ¹ , Tomi Joubh ² , Janne Konttinen ² , Markus Pessa ² , ¹ Inst. of Pbotonics, Univ. of Strathclyke, UK, ² ORC, Tampere Univ. of Strathclyke, UK, ² ORC, ² Tampere Univ. of Strathclyke, ³ Tampere	CMGG2 • 4:00 p.m. Highly Electro-Optical Calcium Barium Niobate Thin Films, <i>Luca Razzari, Robin</i> Helsten, Marcello Ferrera, Paul F. Ndione, Mounir Gaidi, Cbristophe Durand, Hamid Chaker, Yonguvo Park, José Azaña, Roberto Morandotti; INRS-EMT, Canada. The r ₃₃ co- efficient of a Calcium Barium Niobate thin film is estimated using a single beam set- up. Our measures show that the value of r ₃₃ in this material is as large as 100 pm/V.	CMHH2 • 4:00 p.m. Integrated Optical Regenerator on a Sili- con Chip, Reza Salem, Mark A. Foster, Amy C. Turner, David F. Geraghy, Micbal Lipson, Alexander L. Gaeta; Cornell Univ., USA. We demonstrate all-optical regeneration in a sili- con device consisting of a nanowaveguide followed by an integrated bandpass filter. Nonlinear power transfer function was mea- sured showing the device can operate at peak powers < 5W.	

1	R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
				CLEO				QELS
l	CMBB • Second Harmonic Generation—Continued	CMCC • Nanoparticles and Rheology—Continued	CMDD • Nonlinear Ultrafast Propagation—Continued	CMEE • Ultrashort Pulse Fiber Amplification— Continued	CMFF • GalnNAs and Interband Cascade and GaSb-Based Lasers— Continued	CMGG • Electro-Optic and Nonlinear Optic Materials— Continued	CMHH • Nonlinearities in Photonic Structures— Continued	QMJ • Fundamentals of Metamaterials—Continued
	CMBB3 • 4:15 p.m. Widely Tunable SHG in a PPLN Using a Low Voltage, Francis Genereux ^{1,2} , Georges Baldenberger ¹ , Bruno Bourliaguet ¹ , Réal Vallée ² ; ¹ INO, Canada, ² Univ. Laval, Canada. We report a new technique based on domain inversions in x-cut LiNbO ₂ to tune the quasi-phasematching condition of a SHG process. The tuning range covers 58 nm with an applied voltage of ±150 V.		CMDD3 • 4:15 p.m. Invited Ultrafast Imaging of Wakefields, Michael Downer ¹ , N. Matlis ¹ , S. Kalmykov ¹ , G. Shvets ² , S. Reed ² , S. Bulanov ² , V. Chvykov ² , G. Kalintchenko ² , T. Matsuok ² , P. Rousseau ² , V. Yanotsky ² , A. Maksimchuk ² , ¹ Univ. of Texas at Austin, USA, ² Ctr. for Ultrafast Op- tics, Univ. of Michigan, USA. We report ho- lographic "snapshots" of laser-generated wakefields that capture transverse and lon- gitudinal structure of multiple wake per- ods, detect structure variations as laser- plasma parameters change, and resolve wavefront curvature, features never previ- ously observed.	CMEE3 • 4:15 p.m. Direct Amplification of 3-ps Pulses to 80 nJ at 50-MHz Repetition Rate in Large- Mode-Area Yb-Fiber, Dimitre G. Ouzounov, Shian Zbou, Charles K. Sinclair, Frank W. Wise; Cornell Univ., USA. We study direct picosecond pulse amplification in large-mode area, double-clad Yb-fiber am- plifier. We achieved good-quality 3-ps, 80- nJ pulses in a near diffraction-limited beam. 28-nJ pulses in the green (520 nm) are pro- duced by second-harmonic generation.	CMFF3 • 4:15 p.m. Invited Interband Cascade Lasers: From Con- cept to Devices and Applications, <i>Rui Q.</i> <i>Yang</i> ^{1,2} ; <i>JPL, USA, ²Caltech, USA.</i> The de- velopment of mid-infrared interband cascade lasers from concept to devices and applica- tions will be reviewed. Their current status and future prospects will be discussed.	CMGG3 • 4:15 p.m. Submerged Waveguide Constructed by the Implantation of ¹² C Ions in Electrooptic Crystals, Har'el Ilan, Alexander Gumennik, Roei Fatbei, Abaron J. Agranat; Hebrew Univ. of Jerusalem, Is- rael. Submerged slab waveguide was fabri- cated in a KLTN crystal. The waveguide was produced by the implantation of ¹² C ions at two energies, which created two cladding layers between which the guiding core is sandwiched.	CMHH3 • 4:15 p.m. Anisotropic Nonlinear Response of Sili- con in the Near-Infrared Region, Qiang Lin, Jidong Zhang, Giovanni Piredda, Rob- ert W. Boyd, Philippe M. Faucbet, Govind P. Agrawal; Univ. of Rochester, USA. We char- acterize experimentally the anisotropy of two-photon absorption and the Kerr nonlinearity in silicon over a broad spectral region.	QMJ2 • 4:15 p.m. Fundamental Causality and a Criterion of Negative Refraction with Low Optical Losses, Mark I. Stockman; Georgia State Univ., USA. From the fundamental causal- ity, we derive a rigorous criterion of nega- tive refraction imposing the lower limits on losses. If these losses are eliminated or sig- nificantly reduced by any means, then the negative refraction will disappear.
	CMBB4 • 4:30 p.m. Bandwidth Control of Second Harmonic Generation through Chirped Period Pol- ing of Optical Fibres, Albert Canagasabey, Costantino Corbari, Peter G. Kazansky, Morten Ibsen; Optoelectronics Res. Ctr., Univ. of Southampton, UK. Precise control of the bandwidth of second harmonic generation in silica fibres is realised through chirped period poling. The control of the acceptance bandwidth allows the frequency doubling of ultra-short pulsed laser sources.			CMEE4 • 4:30 p.m. 50-W Chirped-Volume-Bragg-Grating Based Fiber CPA at 1055-nm, Guoqing Chang ¹ , Chi-Hung Liu ¹ , Kai-Hsiu Liao ¹ , Vadim Smirnou ² , Leon Glebou ⁵ , Almantas Galvanauskas ¹ ; 'Univ. of Micbigan, USA, ²⁰ OptiGrate, USA, ³ CREOL, College of Optics and Photonics, Univ. of Central Florida , USA. 50-W average power fiber-CPA at 1055- nm is demonstrated using chirped-volume- Bragg-gratings for pulse stretching and com- pression. This compact pulse compression technology is efficient (83% compression efficiency in the current demonstration) and suitable for further power scaling.		CMGG4 • 4:30 p.m. Transparent Conducting Oxide (TCO) Electrode Based High-Speed Organic Electro-Optic (EO) Modulator, Shuai Wu ¹ , Fei Yi ¹ , Boyang Liu ¹ , Yingyan Huang ¹ , Seng- Tiong Ho ¹ , Yiliang Wang ² , Jun Liu ² , Hu Kang ² , Tobin J. Marks ² , Jingdong Luo ³ , Neil Tucker ³ , Alex K-y Jen ² , ¹ Dept. of Electrical Engineering and Computer Science, North- western Univ., USA, ² Dept. of Chemistry, Northwestern Univ., USA, ³ Dept. of Material Science and Engineering, Univ. of Mashing- ton, USA. A novel organic Mach Zehnder EO modulator using TCO as electrodes has been demonstrated. The simulation results show such structure is suitable for high fre- quency operation by engineering TCO ma- terial conductivity and loss.	CMHH4 • 4:30 p.m. Determination of Third-Order Disper- sion Coefficient and Observation of Soliton Radiation in Si-Wire Waveguides, I-Wei Hsieb', Xiaogang Chen', Jerry I. Dadap', Nicolae C. Panoiu', Richard M. Osgood', Sbaree J. McNab', Yurii A. Vlasou'; 'Columbia Univ., USA, 'IBM T. J. Watson Res. Ctr., USA. Utilizing strong nonlinearity and dispersion engineering in silicon-wire waveguides, we observe development of soliton radiation at high power and ultrashort pulses. With this observation, we investi- gate a novel way to determine the third- order dispersion coefficient.	QMJ3 • 4:30 p.m. Optical Magnetism, Samuel L. Oliveira, Stephen C. Rand; Univ. of Michigan, USA. Magnetic dipole radiation one fourth as in- tense as electric dipole radiation, as well as a novel nonlinear magneto-optical effect are reported in dielectric media.

R00M 337 R00M 338		R00M 339	R00M 340	R00M 341
QE	LS		CLEO	
QMK • Quantum Dots— Continued	QML • Quantum Key Distribution—Continued	CMII • Single Photon Detectors—Continued	CMJJ • Advanced Optical Receivers and Transmitters—Continued	CMKK • Timing Stabilization and Transfer— Continued
QMK3 • 4:15 p.m. Experimental Observation of Spontane- ous Two-Photon Emission from Semi- conductors, Alex Hayat, Meir Orenstein; Dept. of Electrical Engineering, Technion, Israel. We observe experimentally efficient spontaneous two-photon emission from semiconductors exhibiting wide two-pho- ton spectrum only 4 orders of magnitude lower than the intensity of single-photon emission. Blue shift is interpreted by k-de- pendence of the matrix element.	QML3 • 4:15 p.m. Unconditionally Secure One-Way Quan- tum Key Distribution Using Decoy States, James F. Dynes, Zhiliang L. Yuan, Andrew W. Sharpe, Andrew J. Shields; Toshiba Res. Europe Ltd., UK. Experimental one-way decoy quantum key distribution (QKD) is reported as a function of distance up to 25.3km. The high key rates obtained exceed one order of magnitude more than QKD performed without decoy pulse ex- change.	CMII2 • 4:15 p.m. High Uniformity, Stability, and Reliabil- ity Large-Format InGaAs APD Arrays, Xiucbeng Wu ¹ , Yonglin Gu ² , Feng Yan ² , Fow-Sen Choa ² , Peter Shu ³ ; ¹ Adtech Optics, USA, ² Univ. of Maryland, Baltimore County, USA, ³ NASA, USA. The characteristics of both etched mesa and guard ring type of InGaAs APD arrays were compared. High unifor- mity, high stability, and high reliability guard- ring type of arrays with a size up to 64x64 were fabricated.	CMJJ3 • 4:15 p.m. Simultaneous Balanced DPSK Demodu- lation of Multiple 40 Gbit/s WDM Chan- nels Using a Single Periodic FBG, Louis C. Christen ^{1,2} , Scot R. Nuccio ¹ , Yannick K. Lize ¹ , Alan E. Willner ¹ , Loukas Paraschais ³ ; ¹ Univ. of Southern California, USA, ² Nortbrop Grumman Space Technology, USA, ² Cisco Systems, USA. We demonstrate simultaneous balanced-DPSK-demodulation of six 40Gb/s WDM-channels using a single periodic-sampled fiber-Bragg-grating. The reflection\transmission spectrum serves as the constructive\destructive port of a de- lay-line-interferometer. We observe 0.5dB OSNR variation across the band of the FBG.	CMKK3 • 4:15 p.m. Multi-Octave Optical Coherence Span- ning Hundreds of Meters, Ian R. Coddington ¹ , Luca Lorini ¹ , William C. Swann ¹ , James C. Bergquist ¹ , Yann Le Coq ² , Chris W. Oates ¹ , Qudsia Quraisbi ¹ , Jason Stalnaker ¹ , Scott A. Diddams ¹ , Nathan R. Neubury ¹ , ¹ NIST, USA, ² LEMA, France. We demonstrate coherent transfer of optical sig- nals with radian level noise (in a 3.5 MHz bandwidth) through a series of laser sys- tems spanning from 657 nm to 1535 nm and several hundred meter distances.
QMK4 • 4:30 p.m. Resonance Fluorescence from a Semi- conductor Quantum Dot, Andreas Muller', Edward B. Flagg', Xiaoyong Wang', Chib-Kang Shib', Dennis G. Deppe', W. Ma', Jiayu Zbang', Gregory J. Salamo', Min Xiao'; 'Univ. of Texas at Austin, USA, 'Univ. of Cen- tral Florida, USA, 'Univ. of Arkansas, USA. Orthogonal optical detection and excitation of quantum dots embedded in a microcavity allows, for the first time, for background- free measurement of their resonance fluo- rescence. The spectra and photon statistics of single dots were obtained.	QML4 • 4:30 p.m. Quantum Key Distribution with High- Speed Superconducting Single-Photon Detectors, Robert H. Hadfield ¹ , Jonathan L. Habi ⁶ , Lijun Ma ¹ , Alan Mink ¹ , Xiao Tang ¹ , Sae Woo Nam ¹ ; ¹ NIST, USA, ² BBN Technolo- gies, USA. We explore the potential of high- speed nanowire superconducting single- photon detectors for quantum key distribu- tion in fiber, over long distances (at 1550 nm) and at high bit rates (at 850 nm).	CMII3 • 4:30 p.m. InGaAsP/InP Single Photon Avalanche Photodetectors for 1.06 μm Free-Run- ning Photon Counting, Mark A. Itzler ¹ , Xudong Jiang ¹ , Rafael Ben-Micbael ¹ , Krystyna Slomkouski ¹ , Micbael A. Krainak ² , Stewart Wu ² , Xiaoli Sun ² ; ¹ Princeton Lightwave Inc., USA, ² NASA Goddard Space Flight Ctr., USA. We demonstrate large-area InP-based single photon avalanche diodes capable of free-running operation at 1.06 um with dark count rates below 1000 Hz, detection efficiencies greater than 10%, and single photon count rates exceeding 1 MHz.	CMJJ4 • 4:30 p.m. Low-Loss S, C- and L-Band Differential Phase Shift Keying Demodulator, Yannick K. Lize ^{1,2,3} , Mathieu Faucher ⁴ , Érick Jary ¹ , Patrick Ouellette ¹ , Alexandre Wetter ¹ , Raman Kashyap ² , Alan E. Willner ³ ; 'ITF Labs, Canada, ³ Univ. of Southern Cali- fornia, USA. We developed an all-fiber de- lay-line interferometer DPSK demodulator for the S, C and L band with low insertion loss, low-birefringence and greater than 20dB of extinction ratio from 1460nm to 1640nm in a single device.	CMKK4 • 4:30 p.m. Attosecond Timing Jitter Actively Modelocked Semiconductor Fiber Ring Laser with Normal Net Cavity Disper- sion, Sangyoun Gee ¹ , Sarper Ozbarar ¹ , Franklyn Quinlan ¹ , Peter Delfyett ¹ , Jason Plant ² , Paul Juodazulkis ² ; 'CREOL, College of Optics, Univ. of Central Florida, USA, ² Lin- coh Lah, MTT, USA. We report the genera- tion of optical pulse trains with timing jitter of 770 attosecond (1 Hz -10 MHz) and 17.5 Is (extrapolated to Nyquist frequency) from a modelocked laser, using slab coupled optical waveguide amplifier.

NOTES

ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
			CLEO				QELS
CMBB • Second Harmonic Generation—Continued	CMCC • Nanoparticles and Rheology—Continued	CMDD • Nonlinear Ultrafast Propagation—Continued	CMEE • Ultrashort Pulse Fiber Amplification— Continued	CMFF • GalnNAs and Interband Cascade and GaSb-Based Lasers— Continued	CMGG • Electro-Optic and Nonlinear Optic Materials— Continued	CMHH • Nonlinearities in Photonic Structures— Continued	QMJ • Fundamentals of Metamaterials—Continued
CMBB5 • 4:45 p.m. Thermal Managements for Highly Effi- cient SHG with Linear Input/Output Characteristics Using Periodically Poled Stoichiometric LTIAO ₃ , <i>Hideki Hatano^{1,2}</i> , <i>Shunji Takekawa^{1,2}</i> , <i>Sunao Kurimura¹</i> , Oleg A. Louchev ³ , <i>Kenji Kitamura^{1,2}</i> , ¹ Natl. Inst. for Materials Science, Japan, ³ WING, Japan, ³ Megaopto Co., Ltd., Japan. We demonstrate increased SHG efficiency in periodically- poled near-stoichiometric LTIAO ₃ for 532nm emission at high power density (>1x10 ⁹ W/ cm ²) by compensating temperature nonuniformity along the beam propagation using two-zone temperature control.	CMCC2 • 4:45 p.m. Molecular Imaging of EGFR Expression in Live Cancer Cells Using Immuno	CMDD4 • 4:45 p.m. Angle-Dispersion Compensation of Mul- tiple CARS Signals in LiNbO ₃ towards Extremely-Short Optical Pulse Genera- tion, Eiicbi Matsubara ^{1,2} , Ryuji Morita ^{1,2} , Taro Sekikawa ^{1,2} , Mikio Yamasbita ^{1,2} , ¹ Hokkaido Uniw., Japan, ² Japan Science and Technology Agency (CREST), Japan. We demonstrated angle-dispersion compensa- tion of multiple coherent anti-Stokes Raman- scattering (CARS) signals from a noncollinearly-pumped LiNbO ₃ crystal by modifying a conventional 4-f configuration. The beam of CARS signals up to the 20th- order was within sub-mrad divergence.	CMEE5 • 4:45 p.m. High Average Power, High Energy, Femto-second Fiber Chirped Pulse Am- plification System, Fei He', Jonathan H. V. Price', Andrew Malinouski', Andy Piper', Morten Ibsen', David J. Ricbardson', Jay W. Dauson', Craig W. Siders', Jerald A. Britten? (Dristopher P. J. Barty', 'Optoelectronics Res. Cir., Univ. of Southampton, UK, 'LLNI, USA. We have demonstrated an Yh-fiber laser sys- tem incorporating a CFBG stretcher, band- width optimised amplifiers and dielectric grating compressor. The system produced 135W average power with pulse energy of 13.5µJ. The recompressed pulse duration was 360fs.	CMFF4 • 4:45 p.m. CW, High Power, Single-Longitudinal- Mode Operation of an Optically Pumped Mid-IR DFB Laser, <i>Liang Xue'</i> , <i>Steven Roy</i> <i>Julien Brueck'</i> , <i>Ron Kaspi²</i> , ¹ Ctr. for Higb <i>Technology Materials</i> , Univ. of New Mexico, USA, ² AFRL, Directed Energy Directorate, USA A CW, single-longitudinal-mode, opti- cally pumped mid-IR distributed-feedback antimonide-based type-II quantum-well la- ser at 3.62 µm is demonstrated. Record high output powers, > 300 mW per side, and tunability of 5.5 nm are obtained at 77 K.	CMGG5 • 4:45 p.m. Higher Raman Scattering Cross-Sec- tions, Bandwidths and Nonlinear Indi- ces in the TeO ₂ -ZnO-Nb ₂ O ₅ -Mo ₂ O ₃ Quarternary Glass System, <i>Rajan Jose</i> , <i>Yasutake Obisbi</i> , <i>Toyota Technological Inst.</i> , <i>Japan</i> . We engineered a new quaternary glass system, TeO ₂ -ZnO-Nb ₂ O ₅ -Mo ₂ O ₃ , with higher linear and nonlinear indices, Raman gain coefficient and gain bandwidth, and third order optical susceptibility and is re- ported herewith.	CMHH5 • 4:45 p.m. Spectral Measurements of the Third-Or- der Nonlinearity of Bulk Silicon in the near Infrared Region, Jidong Zhang, Qiang Lin, Giovanni Piredda, Robert W. Boyd, Govind P. Agrawal, Philippe M. Fauchet; Univ. of Rochester, USA. We report the first detailed characterization, to the best of our knowledge, of wavelength depen- dence of two-photon absorption and the Kerr nonlinearity in silicon over a spectral range extending from 1.2 to 2.4 µm.	QMJ4 • 4:45 p.m. Chiral Photonic Metamaterial, Vassili A. Fedotov ¹ , Eric Plum ¹ , Yifang Chen ² , Alexander S. Schwanecke ¹ , Nikolay I. Zbeludeu ¹ ; ¹ Optoelectronics Res. Ctr., Univ. of Soubampion, UK, ² Central Microstructure Facility, Rutberford Appleton Lab, UK. We demonstrate novel chiral photonic metamaterials consisting of physically sepa- rated mutually twisted planar metal patterns in parallel planes. Such metamaterials are shown to exhibit very strong gyrotropy (600 ^o /mm) in the visible, near-IR and mi- crowaves.
CMBB6 • 5:00 p.m. Broadband Frequency Doubling in Unpoled SBN Crystals in the Thermal Focusing Regime, Robert Fischer, Solomon M. Saltiel, Dragomir N. Nesbev, Wieslaw Krolikowski, Yuri S. Kitsbar, Australian Natl. Univ., Australia. We study experimentally broadband noncollinear second-harmonic generation in unpoled Strontium Barium Niobate crystals. We show the effects of ther- mal self-focusing on the parametric conver- sion, including spatial localization of the second-harmonic, increased efficiency, and spectral broadening.	CMCC3 • 5:00 p.m. Measuring Gold Nanoparticle Concen- trations in Tissue Using Diffuse Optical Spectroscopy, Raiyan T. Zaman ¹ , Parmeswaran Diagaradjane ² , Sunil Krishnan ² , James W. Tunnell ¹ ; ¹ Univ. of Texas at Austin, USA, ² Radiation Oncology, MD Anderson Cancer Chr., USA. We devel- oped diffuse optical spectroscopy (DOS) to non-invasively measure gold nanoparticle concentrations within tissue. We demonstrate DOS's accuracy to quantify nanoparticle concentrations using tissue phantoms and an in vivo murine model.	CMDD5 • 5:00 p.m. Pulse Polarization Splitting in a Tran- sient Wave Plate, <i>Klaus K. Hartinger,</i> <i>Randy A. Bartels; Colorado State Univ., USA.</i> We demonstrate propagation of ultrafast la- ser pulses through a molecular gas acting as a transient wave plate under conditions of strong phase modulation. A single, lin- early polarized pulse is split into two dis- tinct laser pulses.	CMEE6 • 5:00 p.m. High Quality Fiber CPA-System at a B- Integral of 16, Damian N. Schimpf ¹ , Doreen Miller ¹ , Steffen Hädrich ¹ , Fabian Röser ¹ , Jens Limpert ¹ , Andreas Tünnermann ¹ , ² , ¹ Inst. of Applied Physics, Germany, ² Fraunbofer Inst. for Applied Optics and Precision Engineer- ing, Germany, We report on a CPA-system in which degradation of pulse profile due to fiber-nonlinearity is avoided by shaping the spectrum using a spatial light modula- tor. Clean recompressed pulses are obtained at a B-integral of 16.	CMFF5 • 5:00 p.m. Pulsed Pumping of a 2.3µm InGaAsSb Semiconductor Disk Laser, Nils Hempler ⁷ , Jobn-Mark Hopkins ⁷ , Alan Kemp ¹ , Nico Sbultz ² , Marcel Rattunde ² , Joacbim Wagner ³ , Martin Dauson ¹ , David Burns ¹ , 'Inst. of Photonics, UK, 'Fraunbofer Inst. fuer Angewandte Festkoerperphysik, Germany. ~1.7W output power at 2.3µm is demon- strated from a semiconductor disk laser pumped by a 905nm high-power pulsed semiconductor laser. The thermal character- istics and wavelength shift are studied over the 100-200ns pump pulse.	CMGG6 • 5:00 p.m. Solvent-Casting of Photo-Refractive Chalcogenide Glasses and Their Appli- cations in Quantum Cascade Laser Tun- ing, Shanshan Song, Claire F. Gmachl, Craig B. Arnold; Princeton Univ., USA. We depos- ited photo-modifiable chalcogenide films through a low-temperature, solvent-casting technique. Their thermal and optical prop- erties were characterized and these glasses were applied to Quantum Cascade lasers to realize all-optical room temperature tuning.	CMHH6 • 5:00 p.m. Pulse Compression and Modelocking by Using TPA in Silicon Waveguides, En- Kuang Tien, Nub S. Yuksek, Feng Qian, Ozdal Boyraz; Univ. of California at Irvine, USA. We demonstrate a novel broadband pulse compression and modelocking scheme in silicon waveguides. Experimen- tally we obtain 25 fold pulse compression and 400ps modelocked pulses. Results are limited by the RC time constant of the di- ode.	QMJ5 • 5:00 p.m. Nano-Spheres Dispersed Nematic Liquid Crystals for Broadband Tunable Nega- tive-Zero-Positive Index Materials, Iam- Choon Khoo, Andres Diaz; Pennsylvania State Univ., USA. It is demonstrated that by introducing gain and nano-spheres in aligned nematic liquid crystals, one can de- sign metamaterials which possess broadband tunable negative-zero-positive index with relatively low loss compared to other mate- rial systems.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QI	ELS		CLEO	
QMK • Quantum Dots— Continued	QML • Quantum Key Distribution—Continued	CMII • Single Photon Detectors—Continued	CMJJ • Advanced Optical Receivers and Transmitters—Continued	CMKK • Timing Stabilization and Transfer— Continued
QMK5 • 4:45 p.m. Quantum Efficiency of Self-Assembled Quantum Dots Determined by a Modi- fied Optical Local Density of States, Jeppe Johansen ¹ , Søren Stobbe ¹ , Ivan S. Nikolaet ²⁻³ , Toke Lund-Hansen ¹ , Pbilip T. Kristensen ¹ , Jørn M. Hvam ¹ , Willem L. Vos ³⁻³ , Peter Lodabl ¹ , ¹ Tecbnical Univ. of Denmark, Den- mark, ² FOM Inst. for Atomic and Molecular Physics, Netberlands, ³ Complex Photonic Systems, MESA+ Res. Inst., Univ. of Tuente, Netberlands. We have measured time-re- Solved Spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum ef- ficiency and the dipole moment, important for quantum optics.	QML5 • 4:45 p.m. Toward All Semiconductor Quantum Repeaters, Hideo Kosaka ¹ , ² , Hideki Shigyo ¹ , Takeshi Kutsuwa ² , Yosbiaki Rikitake ³ , Hiroshi Imamura ³² , Yasuyoshi Misumori ¹² , Keiichi Edamatsu ¹ ; ¹ Toboku Univ., Japan, ² CREST-JST, Japan, ³ AIST, Japan. Determin- istic quantum state transfer from a photonic qubit to an electron spin qubit is crucial for building all semiconductor quantum repeat- ers. We present the coherent state prepara- tion of electron spins imprinted from the photon polarization.	CMII4 • 4:45 p.m. Invited Demonstration of a Wavelength-Con- verter-Based 1550-nm Photon-Counting Receiver with Better than 2 Incident Photon/Bit Sensitivity, Matthew E. Grein', Laura E. Elgin', Bryan S. Robinson', Scott A. Hamilton', Don M. Boroson', Carsten Langock ² , Martin M. Fejer ² ; ¹ MIT Lincoln Lab, USA, ² Stanford Univ., USA. We imple- mented a photon-counting optical receiver at 1550nm with periodically-poled lithium niobate and a silicon Geiger-mode avalanche photodiode. We measured a sensitivity of 1.9 incident photon/bit at 18.8 Mb/s for a single detector.	CMJJ5 • 4:45 p.m. Automatic All-Optical Detection in Po- larization-Division-Multiplexing System Using Power Unbalanced Transmission, Liansban Yan', Bo Zbang ^{1,2} , A. Belisle ¹ , Alan Willner ² , X. Steve Yao ¹ ; ¹ General Pbotonics Corp., USA, ² Unit. of Southern California, USA. We demonstrate a novel, automatic all- optical detection scheme in a polarization- division-multiplexing system using power unbalanced transmission. Concept proof with >30-dB ER between orthogonal polar- ization states and 1.12-Tb/s (14x2x40-Gb/s) PDM transmission over 62-km link is dem- onstrated.	CMKK5 • 4:45 p.m. Long-Term Stable Microwave Signal Ex- traction from Mode-Locked Lasers, Jungton Kim ¹ , Frank Ludwig ² , Mattbias Felber ² , Holger Schlarb ⁷ , Franz Kärtner ¹ ; ¹ MIT, USA, ² DESY, Germany. Long-term syn- chronization [13-fs (10 Hz-10 MHz), <50 fs (for one hour)] between two 10.225-GHz microwave signals at +10 dBm referenced to a 44-MHz repetition rate mode-locked fi- ber laser is demonstrated using balanced optical-microwave phase detectors.
QMK6 • 5:00 p.m. Dptical-Fiber-Based Probing of Semicon- fuctor Microcavity-Quantum-Dot Sys- tems at Cryogenic Temperatures, <i>Kartik</i> <i>Srinivasan</i> , Oskar Painter; Caltech, USA. Ultrasmall volume ($V_{eff} \sim 2.6(\lambda/n)^3$) microdisk with embedded quantum dots are studied it cryogenic temperatures through an opti- cal fiber taper waveguide probe, and high- resolution cavity mode wavelength tuning by nitrogen gas adsorption is investigated.	QML6 • 5:00 p.m. Complete Physical Simulation of the Entangling-Probe Attack on the BB84 Protocol, Taebyun Kim, Ingo Stork genannt Wersborg, Franco N. C. Wong, Jeffrey H. Sbapiro; MIT, USA. We have implemented the most powerful individual-photon attack against the Bennett-Brassard 1984 quantum key distribution protocol. Our measurement results are in good agreement with theo- retical predictions for the eavesdropper's R'enyi information.		CMJJ6 • 5:00 p.m. Polarization-Based 43 Gb/s RZ-DQPSK Receiver Design Employing a Single Delay-Line Interferometer, <i>Louis C. Cbris-</i> <i>ten, Scott R. Nuccio, Xiaoxia Wu, Alan</i> <i>Willner; Univ. of Southern California, USA.</i> We demonstrate a polarizaton-based DQPSK-receiver design requiring only one delay-line-interferometer. Demodulation of 43-Gb/s RZ-DQPSK is experimentally dem- onstrated with no penalty compared to a traditional receiver using two interferom- eters. Receiver alignment tolerances are quantified via simulation.	CMKK6 • 5:00 p.m. Ultralow-Litter Passive Timing Stabiliza- tion of a Mode-Locked Fiber Laser by Injection of Reference Pulses, Dai Yoshiomi', Yobei Kobayashi', Masayuki Kakebata', Hideyuki Takada', Kenji Torizuka', Taketo Onuma', Hideki Yokoi', Takuro Sekiguchi', Sbinki Nakamura'; 'Natl. Inst. of Advanced Industrial Science and Technology (AIST), Japan, 'Sbibaura Inst. of Technology (JAST), Japan, 'Sbibaura Inst. of Technology (JAST), Japanki Univ., Japan. Passive timing stabilization of Er-doped fi- ber laser was demonstrated by injection of reference pulses, resulting in a timing jitter of 3.7 fs in a frequency range from 1Hz to 100 kHz.

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
			CLEO				QELS
CMBB • Second Harmonic Generation—Continued	CMCC • Nanoparticles and Rheology—Continued	CMDD • Nonlinear Ultrafast Propagation—Continued	CMEE • Ultrashort Pulse Fiber Amplification— Continued	CMFF • GalnNAs and Interband Cascade and GaSb-Based Lasers— Continued	CMGG • Electro-Optic and Nonlinear Optic Materials— Continued	CMHH ● Nonlinearities in Photonic Structures— Continued	QMJ • Fundamentals of Metamaterials—Continued
CMBB7 • 5:15 p.m. Three-Primary-Color Laser Efficiently Generated from the Second Harmonic Emission of a Nd;YAG Laser, <i>Teppei</i> Sotoda, Sbin-icbi Zaitsu, Totaro Imasaka; Kyusbu Uniw., Japan. A three-primary-color laser is generated by frequency conversion of the second harmonic emission of a Nd;YAG laser by means of stimulated Raman scattering (SRS) and subsequent four-wave Raman mixing (FWRM) in molecular deute- rium.	CMCC4 • 5:15 p.m. Molecular Imaging Using CdSe/ZnS/ Lipid Quantum Dots as Contrast Agents of Third Harmonic Generation Micros- copy, Sbib-Peng Tai', Che-Hang Yu ¹ , Choa- Yu Chen ² , Fu-Hsiung Chang ² , Chi-Kuang Sun ¹ ; (² raduate Inst. of Electro-Optical En- gineering, Natl. Taiwan Univ., Taiwan, ² Craduate Inst. of Biochemistry and Molecularbiology, Natl. Taiwan Univ., Tai wan. We demonstrate molecular-specific third-harmonic-generation microscopy in cultured Hela cells and hamster oral cavity by using CdSe/ZnS/lipid quantum dots as contrast agent.	CMDD6 • 5:15 p.m. High-Order Enhancement of Multi-Fre- quency Raman Generation in a Hollow Fibre, Fraser C. Turner, Doma Strickland; Univ. of Waterloo, Canada. Stimulated Raman scattering with resonant pumping can produce coherent bandwidths spanning the visible spectrum. By balancing the disper- sion of the Raman-active gas with that of a hollow waveguide, the anti-Stokes orders are greatly enhanced.	CMEE7 • 5:15 p.m. Chirped-Pulse Amplification near the Gain-Narrowing Limit of an Yb-Doped Fiber Amplifier Using a Reflection Grism Compressor, Lyuba Kuznetsova ¹ , Frank W. Wise ¹ , Steve Kane ² , Jeff Squier ² , 'Dept. of Applied and Engineering Physics, Cornell Univ., USA, 'HORIBA Jobin Yvon, Inc., USA, 'Dept. of Physics, Colorado School of Mines, USA. Chirped-pulse amplification near the Yb gain-narrowing limit is studied numeri- cally and experimentally. An inhomoge- neous gain lineshape is consistent with ex- periments. With a grism compressor, trans- form-limited 120-fs pulses are generated with energy up to 0.7 μJ.	CMFF6 • 5:15 p.m. Resonant In-Well Pumping of GaSb- Based VECSELS Emitting in the 2.X µm Wavelength Regime, Nicola Schulz ¹ , Marcel Rattunde ¹ , Cbristian Manz ¹ , Klaus Köbler ¹ , Joachim Wagner ¹ , John-Mark Hopkins ² , David Burns ² , 'Fraunbofer Inst. for Applied Solid State Physics, Germany, ² Inst. of Photonics, Univ. of Stratbclyde, UK. We report on the epi-layer design and las- ing characteristics of GaSb-based VECSELS emitting at 2.35µm optimized for resonant optical in-well pumping around 1.95µm. Compared to conventional barrier-pumped devices, the power conversion efficiency is significantly increased.	CMGG7 • 5:15 p.m. Optical Properties and Structural Tran- sitions in Ge-As-Se Glasses, Barry Luther- Davies, Zha Congji, Amrita Prasad, Anita Smith; Australian Natl. Univ., Australia. The optical and structural properties of Ge-As- Se glasses have been studied using Raman, UV-Vis-IR, Z-scan and DSC techniques, and the effect of composition on structural tran- sition, optical band gap and nonlinearity is described.	CMHH7 • 5:15 p.m. Two-Dimensional Nonlinear Photonic Crystal in KTiOPO ₄ for CW Second Har- monic Blue Light Generation, Carlota Canalias, Mats Nordlöf, Valdas Pasiskevicius, Fredrik Laurell, Royal Inst. of Technology, Sueden. We report on fabrica- tion and characterization of a nonlinear photonic crystal with a rectangular lattice in a KTiOPO ₄ crystal. The structure was used to demonstrate CW tunable second har- monic generation in the blue regime.	QMJ6 • 5:15 p.m. Doubly Negative Metamaterials with Subwavelength Unit Cells in Visible and Near Infrared, Vitaliy Lomakin ¹ , Yashayabu Fainman ¹ , Yaroslav Urzbumor ² , Gennady Sbvets ² ; 'Univ. of California at San Diego, USA, ² Univ. of California at San Diego, USA, ² Univ. of Texas at Austin, USA. A doubly negative metamaterial that can be tuned to operate in the visible and near in- frared spectra, comprises deeply subwavelength periodic unit cells, and can be manufactured easily is presented. The underlying physics is elucidated.

5:30 p.m. – 6:00 p.m. DINNER BREAK (on your own)

6:00 p.m. - 9:00 p.m. CLEO/PhAST PLENARY SESSION, Ballrooms III/IV

OF LS C LE G Horn - Contract (C) OF CONTRACT (C) DATA - Contract (C) C LE G OF LS D. C LE G OF CONTRACT (C) DATA - Contract (C) C LE G Distribution - Contract (C) DATA - Contract (C) C LE G <pc g<="" le="" p=""> C LE G <pc g<="" le="" p=""> <pc g<="" le="" p=""> <pc g<="" le="" p=""></pc></pc></pc></pc>	OELS CLED OWK- Quantum Dots- Continued DML - Quantum Key Distribution-Continued CLED OWK- Starten Dots- Continued DML - Quantum Key Distribution-Continued CML - Advanced Optical Reserver and the provide of the provide starten de la continued starten de la continued CML - Advanced Optical Reserver and the provide of the provide starten de la continued starten de la continued CML - Starten de la continued CML - Starten de la continued (Starten de la continued starten de la continue de la conten la conten la continue de la continue de la conten l	R00M 337	R00M 338	R00M 339	R00M 340	R00M 341	NOTES	
 MCH Changman Data— MCH Changman Data	MK - Cuantum Dats— Cunning ML - Cuantum Ky Sinfurion—Caninge MK - Sinfurion—Caninge WK - Sinfurion—Caninge MK - Sinfurion—Caninge MK - Sinfurion—Caninge MK - Sinfurion—Caninge Wind Michow Robitson Graphing Conserve Market Kink Kink Kink Kink Kink Kink Kink Kink	QE	LS		CLEO			
NRT - 15 pm. NRT AS TAME Sing AS, FAG F, BR, TAME,	YET 75 TUWey Need Wey	QMK • Quantum Dots— Continued	QML • Quantum Key Distribution—Continued		CMJJ • Advanced Optical Receivers and Transmitters—Continued	CMKK • Timing Stabilization and Transfer— Continued		
5:30 p.m. – 6:00 p.m. DINNER BREAK (on your own)	5:30 p.m. – 6:00 p.m. DINNER BREAK (on your own) 6:00 p.m. – 9:00 p.m. CLEO/ <i>PhAST</i> PLENARY SESSION, Balirooms III/IV	QMK7 • 5:15 p.m. Photon-Number-Resolving Capabilities of a Semiconductor Quantum Dot, Opti- cally Gated, Field-Effect Transistor, Eric J. Gansen ¹ , Mary A. Roue ¹ , Marion Greene ¹ , Danna Rosenberg ² , Todd E. Harvey ¹ , Mark Y. Su ¹ , Robert H. Hadfield ¹ , Sae Woo Nam ¹ , Richard P. Mirin ¹ ; ¹ NIST, USA, ² Los Alamos Natl. Lab, USA. We demonstrate the pho- ton-number-resolving capabilities of a novel quantum dot, optically gated, field-effect transistor cooled to 4 K. Peaks are observed in the detector's response to highly attenu- ated laser pulses in accordance with Pois- son statistics.	QML7 • 5:15 p.m. Secret Key Distribution Using Differen- tial-Phase-Shift Keyed Macroscopic Co- herent Light, Kyo Inoue ^{1,2,3} , Sbusaku Hayashi ^{1,3} , ¹ Osaka Uniu., Japan, ³ /NTF Basic Res. Labs, Japan, ³ JST-CREST, Japan. A quan- tum key distribution scheme utilizing quan- tum noise is proposed. It uses macroscopic coherent light that is phase-modulated by l- δ, δ) and direct differential detection. It has possibility for high data rate.		CMJJ7 • 5:15 p.m. Multi-Channel High-Speed Optical Pulse Train Generation Based on Phase Modu- lation at Half Frequency, Changyuan Yu ^{1,2} , Zbaohui Li ¹ , Jing Yang ¹ , Yixin Wang ² ; ¹ Dept. of Electrical and Computer Engineer- ing, Natl. Univ. of Singapore, Singapore, ² A*STAR Inst. for Infocomm Res. (1 ² R), Singapore, ³ School of Electrical and Elec- tronic Engineering, Nanyang Technological Univ., Singapore. We demonstrate ITU-grid multi-channel high-speed (40-GHz experi- mentally, and 80-GHz in simulation) chirp- free return-to-zero optical pulse train gen- eration by a single phase modulator driven by an electrical clock at half frequency and a PM fiber.	CMKK7 • 5:15 p.m. Phase-Stabilized Prism Based CrForsterite Laser Frequency Comb for Absolute Frequency Measurements, Rajesh Thapa', Karl A. Tillman', Abmer Naweed', Andrew Jones', Brian R. Wasbburn', Kristan L. Corcivit, Jeffrey W. Nicholsor?, Man F. Yar?, 'Kansa State Univ., USA, 'OFS Labs, USA. A prism-based Crforsterite frequency comb is stabilized, with a repetition rate of 116 MHz. The flex- ibility of the prism-based system aids in achieving the carrier-envelope-offset fre- quency (f ₀) beat note width of ~1.5 MHz.		
6:00 n.m. – 9:00 n.m. CLEO/ <i>PhAST</i> PLENABY SESSION, Ballrooms III/IV	6:00 p.m. – 9:00 p.m. CLEO/ <i>PhAST</i> PLENARY SESSION, Ballrooms III/IV		5:30 p.m	- 6:00 p.m. DINNER BREAK (or	ı your own)			
			6:00 p.m. – 9:00 p.m	n. CLEO/ <i>PhAST</i> PLENARY SESS	ION, Ballrooms III/IV			