ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	C L	E 0		JOINT	C L	E 0	QELS
8:00 a.m. – 9:45 a.m. CFA • Nd Lasers Norman P. Barnes; NASA Langley Res. Ctr., USA, Presider	8:00 a.m. – 9:45 a.m. CFB • Laser Sources for Active Optical Sensing Terrence Meyer; Innovative Scientific Solutions, Inc., USA, Presider	8:00 a.m. – 9:45 a.m. CFC • Imaging of Tissue and Cancer Xingde Li; Univ. of Washington, USA, Presider	8:00 a.m. – 9:45 a.m. CFD • Stimulated NLO Processes Jean-Claude Diels; Univ. of New Mexico, USA, Presider	8:00 a.m. – 9:45 a.m. JFA • Harmonic and X-Ray Generation in Plasmas Zengbu Chang; Kansas State Univ., USA, Presider	8:00 a.m. – 9:45 a.m. CFE • Hollow Waveguides Mibaela Dinu; Bell Labs, Lucent Technologies, USA, Presider	8:00 a.m. – 9:45 a.m. CFF • Ultrafast Pulse Characterization I Presider to Be Announced	8:00 a.m. – 9:45 a.m. QFA • Nonlinear Nano- Optics Presider to Be Announced
CFA1 • 8:00 a.m. High Power CW and A-O Q-Switch Op- eration of 912 nm Nd:GdVO ₄ Laser, Jing Gao, Xin Yu, Jiangbo Peng, Wenping Zhang, Xudong Li, Junbua Yu, Yuezbu Wang; Harbin Inst. of Technology, China. An effi- cient, compact 912 nm Nd:GdVO ₄ laser is presented. The CW output power is up to 6.6 W. In the A-O Q-switched mode, mini- mum pulse width of 22 ns at 10 kHz is ob- tained.	CFB1 • 8:00 a.m. Tutorial Rare-Earth-Doped Fiber Lasers for Spec- troscopic Trace-Gas Detection , <i>Dahv</i> <i>Kliner, Sandia Natl. Labs, USA</i> . Advantages and limitations of fiber-based laser systems for trace-gas detection will be reviewed. I will present example applications and in- struments for in situ and remote detection at wavelengths from the mid-IR through the deep-UV.	CFC1 • 8:00 a.m. High-Speed Camera for Frequency Do- main Imaging, Abneesb Srivustava, David Watt, Gregory Faris; SRI Intl., USA. We de- scribe a high-speed camera system for per- forming frequency domain imaging with applications to photon migration imaging or fluorescence lifetime imaging. Field pro- grammable gate arrays allow processing images up to 2 gigapixels per second.	CFD1 • 8:00 a.m. Effect of Raman Susceptibility on Single- Pump Parametric Amplifiers, Andy Hsieb, Stuart G. Murdoch, Stepbane Coen, Rainer Leonbardt, John Harvey, Physics Depl., Univ. of Auckland, New Zealand. The Raman sus- ceptibility is shown to have a strong influ- ence on the parametric gain of a single- pump parametric amplifier. A strong reduc- tion in the parametric gain at 15.5 THz is observed due to this effect.	JFA1 • 8:00 a.m. High Brightness Injection-Seeded Table- Top Soft X-Ray Laser Using a Dense Plasma Amplifier, Yong Wang, E. Granados, Miguel A. Larotonda, Mark Berrill, Bradley M. Lutber, Dinesbchandra Patel, Carmen S. Menoni, Jorge J. Rocca, NSF ERC for Extreme Ultraviolet Science and Technology, and Electrical and Computer Engineering Dept., Colorado State Univ., USA. We demonstrated the generation of an extremely bright X=32.6nm laser beam with high spatial coherence by saturated ampli- fication of high harmonic seed pulses in a soft X-ray laser plasma amplifier created heating a titanium target.	CFE1 • 8:00 a.m. Tunable Optofluidic Third Order DFB Dye Laser, Morten Gersborg-Hansen, Anders Kristensen; Technical Univ. of Den- mark, Denmark. We present a low-thresh- old polymer-based nanofluidic dye laser. By employing a third order DFB laser resona- tor, we demonstrate a threshold fluence of $^7 \mu$ /mm ² and a tunability of 45 nm using a single laser dye.	CFF1 • 8:00 a.m. Guided-Wave Temporal Imaging Based Ultrafast Recorders, Corey V. Bennett ¹ , Bryan D. Moran ¹ , Carsten Langrock ² , Mar- tin M. Fejer ² , Morten Ibsen ² ; 'ILNL, USA, ² Stanford Univ., USA, ³ Univ. of Soutbampton, UK. Guided-wave parametric temporal im- aging is demonstrated with 1.8 ps resolu- tion and 1000:1 dynamic range. Waveforms are -30.1X time magnified before recording single-shot on a streak camera, and on a real-time oscilloscope repeating at MHz rates.	QFA1 • 8:00 a.m. Invited Nonlinear Nanoplasmonics, Anatoly V Zayats; Queen's Univ. of Belfast, UK. Nom- linear optical properties associated with sur- face-plasmon excitations in metallic nanostructures hybridised with nonlineau molecules will be discussed. Nonlineau plasmonics provides a possibility to develop novel nonlinear metamaterials with en- hanced functionalities and control light with light.
CFA2 • 8:15 a.m. Laser Properties of Composite Nd:GdVO ₄ Single Crystal Grown by the Double Die EFG Method, Makoto Matsukura ¹ , Osamu Nakamura ¹ , Sbinya Watanabe ¹ , Akio Miyamoto ¹ , Yasunori Furukawa ¹ , Yoicbi Sato ² , Takunori Taira ² , Tsuyosbi Suzudo ³ , Hironobu Mifiune ¹ , ¹ Oxide Corp., Japan, ² La- ser Res. Ctr. for Molecular Science, Japan, ³ Toboku R&D Ctr., Ricob Co. Ltd., Japan. Composite structures in GdVO ₄ , single crys- tals were directly grown by double die EFG method, which enables 3-mm core of Nd:GdVO ₄ inside 5-mm clad of pure GdVO ₄ . Laser oscillation of our composite was suc- cessfully demonstrated.		CFC2 • 8:15 a.m. Single-Scattering Optical Tomography, Vadim A. Markel ¹ , John C. Scholland ² ; ¹ Dept. of Radiology, Univ. of Pennsylvania, USA, ² Dept. of Bioengineering, Univ. of Pennsyl- uania, USA. We propose a novel tomo- graphic method which utilizes visible or near-infrared light as a probe in the "mesoscopic" scattering regime when the tissue exhibits sufficiently strong scattering, yet the detected light is not diffuse.	CFD2 • 8:15 a.m. High Quality Millimeter Wave Carrier Generation via Stimulated Brillouin Scat- tering, Markus Junker ¹ , Thomas Schneider ¹ , Kai-Uwe Lauterbach ¹ , Romny Henker ¹ , Max J. Annnann ² , Andreas T. Scharzbacher ² ; ¹ Deutsche Telekom, Germany, ² Dublin Inst. of Technology, Ireland. A new and simple method for the generation and modulation of Millimeter waves is presented. Based on frequency upconversion via Stimulated Brillouin Scattering it is very flexible in its output frequency and modulation band- width.	JFA2 • 8:15 a.m. Envited Attosecond Nonlinear Optics, Y. Nabekawa ⁴ , T. Shimizu ⁴ , Katsumi Midorikawa ⁴ , T. Okino ² , Y. Yamanouchi ² ; ¹ RIKEN, Japan, ² Dept. of Chemistry, School of Science, Unit. of Tokyo, Japan. We report the direct observation of a train of attosecond pulses by mean of autocorrelation method using nonlinear two photon processes in atoms and molecules in the xuv region.	CFE2 • 8:15 a.m. Use of Optical Tweezers to Fabricate Tunable Filters in Photonic Crystal Fi- bers, Peter Domachuk, Hannah Perry, Fiorenzo Omenetto, Mark Cronin-Golomb; Tuffs Univ., USA. Tunable optical filters are fabricated in hollow core photonic crystal fibers by using optical tweezer beams di- rected transversely to the fiber to load and space silica microspheres in the fluid filled hollow core.	CFF2 • 8:15 a.m. Looped Time-Lens Compression for Generation of 3.5 nJ Femtosecond Pulses from a CW Laser, James van Howe, Jennifer Lee, Chris Xu; Cornell Univ., USA. We generate 516 fs pulses at 3.5 nJ energy from a continuous wave 1.55 µm source without mode-locking. Our system is com- pact, all-fiber, and allows continuous tun- ing of pulse width and center wavelength.	

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		CLEO		JOINT
8:00 a.m. – 9:45 a.m. QFB • Spin Dynamics John Sipe; Univ. of Toronto, Canada, Presider	8:00 a.m. – 9:45 a.m. CFG • Optical Trace Gas Detection Dave Nelson; Aerodyne Res., USA, Presider	8:00 a.m. – 9:45 a.m. CFH • High- <i>Q</i> Microresonators and Devices I Presider to Be Announced	8:00 a.m. – 9:45 a.m. CFI • High Power Fiber Lasers and Amplifiers Jeff Nicholson; OFS Labs, USA, Presider	8:00 a.m. – 9:45 a.m. JFB • Joint Symposium on THz Spectroscopy Peter U. Jepsen; Technical Univ. of Denmark, Denmark, Presider
QFB1 • 8:00 a.m. Spatio-Temporal Resolution of Ballistic Spin Transport in Semiconductors , <i>Hui</i> <i>Zbao'</i> , <i>Henry M. Van Drief²</i> , <i>Arthur L. Smirl'</i> ; ¹ Univ. of <i>Iowa</i> , USA, ² Univ. of <i>Toronto</i> , <i>Canada</i> . Ballistic pure spin currents, which are injected into GaAs quantum wells using quantum interference techniques, are spa- tially and temporally resolved for the first time, allowing the direct extraction of spin momentum relaxation times.	CFG1 • 8:00 a.m. Sensitive Wavelength Modulation Spec- troscopy of Ethane Using a Mid-Infrared Interband Cascade Laser, Krisbnan R. Paramesuvaran, Richard T. Wainner, David I. Rosen, David M. Sonnenfroh, Mark G. Allen; Physical Sciences Inc., USA. Detection of ethane in breath will enable non-inva- sive monitoring of oxidative stress status. We present ethane absorption measurements using wavelength modulation spectroscopy and show that concentrations below 1 ppb can be detected with cavity enhancement.	CFH1 • 8:00 a.m. Invited High-Q Photonic Crystal Cavities, <i>Susumu Noda; Kyoto Univ., Japan.</i> Recent progress of high- Q nanocavities is reviewed, where Q -factors more than 1.2 million have been successfully achieved while keeping small modal volume of ~1.1(λ /n) ³ . New designs and applications of high- Q nanocavities are also discussed.	CFI1 • 8:00 a.m. Bi-Doped Fiber Lasers: New Type of High-Power Radiation Sources, Eugeny M. Dianov ¹ , Alexey V. Sbubin ¹ , Mikbail A. Melkumov ¹ , Oleg I. Medvedkov ¹ , Igor A. Bufetor ² , 'Fiber Optics Res. Cr. of the Rus- sian Acad. of Sciences, Russian Federation, 'Fiber Optics Res. Cr., Russian Acad. of Sci- ences, Russian Federation. CW lasing of a new type of lasers -Bi-doped fiber lasers- in a wavelength range of 1150+1215 nm at high output power level (15W) and efficiency of 22% has been obtained for the first time.	JFB1 • 8:00 a.m. THz Phase-Transition Spectroscopy of Metals, Kenneth J. Chau, Abdulbakem Elezzabi; Univ. of Alberta, Canada. Terahertz (THz) time-domain spectroscopy is employed to study the solid-liquid phase transition of metallic Ga particle collections. This work is the first non-invasive THz spec- troscopic investigation of melting phenom- ena in metallic media.
QFB2 • 8:15 a.m. Optical Control of Electron Spin Preces- sion in Semiconductor Quantum Wells, Sbannon O'Leary, Yumin Shen, Hailin Wang; Univ. of Oregon, USA. We demon- strate a spin manipulation scheme that con- trols the amplitude as well as the phase of the quantum beats from electron spin co- herence by exploiting the relative phase between relevant Larmor precessions of electron spins.	CFG2 • 8:15 a.m. Sensitive, Real-Time Interband Cascade Laser Based Sensor for Ethane Monitor- ing, Yury A. Bakbirkin ¹ , Gerard Wysocki ¹ , Mattbew P. Fraser ¹ , Rui Q. Yang ² , Frank K. Tittel ¹ ; 'Rice Univ., USA, ² JPL (NASA), USA. A gas sensor based on a CW mid-infrared interband cascade laser and wavelength modulation spectroscopy capable of mea- suring ethane concentrations with a detec- tion sensitivity of 0.15 ppbv/Hz ^{1/2} is reported.		CFI2 • 8:15 a.m. High-Power Cascaded Raman Fiber La- ser with 41-W Output Power at 1480-nm Band, Yoshibiro Emori ² , Kanji Tanaka ² , Clifford Headley ¹ , Akira Fujisaki ² , ¹ OFS Labs, USA, ² Furukawa Electric Co., Ltd., Japan. A cascaded Raman laser with 41-W CW out- put at 1480-nm band was demonstrated by a 65-m silica-based highly nonlinear fiber as the Raman gain medium.	JFB2 • 8:15 a.m. Electrical Conductivity Measurements of Warm Dense Matter with Time-Resolved Terahertz Spectroscopy, Ki-Yong Kim, James H. Glounia, Balakisbore Yellampalle, Antoinette J. Taylor, George Rodriguez; Los Alamos Natl. Lab, USA. The quasi-DC elec- trical conductivity of warm dense matter is directly measured with terahertz-probe re- flection spectroscopy. The measurements show a noticeable deviation from the Drude model in warm dense aluminum.

CLEO/QELS and PhAST 2007, May 6-11, 2007 • Baltimore Convention Center, Baltimore, Maryland

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	CI	LEO		JOINT	C L	E 0	QELS
CFA • Nd Lasers— Continued	CFB • Laser Sources for Active Optical Sensing— Continued	CFC • Imaging of Tissue and Cancer—Continued	CFD • Stimulated NLO Processes—Continued	JFA • Harmonic and X-Ray Generation in Plasmas— Continued	CFE ● Hollow Waveguides—Continued	CFF • Ultrafast Pulse Characterization I— Continued	QFA • Nonlinear Nano- Optics—Continued
 CFA3 • 8;30 a.m. High Order Wavefront Correction for High-Energy Nd:YLF Rod Amplifier by Phase Conjugate Plate, Takashi Sekine¹, Shinichi Matsuoka¹, Toshiyuki Kawashima¹, Hirofiuni Kan¹, Junji Kawanaka², Koji Tsubakimoto², Masabiro Nakatsuka², Yasukazu Izawa², ¹Hamamatsu Photonics K. K., Japan, ²Inst. of Laser Engineering, Osaka Univ., Japan. Wavefront correction until Zernike polynomial of degree three by phase conjugate plate has been demon- strated in a high energy Nd:YLF amplifier system. 108 amplification of 380 mJ has been achieved with a near-diffraction-limited beam quality. 		CFC3 • 8:30 a.m. Cellular Motion as Contrast Agent in Tumor Imaging, Kwan Jeong, Jobn J. Turek, David D. Nole; Purdue Univ., USA. We present the first three-dimensional time- course images of cytoskeletal anticancer drug effects on osteogenic tumor spheroids as a function of dose through motility imag- ing using dynamic speckle in digital holo- graphic optical coherence imaging.	CFD3 • 8:30 a.m. Efficient Single Spatial Mode Stimulated Raman Scattering in a Hollow Core Pho- tonic Band-Gap Fiber Filled with Etha- nol, Sylvie Lebrun, Philippe Delaye, Robert Frey, Gérald Roosen; Lab Charles Fabry de l'Inst. d'Optique, CNRS, Univ Paris-Sud, France. Singlemode Raman generation in an ethanol filled photonic band gap fiber is demonstrated. Due to the limited fiber trans- mission band a high conversion efficiency towards the first Stokes is achieved even at high pump intensities.		CFE3 • 8:30 a.m. Invited Integrated Semiconductor Chips for ETT, Holger Schmidt ¹ , Wenge Yang ¹ , Bin Wu ¹ , Donald B. Conkey ² , Rebecca Brenning ² , Aaron R. Hawkins ² , 'Univ. of California at Santa Cruz, USA, ⁴ Brigham Young Univ., USA. We review fabrication and character- ization of monolithically integrated rubidium vapor cells on a chip. Mode areas of 9µm ² and optical densities in excess of 2 are dem- onstrated - ideal for EIT-based nonlinear optics.	CFF3 • 8:30 a.m. Polarization-Insensitive Ultralow-Power Second-Harmonic Generation Fre- quency-Resolved Optical Gating, Houxun Miao', Andrew M. Weiner', Carsten Langrock', Rostislaw V. Roussev', Martin M. Fejer'; 'Purdue Univ., USA, 'Stanford Univ., USA. We demonstrate polarization-insensi- tive ultralow-power second-harmonic gen- eration (SHG) frequency-resolved optical gating (FROG) measurements with a fiber- pigtailed, aperiodically-poled lithium niobate (A-PPLN) waveguide by scrambling the po- larization much faster than the measurement integration time.	QFA2 • 8:30 a.m. Second-Harmonic Generation Spectros- copy of Silicon Quantum Dots, Vladimir O. Bessonov ¹ , Anton I. Maydykovsky ¹ , Oleg A. Aktsipetrov ¹ , Xinfan Huang ² , Kunji Chen ² , ¹ M.V. Lomonosov Moscow State Univ., Dept. of Physics, Russian Federation, ² Dept. of Physics and Lab of Solid State Microstruc- tures, Nanjing Univ., China. The size effects in resonant nonlinear-optical response of silicon quantum dots are studied in the spec- tral interval of second-harmonic photon energies from 3.0 to 3.5 eV.
CFA4 • 8:45 a.m. Generation of Cylindrical Vector Beams from a Nd:YAG Laser Cavity including a c-cut YVO ₄ Crystal, Yuicbi Kozawa, Kazubiro Yonezawa, Shunichi Sato; Inst. of Multidisciplinary Res. for Advanced Materi- als, Toboku Univ., Japan. Cylindrical vector beams were generated from a Nd:YAG la- ser cavity including an undoped c-cut YVO ₄ crystal. By simply adjusting the length of an asymmetric concentric cavity, the selection of radial or azimuthal polarization was pos- sible.		CFC4 • 8:45 a.m. Near-Infrared Fluorescence Imaging for Colonic Cancer Diagnosis, Zbiuei Huang, Xiaozbuo Shao, Wei Zbeng, Colin Sbeppard; Nail. Univ. of Singapore, Singapore. A near- infrared (NIR) fluorescence imaging system was developed to acquire high contrast tis- sue NIR fluorescence images and to evalu- ate the efficacy of using the NIR imaging technique for cancer diagnosis in the co- lon.	CFD4 • 8:45 a.m. Enhancement of Maximum Time Delay in One Fiber Segment Slow Light Sys- tems Based on Stimulated Brillouin Scat- tering, Ronny Henker ¹ , Thomas Schneider ¹ , Markus Junker ¹ , Kai-Uwe Lauterbach ¹ , Max James Ammann ² , Andreas Thomas Schwarzbacher ² ; ¹ Deutsche Telekom Fachbochschule Leipzig, Germany, ² Dublin Inst. of Technology, Ireland. An effective method to enhance the time delay in SBS- based slow-light systems by decoupling the delay from the Brillouin gain is shown. A drastic improvement of the time delay in one fiber segment was achieved.	JFA3 • 8:45 a.m. Enhanced High Harmonic Generation in Xe, Kr and Ar Using a Capillary Dis- charge, Tenio Popmintchev ¹ , Michael E. Grisbam ² , David M. Gaudiosi ¹ , Brendan A. Reagan ² , Oren Coben ¹ , Mark A. Berrill ² , Margaret M. Murnane ¹ , Henry C. Kapleyn ¹ , Jorge J. Rocca ² ; 'JILA, Univ. of Colorado at Boulder and NIST, USA, ² Dept. of Electrical and Computer Engineering, Colorado State Univ., USA. We demonstrate a significant extension of the harmonic cutoff in xenon, krypton and argon ions using a capillary discharge, up to 160 eV, 170 eV and 275 eV respectively.		CFF4 • 8:45 a.m. Full Characterisation of Low Power Pi- cosecond Pulses from a Gain-Switched Diode Laser Using Electro-Optic Modu- lation Based FROG, Khu T. Vu, Andrew Malinouski, Michael A.F. Roelens, Morten Ibsen, Periklis Petropoulos, David J. Richardson; Univ. of Southampton, UK. We use a linear FROG technique based on electro-optic modulation to fully characterise for the first time pulses from a 1.06 µm FP laser diode and design a grating to provide optimum pulse compression.	QFA3 • 8:45 a.m. Linear and Nonlinear Optics of Light Harvesting Complexes: TCL- and Bloch Equations for Linear Spectra and Satu- ration Dynamics, Marten Richter ⁺ , Thomas Renger ² , Andreas Knorr ² ; ¹ Inst. für Theoretische Physik, Technische Univ. Ber- lin, Germany, ² Inst. für Chemie und Biochemie, Freie Univ. Berlin, Germany. Bloch equations for the optical and elec- tronic processes in light-harvesting-com- plexes, important nanostructures in photo- processes, are presented. The theory in- cludes Förster excitation transfer, electron- phonon coupling and arbitrary strong light fields leading to saturation phenomena.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		CLEO		JOINT
QFB • Spin Dynamics— Continued	CFG • Optical Trace Gas Detection—Continued	CFH • High- <i>Q</i> Microresonators and Devices I—Continued	CFI • High Power Fiber Lasers and Amplifiers— Continued	JFB • Joint Symposium on THz Spectroscopy— Continued
QFB3 • 8:30 a.m. Effects of Disorder on Electron Spin Dynamics in GaAs Quantum Wells, Zbigang Chen ¹ , Sam G. Carter ¹ , Rudolf Bratschitsch ¹ , Steven T. Cundiff ¹ , Philip Dauson ² , ¹ JIA, Univ. of Colorado and NIST, USA, ² Scbool of Physics and Astronomy, Univ. of Manchester, UK. We measure elec- tron spin dynamics in GaAs quantum wells with varying electron density. Electron landé g factor is measured to characterize disor- der potential. Electron spin coherence is lost from interplay between localization and dynamical scattering.	CFG3 • 8:30 a.m. Isotopic Ratio Measurements of Atmo- spheric Carbon Dioxide Using a 4.3 µm Pulsed Quantum Cascade Laser, David Nelson ¹ , John B. McManus ² , Mark S. Zabniser ¹ , Bela Tuzson ² , Lukas Emmengger ² , ¹ Aerodyne Res., Inc., USA, ² EMPA, Air Pollution, Environmental Tech- nology Lab, Switzerland. We report CO ₂ iso- topic ratios (¹³ C, 18O) measured in air using a pulsed quantum cascade laser at 2310 cm ⁻¹ . Performance is improved by analyzing the deviations between the sample spectra and simultaneously acquired reference spectra.	CFH2 • 8:30 a.m. Analytic Photonic Crystal Cavity Design, Dirk R. Englund, Ilya Fusbman, Jelena Vuckovic; Stanford, USA. We describe an analytic method for designing photonic crys- tal structures and apply it to high-Q cavi- ties. Starting from a photonic crystal Bloch mode, we derive a perturbative two-dimen- sional structure to confine a desired mode.	CFI3 • 8:30 a.m. Multi-mJ Energy, Multi-MW Peak-Power Photonic Crystal Fiber Amplifiers with Near-Diffraction-Limited Output, Fabio Di Teodoro, Christopher D. Brooks, Aculight Corp., USA. We report on large-core (up to 100um diameter) Yb-doped photonic crys- tal fiber amplifiers delivering ~Ins pulses of pulse energy/peak power up to 4.2mJ/ 4.5MW, in output beams of high spatial qual- ity (M ² < 1.3)	JFB3 • 8:30 a.m. Isotropic Photonic Magnetoresistance: A New Phenomenon at Terahertz Fre quencies, Corey A. Baron, Kenneth J. Chau, Abdulbakem Y. Elezzabi; Univ. of Alberta Canada. We demonstrate isotropic photo- nic magnetoresistive behaviour in the THz transmission through highly porous ferro- magnetic particle collections. Experimenta evidence suggests a morphological origin of the isotropic magnetic phenomenon.
QFB4 • 8:45 a.m. Investigation of Spin-Induced Pauli Blocking on Electron Dynamics in n- doped In _{0.4} Ga _{0.4} As/GAAS Quantum Dots, Zong-kwei Wu ¹ , Hyunyong Choi ¹ , Theodore B. Norris ¹ , Xiaohua Su ¹ , Subbananda Chakrabarti ¹ , ² , Pallab Bhattacbarya ¹ ; ¹ Univ. of Michigan, USA, ² Univ. of Glasgow, UK. A nanosecond-scale recovery component is observed in time-resolved differential trans- mission spectroscopy experiments on the electron relaxation in n-doped quantum dots. Polarization-dependent measurements show the recovery is not due to Pauli block- ing driven by spin relaxation.	CFG4 • 8:45 a.m. Methane Detection by Means of Quartz Enhanced Photoacoustic Spectroscopy in NIR, Anatoliy A. Kosterev, Yury A. Bakbirkin, Frank K. Tittel, Rice Univ., USA. Trace methane detection by means of quartz enhanced photoacoustic spectroscopy us- ing a fiber-coupled DFB diode laser at 1651 nm will be reported. An autonomous sen- sor configuration will be described.	CFH3 • 8:45 a.m. c-Er ₂ O ₃ Microdisks on Silicon: Fabrica- tion and Photoluminescence, Cbristopher P. Michael ¹ , Thomas J. Johnson ¹ , Oskar Painter ¹ , Vijit A. Sabnis ² , Homan B. Yuen ² , Aleta Jamora ² , James Weldon ² , Scott Semans ² , Peter B. Atanackovic ² ; ¹ Dept. of Applied Physics, Caltech, USA, ² Translucent Inc., USA. Microdisks are fabricated from c- Er ₂ O ₃ , Surface scattering presently limits the quality of whispering-gallery modes around the 980 nm and 1480 nm Er ⁻³ pump bands. Photoluminescence is observed at 1550 nm while resonantly pumping cavity modes.	CFI4 • 8:45 a.m. Strictly-All-Fiber 1070nm High Power Source in a Distributed Side-Coupled Pump Configuration, Yaakov Glick, Yoav Sintov, Tomer Koplowitch, Yebuda Nafcba; Soreq NRC, Israel. A high power source of 285W is presented with >50% optical effi- ciency, in an all-fiber configuration. Six 90W diode pumps are side-coupled via pump couplers along the Ytterbium doped fiber, in an even distribution.	JFB4 • 8:45 a.m. Temperature Dependent and Magnetic Field Dependent Terahertz Spectros copy of In,,Mn,As, Jason Deibel ¹ Junichiro Kono ¹ , Daniel Mittleman ¹ , Wenbu Fan ² , Prashanth C. Upadhya ² , Amartya Sengupta ² , John Cunningbam ² , Edmund H Linfield ² , Giles Davies ² , Hiro Munekata ³ , ¹ Rice Uniu., USA, ² Uniu: of Leeds, UK, ³ Tokyu Inst. of Technology, Japan. We report tem perature and magnetic field dependent terahertz time domain spectroscopy mea- surements on InMnAs. The temperature dependent transmission is shown to vary with Mn content and applied magnetic field strength.

Friday, May 11

NOTES

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	C L	E 0		JOINT	C L	EO	QELS
CFA • Nd Lasers— Continued	CFB • Laser Sources for Active Optical Sensing— Continued	CFC • Imaging of Tissue and Cancer—Continued	CFD • Stimulated NLO Processes—Continued	JFA • Harmonic and X-Ray Generation in Plasmas— Continued	CFE • Hollow Waveguides—Continued	CFF • Ultrafast Pulse Characterization I— Continued	QFA • Nonlinear Nano- Optics—Continued
CFA5 • 9:00 a.m. Duasi CW Laser Diode Side Pumped id:YAG Slab Laser Passively Mode- ocked Using Multiple Quantum Well iaturable Absorbers, Waldemar Vendzian ¹ , Jan K. Jabczynski ¹ , Jacek (wiatkotski ¹ , Vaclav Kubecek ² , Helena elinkova ² , Andreas Stintz ³ , Jean-Claude biels ¹ , ¹ Inst, of Optoelectronics, Military Univ. of Technology, Poland, ² Czech Technical hiv, Faculty of Nuclear Sciences and Physi- al Engineering, Czech Republic, ³ Univ. of iew Mexico, Ctr. for High Technology Mate- ials and Dept. of Physics and Astronomy, ISA. Operation of Nd:YAG slab laser side swinped by quasi-continuous laser diode assively mode locked using semiconduc- or saturable absorber is reported. Trains with energy up to 2 mJ and pulse duration f 65 ps were generated.	CFB2 • 9:00 a.m. Single-Frequency, Frequency-Doubled, Erbium-Doped, Fiber-Amplified Trans- mitter for Oxygen A-Band Spectroscopy, Mark A. Stephen', Michael A. Krainak', Haris Riris', Grabam Allan ² , 'MSAA Goddard Space Flight Ctr., USA, 'Sigma Space Corp., USA. We developed a frequency-doubled, DFB-seeded EDFA. 8 Watts of frequency- doubled power was achieved in a single- frequency, wavelength tunable, power scal- able laser transmitter used for spectroscopic remote sensing of the oxygen A-band.	CFC5 • 9:00 a.m. Evaluation of a Multi-Wavelength Reflec- tance System for Determination of Tis- sue Optical Properties in the UVA-VIS, Quanzeng Wang ¹ , Anant Agrawal ¹ , Stepbanie Matchette ¹ , Nam Sun Wang ² , Joshua Pfefe ¹ ; 'Food and Drug Administra- tion, Ctr. for Devices and Radiological Health, USA, 'Univ. of Maryland, USA. Tis- sue optical properties at ultraviolet-A and visible wavelengths are needed to elucidate diagnostic device performance. We have developed a multi-wavelength fiberoptic reflectance system for optical property mea- surement and evaluated its performance using hemoglobin-based tissue phantoms.	CFD5 • 9:00 a.m. Efficient Broadband Raman Generation in Crystals Driven by Dual-Frequency Femtosecond Laser Fields, <i>Miaochan Zbi</i> , <i>Xi Wang, Alexei V. Sokolov; Texas A&M</i> <i>Univ., USA.</i> We demonstrate efficient gen- eration of discrete spatially-separated Stokes and anti-Stokes sidebands, ranging in wave- length from infrared, through visible, to ul- traviolet spectral region, by crossing two- or three-color femtosecond laser beams in thin room-temperature Raman-active crys- tals.	JFA4 • 9:00 a.m. Enhancement of Relativistic Harmonic Generation by an Optically-Preformed Periodic Plasma Waveguide, Chib-Hao Pariodic Plasma Waveguide, Chib-Hao Pariodic Plasma Waveguide, Chib-Hao Pariodic Plasma Waveguide, Chib-Hao Pariodic Plasma Waveguide, Chib-Hao Nian, Lin ⁴ , 'Dept. of Physics, Natl. Taiwan Univ., Taiwan, ² Inst. of Atomic and Molecu- lar Sciences, Academia Sinica, Taiwan, ³ Dept. of Physics, Natl. Churg Cheng Univ., Taiwan. Enhancement of relativistic third-harmonic generation by using a peri- odic plasma waveguide is achieved. Reso- nant dependence of harmonic intensity on plasma density modulation parameters is observed, which is a distinct characteristic of quasi-phase matching.	CFE4 • 9:00 a.m. Identification of the Band-Edge Cladding Modes of a Hollow-Core Photonic Crys- tal Fibre, Francois Couny ¹ , Fetab Benabid ¹ , Peter John Roberts ² , Mathew T. Burnett ¹ , Stefan A. Maier ¹ ; 'Pbysics Dept., Univ. of Baih, UK, ² COM, Technical Univ. of Den- mark, Denmark. The cladding-modes adja- cent the photonic bandgap of a hollow-core photonic crystal fiber are identified. The results show that the bandgap is due to three types of resonators: the glass-apex, the silica- strut, and the air hole.	CFF5 • 9:00 a.m. Sinusoidal Phase Modulation as a Gate for FROG, Nicolas K. Fontaine, Ryan P. Scott, Jonathan P. Heritage, Brian H. Kolner, S. J. Ben Yoo: Dept. of Electrical and Com- puter Engineering, Univ. of California at Davis, USA. A sinusoidal phase-modulation gate for cross-correlation frequency-resolved optical gating (PM-FROG) is demonstrated. This low-loss, linear gating technique can be used without separate gate characteriza- tion via a blind FROG algorithm with a simple intensity constraint.	QFA4 • 9:00 a.m. Pulsewidth Dependent Nonlinear Ab- sorption in Au Films, Nir Rotenberg ¹ , Alan D. Bristow ² , Markus Pfeiffer ³ , Markus Betz ⁴ , Henry M. van Driel ¹ ; ¹ Dept. of Physics, Univ. of Toronto, Canada, ² JIL4, Univ. of Colorado at Boulder, USA, ³ Univ. Stuttgart, Physikaliscbes Inst., Germany, ⁴ Physik-Dept, Technische Univ. München, Germany. 2 scans of 20 nm Au films at 630 nm show strong pulse-width dependence of nonlin- ear absorption that is characteristic of elec- tron heating; effective beta increases > 100° as pulse width increases from 0.1-6 ps.
EFAG • 9:15 a.m. Development and Vacuum Life Test of a Diode-Pumped Cr:Nd:YAG Laser (Heri- age Laser) for Space Applications, <i>intonios Seas', Steve Li¹, Mark Stephen',</i> <i>inne-Marie D. Novo-Gradac¹, Nasir</i> <i>iashem¹, Aleksey Vasilyev², Elisavet</i> <i>iroupaki², Songsbeng Chen², Alberto</i> <i>tosanova², ¹NASA, USA, ²Science Systems</i> <i>ind Applications Inc., USA.</i> The develop- nent and vacuum life-testing of a diode umped Cr:Nd:YAG laser for space appli- ations is presented. Furthermore results rom long life-testing of 808-nm laser diode rrays in air and vacuum are discussed.	CFB3 • 9:15 a.m. Widely Tunable, High Power, Mode-Hop Free, CW External Cavity Quantum Cas- cade Laser at 8.4μm, Gerard Wysocki ¹ , Robert F. Curl ¹ , Frank K. Tittel ¹ , Federico Capasso ² , Laurent Diebl ² , Mariano Troccoli ³ , Gloria Höfler ⁴ , Ricbard Maulini ³ , Jérôme Faist ⁵ , ¹ Rice Univ., USA, ⁴ Harxard Univ., USA, ³ Argos Tech LLC, USA, ⁴ Argos Tech, USA, ⁵ Univ. of Neuchâtel, Switzerland. An exter- nal cavity quantum cascade laser (λ = 8.4 µm) is reported. The laser operating at -30°C exhibits a single mode tuning range of 135 cm–1 providing up to 50 mW of CW laser radiation.	CFC6 • 9:15 a.m. Enzyme-Based Labeling of Tumor Boundaries, Jeanne P. Hausbalter, Khalid Amin, Wan-Ru Chao, Kevin Kauweloa, Zisban Haroon, Gregory Faris, SRI Intl, USA. We are developing a method for labeling tumor boundaries. An enzyme involved in wound healing covalently links a fluores- cent-labeled substrate into the growing tu- mor boundary. We have performed in vitro assays to study this method.	CFD6 • 9:15 a.m. Single-Shot Pulse Characterization with High Spatial Resolution using Localized Nonlinearities and Cerenkov Phase- Matching, Stefan Holmgren, Carlota Canalias, Valdas Pasiskevicius; Royal Inst. of Technology, Sweden. Cerenkov phase- matching of second-order nonlinearities lo- calized in the regions of ferroelectric do- main walls in KTiOPO ₄ is used to realize a single-shot FROG arrangement for ultrashort pulse characterization, which can be used from visible to mid-infrared.	JFA5 • 9:15 a.m. Two Mechanisms of High Harmonic Generation from Overdense Laser Plas- mas—Relativistic and Non-Relativistic, Robin S. Marjoribanks', C. Tbaury ² , Fabien Quéré ² , Jean-Paul Geindre ³ , Patrick Audeber ⁴ , Pascal Monof, Pbilippe Martin ² ; ¹ Univ. of Toronto, Canada, ² Service des Pbo- tons, Atomes et Molécules (DSM/DRECAM), CEA, France, ³ ULI-CEA/CNRS/Ecole Polytecbnique, France. High harmonics from ultra-intense laser-matter interaction can be generated by both linear means and by rela- tivistic means. In experiments up to a few 1019 Wcm ² , we show the distinctions and means to control each.	CFE5 • 9:15 a.m. Characterization of Index Changes in Silicone- and Nonsilicone-Based Hydro- gel Polymers Induced by Femtosecond Micromachining, Li Ding ¹ , Richard I. Blackwell ² , Jay F. Künzler ² , Wayne H. Knox ² ; ¹ Univ. of Rochester, USA, ² Bausch & Lomb, USA. Diffraction gratings and optical waveguides are micro-machined inside hy- drogel polymers containing up to 80% wa- ter using a 93 MHz Ti:Sapphire femtosecond laser with 27 fs pulses. Index changes as large as +0.06 are observed.	CFF6 • 9:15 a.m. Complex-Pulse Characterization Using a One Dimensional Scheme, Balakisbore Yellampalle, Elbert E. M. Cbia, Kiyong Kim, Richard D. Averitt, Antoinetle J. Taylor, Los Alamos Natl. Lab, USA. We show that com- plex pulses can be measured using autocorrelation, fundamental and second harmonic spectra (or with the first and sec- ond order interferometric autocorrelations). Our approach also differentiates pulses with indistinguishable autocorrelation and fun- damental spectrum.	QFA5 • 9:15 a.m. Near-Field Imaging of Second Harmonic Generation from Ellipsoidal Gold Nanoparticles, Margberita Zavelani-Rossi ¹ , Michele Celebrano ¹ , Dario Polli ¹ , Paolo Biagioni ¹ , Marco Finazzi ¹ , Lamberto Duo ¹ , Orazio Svelto ¹ , Giulio Cerullo ¹ , Massimiliano Labardi ² , Maria Allegrini ² , Joban Grand ³ , Pierre-Michel Adam ³ , ¹ Dept. di Fisica, Politecnico di Milano, Italy, ² Dept. di Fisica, Univ. di Pisa, Italy, ³ LNIO, Univ. de Technologie de Troyes, France. Second-har- monic generation by single gold nanofabricated particles is experimentally investigated by a non-linear near field scan- ning optical microscope. The nanoscale nonlinear response is found to strongly de- pend on surface plasmon resonances and on local morphology.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		CLEO		JOINT
QFB • Spin Dynamics— Continued	CFG • Optical Trace Gas Detection—Continued	CFH • High- <i>Q</i> Microresonators and Devices I—Continued	CFI • High Power Fiber Lasers and Amplifiers— Continued	JFB • Joint Symposium on THz Spectroscopy— Continued
QFB5 • 9:00 a.m. Unvited Ultrafast Enhancement of Ferromag- netism via Photoexcited Holes in GaMnAs, <i>figang Wangl², I. Cotoros^{1,2}, K. M.</i> Dani ^{1,2} , D. S. Chemla ^{1,2} , X. Liu ² , J. K. Furdyna ³ , ¹ Lawrence Berkeley Natl. Lab, USA, ² Univ. of California at Berkeley, USA, ³ Univ. of Notre Dame, USA. We report on ultrafast photoenhanced ferromagnetism and para- to ferromagnetic phase transition, on a 100-ps time scale, due to a transient en- hancement of Curie temperature via a popu- lation of photoexcited carriers in III-Mn-V semiconductor GaMnAs.	CFG5 • 9:00 a.m. Spectroscopic Study of Simulant for VX Nerve Agent in a Wide Frequency Range, Renbo Song ¹ , Yujie J. Ding ¹ , Yuliya B. Zotova ² , Janet L. Jensen ³ ; ¹ Lebigb Univ., USA, ² ArkLigbt, USA, ³ ARDECOM Edgeuvod Chemi- cal Biological Ctr., USA. For the first time, we have identified eighteen new absorp- tion peaks from Malathion which is used as a simulant for VX nerve agent in a spectral range from 15 to 6000 wave numbers.	CFH4 • 9:00 a.m. Electro-Optically Tunable Microring Resonators Based on Single-Crystalline LiNbO ₃ Thin Films, <i>Gorazd Poberaj, An-</i> <i>drea Guarino, Peter Gunter, ETH Zurich,</i> <i>Switzerland.</i> We present the first demonstra- tion of electro-optically tunable microring wavelength filters in submicrometer-thick LiNbO ₃ films fabricated by crystal ion slic- ing and wafer bonding techniques. A tunability of 0.14 GHz/V has been measured at 1550 nm.	CFI5 • 9:00 a.m. 20W Single-Frequency Fiber Laser Op- erating at 1.93 μm , <i>Denis Gapontsev¹</i> , <i>Nicholai Platonov¹</i> , <i>Mikbail Melesbkevicb¹</i> , <i>Oleg Mishechkin¹</i> , <i>Oleg Shkurikbin¹</i> , <i>Soren</i> <i>Agger²</i> , <i>P. Varming²</i> , <i>J. H. Povlsen²</i> , ¹ <i>IPG</i> <i>Photonics</i> , <i>USA</i> , ² <i>Koheras A/S</i> , <i>Denmark</i> . We have demonstrated a high power Tm-doped fiber laser system operating at 1.93µm. The DFB fiber laser with 20mW output power is amplified in a Tm-doped all-fiber amplifier system to the output power of 20W.	JFB5 • 9:00 a.m. Intrinsic Photoconductivity of P3HT Films Measured by Time-Resolved THz Spectroscopy, Okan Esenturk ¹ , Joseph S. Melinger ² , Eduin J. Heiluveil ² ; ¹ Univ. of Mary- land, USA, ² US. NRL, USA, ³ NIST, USA. In- trinsic photoconductivities of P3HT polymers were measured and compared by using optical pump-THz probe spectroscopy. The charge carrier mobility shows a clear de- pendence on the molecular weight and dis- persion index of the polymers.
	CFG6 • 9:15 a.m. Airborne Difference Frequency Spec- trometer for Ultra Sensitive Formalde- hyde Measurements, Petter Weibring, Dirk Richter, James G. Walega, Alan Fried, Natl. Chr. for Atmospheric Res., USA. An airborne, difference-frequency generation mid-IR spectrometer for ultra sensitive measure- ments of formaldehyde at 3.5 µm is de- scribed. The system performance is assessed during three airborne field missions, yield- ing sensitivities of ~20 pptv (Absorbance ~7*10-7).	CFH5 • 9:15 a.m. Demonstration of High-Q Microdisk Resonators: Fabrication and Nonlinear Properties, Tobias J. Kippenberg ¹ , Kerry Vabala ² ; 'Max Planck Inst. of Quantum Optics, Germany, 'Caltech, USA. Fabrication of high-Q silica micro-disk resonators on silicon chip is reported with Q-factors ex- ceeding 50 million. Applications to nonlin- ear optics and erbium microlasers presented.	CFI6 • 9:15 a.m. High Power Single-Ended Yb-Doped Fiber ASE Source, Pu Wang, Jayanta K. Sabu, W. A. Clarkson; Optoelectronics Res. Ctr., UK. High-power operation of fiber-based ASE sources is reported. Using single-stage and two-stage cladding-pumped ytterbium- doped fiber configurations we obtained 62W and 122W of broadband ASE output respec- tively. The prospects for further improve- ment in performance are considered.	JFB6 • 9:15 a.m. Broadband THz Time-Domain Spectros- copy of Single-Wall Carbon Nanotubes, Histaaki Nisbimura ¹ , Nobutsugu Minani ² , Ryo Sbimano ¹ ; 'Dept. of Physics, Univ. of Tokyo, Japan, 'Avanotechnology Inst., Natl. Inst. of Advanced Industrial Science and Technology (AIST), Japan. Complex dielec- tric function of single-wall carbon nanotubes (SWNTs) is determined by terahertz time- domain spectroscopy from 0.2 to 20 THz. The real part exhibits extremely large value below 1THz, indicating the response of small gap SWNTs.

ROOM 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	C L	E 0		JOINT	C L	E 0	QELS
CFA • Nd Lasers— Continued	CFB • Laser Sources for Active Optical Sensing— Continued	CFC • Imaging of Tissue and Cancer—Continued	CFD • Stimulated NLO Processes—Continued	JFA • Harmonic and X-Ray Generation in Plasmas— Continued	CFE • Hollow Waveguides—Continued	CFF • Ultrafast Pulse Characterization I— Continued	QFA • Nonlinear Nano- Optics—Continued
CFA7 • 9:30 a.m. Repetition-Rate-Stabilized High Power Passively Q-Switched Nd:YAG Microchip Laser, Jianuw Ding, Allen Geiger, Akamai Physics, Inc., USA. A compact diode-pumped passively Q-switched Nd:YAG microchip laser capable of 1-5kHz adjustable repeti- tion-rate-stabilized pulses using an appro- priate pump modulation technique was de- veloped. It outputs linearly-polarized pulses with 3ns pulsewidth, 100µJ energy and <1% jitter.	CFB4 • 9:30 a.m. Broadly Tunable Single-Mode Quantum Cascade Laser Source, Benjamin G. Lee ¹ , Ross Audet ¹ , Jim MacArtbur ¹ , Mikbail Belkin ¹ , Laurent Diebl ¹ , Cbristian Pflügl ¹ , Federico Capasso ¹ , David Bour ² , Scott Corzine ² , J. Xbu ² , Gloria Hoefler ² , ¹ Harvard Univ., USA, ² Agilent Labs, USA. We construct a compact broadly tunable single mode quantum cascade laser source that can be used for mid-infrared spectroscopy. The source consists of an array of closely-spaced distributed feedback lasers and a CMOS controller.	CFC7 • 9:30 a.m. Inhomogeneity Localization in Scatter- ing Media Based on an Optical Diffusion Model, <i>Guangzhi Cao, Charles A. Bouman,</i> <i>Kevin J. Webb; Purdue Univ., USA</i> . A fast approach for detecting and localizing an inhomogeneity in a tissue-like scattering medium is presented. The probability of detection and sensitivity describe the capa- bility of such a measurement system, pro- viding information for instrument design.	CFD7 • 9:30 a.m. Beam Cleanup of a Pulsed Multimode Fiber Master-Oscillator Power-amplifier at 1.55 µm Using Stimulated Brillouin Scattering, Bastien Steinbausser', Arnaud Brignon', Eric Lallier', Jean-Pierre Huignard', Patrick Georges'; 'Thales Res. and Technology France, France, ² Lab Charles Fahry de l'Inst. d'Optique, France. We present a large core Er:Yh co-doped fi- ber amplifier followed by a beam quality recovery system. The multimode output (220µJ, M2-6) is converted in a good qual- ity beam (M2=1.6, 110µJ) through SBS beam cleanup.	JFA6 • 9:30 a.m. Corrugated Plasma Waveguide: Slow Wave Structure for High Intensity Opti- cal Pulses, Brian Layer, Andrew York, Sanjay Varma, Yu-Hsin Chen, Howard Milchberg: Univ. of Maryland at College Park, USA. Up to 4 cm long corrugated plasma waveguides are generated in clus- tered hydrogen, nitrogen, and argon gas jets. The corrugation period is as short as 70µm with relative modulation amplitudes up to ~20%.	CFE6 • 9:30 a.m. Drawing-Induced Index Anisotropy in Single-Material Endlessly Single-Mode Microstructured Optical Fibers, Benoit Sevigny ¹ , Mathieu Faucher ² , Nicolas Godbout ¹ , Suzanne Lacroix ¹ ; ¹ Ecole Polytechnique de Montreal, Canada, ² TF Labs, Canada. We report evidence of fro- zen-in viscoelastic strain and viscosity gra- dient arising from fiber drawing of pure silica endlessly single-mode holey optical fiber through phase retardation measurements. Tomographic reconstruction indicates non- uniform stress distribution during cooling.	CFF7 • 9:30 a.m. Pulse Phase Reconstruction Using Opti- cal Ultrafast Differentiation, Fangxin Li, Yonguoo Park, José Azaña; Inst. Natl. de la Recherche Scientifique (INRS), Canada. We introduce a simple, linear technique based on all-optical temporal differentiation for recovering the phase profile of optical wave- forms from intensity measurements. We demonstrate characterization of low-power complex pulses in the sub-picosecond to nanosecond range.	QFA6 • 9:30 a.m. Multipolar Interference in Second-Order Responses of Gold Nanoparticles, Sami Kujala', Brian K. Canfield', Martti Kauranen', Yuri Svirko', Jari Turunen'; 'Tampere Univ. of Technology, Finland, 'Univ. of Joensuu, Finland. We demonstrate experimentally that higher multipole radia- tion constitutes up to 20% of the total sec- ond-harmonic field amplitude emitted by an array of gold nanoparticles.

9:45 a.m. – 10:15 a.m. COFFEE BREAK, 300 LEVEL FOYER

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		CLEO		JOINT
QFB • Spin Dynamics— Continued	CFG • Optical Trace Gas Detection—Continued	CFH • High- <i>Q</i> Microresonators and Devices I—Continued	CFI • High Power Fiber Lasers and Amplifiers— Continued	JFB • Joint Symposium on THz Spectroscopy— Continued
QFB6 • 9;30 a.m. Ultrafast Spin Dynamics in Manganese Doped GaN, Nils Janssen ¹ , Tim Thomay ¹ , Markus Beyer ¹ , Alfred Leitenstorfer ¹ , Ulrich Rüdiger ¹ , Rudolf Bratschitsch ¹ , Tobias Graf ² , Mario Gjukic ² , Martin S. Brandt ² ; ¹ Dept. of Physics and Cr. for Applied Photonics, Univ. of Konstanz, Germany, ² Walter Schottky Inst., Technische Univ. München, Germany. We perform time-resolved Faraday rotation measurements on GaMnN. For the first time, we are able to deliberately excite and probe the "Mn ²⁺ + hole" complex in this material.	CFG7 • 9:30 a.m. Petrochemical Gas Speciation Using a Rapid Widely-Tunable Mid-IR Laser Spectrometer, Douglas J. Bamford, Scott J. Sharpe, Aaron Van Pell, David J. Cook; Physical Sciences Inc., USA. Species mole fractions in a mixture of hydrocarbons were measured with an accuracy of better than 2% using a fast-sweeping, widely-tunable spectrometer based on difference-frequency generation in periodically poled lithium niobate waveguides.	CFH6 • 9:30 a.m. Photonic Crystals (PC) in Diamond: Cav- ity Q-Mode Volume Influence on the Design, Igal Bayn, Joseph Salzman; Technion, Israel. We present a qualitative analysis of mode volume influence on a pla- nar PC cavity Q in diamond. The results are supported by 3-D FDTD calculations on double heterostructures (DHs). The highest Q=135,000 is demonstrated.	CFI7 • 9:30 a.m. Mode Field Adaptation for High Power Fiber Lasers, Mathieu Faucher, Yannick K. Lize; ITF Labs, Canada. Low-loss all-fiber® mode field adapters for a variety of single and multimode fibers have been developed using a flexible fabrication technique. Com- bination of thermal-core-expansion and ta- pering characteristics ensures beam quality for fiber lasers and amplifiers.	JFB7 • 9:30 a.m. Observation of Soft-Mode Hardening and Broadening in SrTiO ₃ Thin Films by Broadband Terahertz Time-Domain Spectroscopy, <i>Ikufumi Katayama</i> , <i>Hirosbi</i> <i>Sbimosato</i> , <i>Masaaki Asbida</i> , <i>Iwao</i> <i>Kawayama</i> , <i>Masayosbi Tonoucbi</i> , <i>Tadashi</i> <i>Itob; Osaba Uniu., Japan</i> . Complex dielec- tric constants of SrTiO ₃ thin films have been measured using the broadband terahertz time-domain spectroscopy. The broad de- tection-bandwidth of the photoconductive antenna enables us to clarify soft-mode dis- persions as well as the TO ₂ mode.

9:45 a.m. – 10:15 a.m. COFFEE BREAK, 300 LEVEL FOYER

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	C L	E 0		JOINT	C L	E 0	QELS
10:15 a.m. – 12:00 p.m. CFJ • Yb Lasers Daniel J. Ripin; MIT Lincoln Lab, USA, Presider	10:15 a.m. – 12:00 p.m. CFK • Tapered Photonic Crystal Fibers Benjamin J. Eggleton; Univ. of Sydney, Australia, Presider	10:15 a.m. – 12:00 p.m. CFL • Optical Coherence Tomography Xingde Li; Univ. of Washington, USA, Presider	10:15 a.m. – 12:00 p.m. CFM • Miscellaneous NLO George Wong; Hong Kong Univ of Science & Technology, Hong Kong, Presider	10:15 a.m. – 12:00 p.m. JFC • Atoms and Molecules in Strong Fields Bernd Witzel; Univ. Laval, Canada, Presider	10:15 a.m. – 11:00 a.m. CFN • Quasi-Phase- Matched Materials/ Ferroelectrics Sunao Kurimura; Natl. Inst. for Materials Science, Japan, Presider	10:15 a.m. – 12:00 p.m. CFO • Ultrashort Pulse Characterization II Fiorenzo Omenetto; Los Alamos Natl. Lab, USA, Presider	10:15 a.m. – 12:00 p.m. QFC • Plasmons and Cavities Anvar Zakbidov; Honeywell Intl. Inc, USA, Presider
CEJ1 • 10:15 a.m. On-Chip, Ultra-Low Threshold Yb Silica Laser , <i>Eric P. Ostby, Lan Yang, Kerry J.</i> <i>Vabala; Callech, USA.</i> A novel Yb.SiO ₂ fi- ber-coupled laser on a silicon chip was fab- ricated using a solution-gel process. We re- port a record-low pump threshold of 2 μW, and discuss the practical advantages of Yb microlasers.	CFK1 • 10:15 a.m. Pulse Compression in Dispersion De- creasing Photonic Crystal Fiber, J. C. Travers', B. A. Cumberland', A. B. Rulkov', S. V. Popov', J. R. Taylor', J. M. Stone', A. K. George', J. C. Knight', 'Femtosecond Optics Group, Dept. of Physics, Imperial College, UK, 'Cr. for Photonics and Photonic Materials, Dept. of Physics, Univ. of Bath, UK. We re- port dispersion decreasing photonic-crystal- fibers for soliton compression at 1.06µm. Fibers 15-60m long with dispersion varying from 40-0ps.nm-1.km-1 were used to achieve compression ratios of over 15. Pulses of 655fs were compressed to 43fs solitons.	CFL1 • 10:15 a.m. Optical Coherence Tomography Phase Microscopy Using Buffered Fourier Do- main Mode Locked (FDML) Lasers at up to 370,000 Lines per Second, Desmond C. Adler ¹ , Robert Huber ¹ , James G. Fujimoto ¹ ; ¹ MIT, USA, ² Ludwig Maximilians Univ., Ger- many. Buffered FDML Lasers are applied for phase-sensitive sub-nanometer OCT phase microscopy and dynamic surface displace- ment measurements at speeds up to 370,000 axial lines per second. Excellent phase sta- bility is demonstrated at high speeds.	CFM1 • 10:15 a.m. First Experimental Demonstration of a SOA/DFB-LD Feedback Scheme Based All-Optical Flip-Flop, Wouter D'Oosterlinck', Geert Mortbier', Roel Baets', Jakob Buron', Flip Obmart', 'Dept. of In- formation Technology, Belgium, 'COM•DTU Dept. of Communications, Optics & Materi- als, Denmark. Dynamic optical flip-flop operation is observed using a DFB laser di- ode connected with a SOA. Switching times of 150ps for switch pulse energies of 6pJ and a repetition rate of 500MHz have been measured.	JFC1 • 10:15 a.m. Photoelectron Angular Distributions from the Single Atom Response to a Relativistic Laser Field, Anthony DiChiara, Isaac Gbebregziabiber, Rob Sauer, Barry C. Walker; Univ. of Delaware, USA. Photoelec- tron angular distributions were measured for argon atoms at intensities up to 5 1018W/ cm ² . It was found the isotropy increased with intensity and, at a fixed intensity, the low- est energy electrons exhibit the highest isot- ropy.	CFN1 • 10:15 a.m. Envited Ferroelectric Photonic Structures: Char- acterization and Device Demonstration, A. H. Kung ^{1,2} ; ¹ Inst. of Atomic and Molecu- lar Sciences, Academia Sinica, Taiwan, ³ Dept. of Photonics, Natl. Chiao-Tung Univ., Taiwan. Novel optical devices made pos- sible by advances in the development of ferroelectric photonic structures are de- scribed. The devices include a monolithic RGB light source, a tunable UV source, and devices created from 2-D photonic struc- tures.	CFO1 • 10:15 a.m. Spatio-Temporal and Interferometric Characterisation of Sub-5-fs Pulses Ob- tained by Filamentation, Annalisa Guandalini ¹ , Amelle Zair ¹ , Florian Schapper ¹ , Mirko Holler ¹ , Lukas Gallmann ¹ , Jens Biegerl ¹ , Ursula Keller ¹ , Arnaud Couairon ² , Micbel Franco ³ , Andre Mysyrowicz ² ; ¹ Physics Dept., ETH Zurich, Switzerland, ² Ecole Polytechnique, France. We demonstrate new world-record pulse dura- tion of only 4.9 fs with filamentation pulse compression, performed full spatio-tempo- ral characterization and used an interfero- metric technique to experimentally deter- mine the plasma concentration in the fila- ment.	QFC1 • 10:15 a.m. Enhancement of Luminescence Effi ciency Using Surface Plasmor Polaritons, Greg Sun ¹ , Jacob B. Khurgin ² Richard A. Soref ⁵ ; ¹ Univ. of Massachusett at Boston, USA, ² Johns Hopkins Univ., USA ³ AFRI, USA. Using GaN/Ag system, our rig orous theory shows that the enhancemen of spontaneous emission from a light-emit ting device via coupling with the surface plasmon polaritons pays off only for emit ters that have low luminescence efficiency
CFJ2 • 10:30 a.m. Compact Multi-Pass Ring Laser Using LHPG-Grown Yb:YAG Crystal Fiber, Jui- Yun Yi ¹ , Kuang-Yao Huang ² , Chien-Chib Lat ¹ , Hsin Peng ² , Li-Hsuan Chen ² , Jian- Cheng Chen ² , Sheng-Lung Huang ^{1,3} ; 'Graduate Inst. of Electro-Optical Engineer- ing, Natl. Taiwan Univ., Taiwan, ² Inst. of Electro-Optical Engineering, Natl. Sun Yat- Sen Univ., Taiwan, ³ Dept. of Electrical Engi- neering, Natl. Taiwan Univ., Taiwan. Yb:YAG crystal fiber was fabricated by la- ser-heated pedestal growth method for the first time. It was applied in a multi-pass ring laser with 54.7% slope efficiency, which is higher than 50.3% of using bulk Yb:YAG.	CFK2 • 10:30 a.m. Up-Tapering of Optical Fibers Using a Conventional Flame Tapering Rig, George Kakarantzas, Luis Prill-Sempere, Philip St.J Russell; Max-Planck Res. Group (IOIP). Univ. of Erlangen-Nuremberg, Ger- many. We demonstrate the fabrication of low-loss up-tapers in SMF-28 using a con- ventional tapering rig. Waist diameters of 240 µm, uniform over several cm, have been produced. The technique also works for photonic crystal fibers.	CFL2 • 10;30 a.m. High-Resolution OCT Balloon Catheter for Systematic Imaging of the Esopha- gus, Henry L. Fu ¹ , Micbael J. Cobb ¹ , Yuxin Leng ¹ , Daniel J. MacDonald ¹ , Joo Ha Huang ² , Xingde Li ¹ ; 'Dept. of Bioengineer- ing, Univ. of Wasbington, USA, ² Dept of Medicine (GI division), Univ. of Wasbing- ton, USA. An OCT balloon imaging cath- eter was developed using small compound rod lenses to achieve superb lateral resolu- tion at a large working distance. The bal- loon catheter enables systematic assessment of human esophagus for Barrett's screen- ing.	CFM2 • 10:30 a.m. Room Temperature Semiconductor Source of Twin Photons, Loic Lanco', Sara Duci', Jean-Pierre Likforman ¹ , Xavier Marcadet ² , Jeroen Van Houwelingen ³ , Hugo Zbinden ³ , Gluseppe Leo ¹ , Vincent Berger ¹ ; ¹ Lab Matériaux et Pbénomènes Quantiques, France, ² Alcatel-Tbales III-V Lab, France, ³ Unit. de Genève, Suitzerland. We present an integrated source of twin photons in the telecom range based on the generation of parametric fluorescence in a semiconduc- tor waveguide. Time-correlation and spec- tral measurements are performed on this new type of source.	JFC2 • 10:30 a.m. Intense Field Ionization of Methane, Butane, and Octane: Transition from Molecular to Atomic Response, Sasi Palaniyappan, Rob Mitchell, Rob Sauer, Barry C. Walker, Univ. of Delaware, USA. Ionization yields of C ^{ta} (n<6) from the ion- ization of methane, butane, pentane, and octane are measured from 10 ¹³ W/cm ² to 10 ¹⁶ W/cm ² , as one reaches 10 ¹⁶ W/cm ² the molecular response becomes atomic-like.		CFO2 • 10:30 a.m. Spectral Shearing Interferometry with Spatially Chirped Beams, Simon-Pierre Gorza, Piotr Wasylczyk, Ian A. Walmsley; Oxford Univ., UK. We demonstrate a new SPIDER implementation relies on the two- dimensional interferogram between two spatially chirped pulse replicas. The device calibration and the spectral phase recon- struction for various shear values are per- formed from a single interferogram.	QFC2 • 10:30 a.m. Nano-Optics for Chemical and Materials Characterization, Michael R. Bevershuis Stephan J. Stranick; NIST, USA. We have developed a hybrid microscope which com bines structured-illumination technique with Raman-spectroscopy to record 100 nn resolution images with chemically-specific contrast. We will show images of semicon ductor nanostructures and discuss the technique's advantages and requirements.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		C L	E 0	
10:15 a.m. – 12:00 p.m. QFD • Dynamics of Dots, Wires and Tubes Carlo Piermarocchi; Michigan State Univ., USA, Presider	10:15 a.m. – 11:15 a.m. CFP • PMD and Microwave Photonics P. K. A. Wai; Hong Kong Polytechnic Univ., Hong Kong, Presider	10:15 a.m. – 12:00 p.m. CFQ • High- <i>Q</i> Microresonators and Devices II Susumu Noda; Kyoto Univ., Japan, Presider	10:15 a.m. – 12:00 p.m. CFR • Ultrashort Pulse Microfabrication and Ablation Andreas Ostendorf; Laser Zentrum Hannover e.V., Germany, Presider	10:15 a.m. – 12:00 p.m. CFS • THz Spectroscopy Richard D. Averitt; Los Alamos Natl. Lab, USA, Presider
QFD1 • 10:15 a.m. Acoustic Phonon Damping of Rabi Os- cillations in In(Ga)As Quantum Dots, Thomas Müller, Thomas Moldaschl, Sebastian Golka, Gottfried Strasser, Karl Unterrainer; Inst. of Photonics and Ctr. for Micro- and Nanostructures, Austria. Exci- tonic ground state Rabi oscillations in In(Ga)As quantum dots are studied via an ultrafast spectral hole burning technique. From comparison with frequency domain data we find that acoustic phonon-induced dephasing processes damp the oscillations.	CFP1 • 10:15 a.m. High Speed, Broadband PMD Measure- ments via Efficient Spectral Polarimetry, <i>Li Xu, Sbawn X. Wang, Andrew M. Weiner,</i> <i>ECE Purdue Univ., USA.</i> We experimentally demonstrate near-real-time broadband Po- larization Mode Dispersion (PMD) measure- ments utilizing high speed spectral polarim- etry. PMD was calculated and compared using three established methods.	CFQ1 • 10:15 a.m. Invited Photon Trapping, Delaying and Dy- namic-Control Using Ultra-Small High- Q Photonic Crystal Cavities, Takasumi Tanabe, Masaya Notomi, Eitöhi Kuramochi, Akibiko Sbinya, Hideaki Taniyama; NTT Basic Res. Labs, NTT Corp., Japan. By em- ploying ultra-small high-Q photonic crystal nanocavities, we demonstrated 1-ns photon trapping and 1.45-ns pulse delaying. The corresponding light speed is 5,800 km/s. We also demonstrated dynamic tuning of the Q within the photon lifetime.	CFR1 • 10:15 a.m. Invited Micro and Nanostereolithography for Production of Lab-on-a-Chip Devices, Sboji Maruo ^{1,2} , ¹ Yokobama Natl. Univ., Ja- pan, ² PRESTO, Japan Science and Technol- ogy Agency, Japan. All optically controlled biochips have been developed by using two- photon microstereolithography. The biochips contains optically driven micromachines such as micropumps and micromanipula- tors. The versatile biochip offers advanced processes in chemical synthesis and cell analysis.	CFS1 • 10:15 a.m. Invited Terahertz Time-Domain Spectroscopy of Crystalline and Aqueous Systems, Peter U. Jepsen ¹ , Uffe Møller ¹ , Finn Eichborn Hannes Merbold ² , Jacob R. Folkenberg Stewart Clark ¹ , 'Technical Univ. of Denmark Denmark, ² Freiburg Univ., Germany, ² For Analytical A/S, Denmark, ⁴ Univ. of Durban UK. We use ab-initio Density-Functiona Perturbation Theory together with THz spect troscopy for precise prediction and assign ment of vibrational modes in molecular crys- tals. We show that THz spectroscopy is use ful for analysis of liquids and food procu ucts.
QFD2 • 10:30 a.m. Fast Intraband Capture and Relaxation in InAs/GaAs Self-Assembled Quantum Dots, Evgeny A. Zibik ¹ , Stefan Menzel ¹ , Pantelis Aivaliotis ¹ , Ben A. Carpenter ¹ , John W. Cockburn ¹ , Maurice S. Skolnick ¹ , Luke R. Wilson ¹ , Thomas Grange ² , Robson Ferreira ² , Gerald Bastard ² , Dominik Stebr ³ ,	CFP2 • 10:30 a.m. Broadband All-Order Polarization Mode Dispersion Compensation by Character- ization and Inversion of Jones Matrices on a Wavelength-by-Wavelength Basis, Houxun Miao', Andrew M. Weiner', Leo Mirkin ² , Peter J. Miller ² , 'Purdue Univ., USA, ² CRI Inc, USA. We demonstrate full polar-			

 Stepban Winnerf³, Manfred Helm³, Mattbew
 ization mode dispersion (PMD) compensation of subpicosecond pulses passing

 J. Steer⁴, Mark Hopkinson⁴, ¹Dept. of Physics
 iad Astronomy, Univ. of Sbeffield, UK, ²Ecole

 through a PMD module with ~ 5.5 picosec through a PMD module with ~ 5.5 picosec

Normale Supérieure, France, ³Forschungszentrum Rossendorf, Germany, ⁴EPSRC Natl. Ctr. for III-V Technologies, UK. Electron cap-

ture and relaxation processes in n-type InAs/ GaAs quantum dots were investigated using mid-infrared degenerated pump-probe spectroscopy. Fast (~4-10ps) intraband relaxation/capture times were measured even

in the absence of electron-hole scattering.

onds mean differential group delay (DGD) by wavelength-by-wavelength characteriza-

tion and inversion of Jones matrices.

CLEO/QELS and PhAST 2007, May 6-11, 2007 • Baltimore Convention Center, Baltimore, Maryland

NOTES

ROOM 318-320	ROOM 321-323	ROOM 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	C L	EO		JOINT	C L	E 0	QELS
CFJ • Yb Lasers— Continued	CFK • Tapered Photonic Crystal Fibers—Continued	CFL • Optical Coherence Tomography—Continued	CFM • Miscellaneous NLO—Continued	JFC • Atoms and Molecules in Strong Fields— Continued	CFN • Quasi-Phase- Matched Materials/ Ferroelectrics—Continued	CFO • Ultrashort Pulse Characterization II— Continued	QFC • Plasmons and Cavities—Continued
CFJ3 • 10:45 a.m. Segmented Growth of Monoclinic Yb.KY(WO ₄) ₂ /KY(WO ₄) ₂ and Its Laser Operation, Simon Rivier ¹ , Valentin Petror ¹ , Uwe Griebner ¹ , Andreas Gross ² , Sopbie Vernay ² , Volker Wesemann ² , Daniel Rytz ² ; ¹ Max-Born-Inst., Germany, ² FEE GmbH, Germany. Composite Yb.KY(WO ₄) ₂ grown on KY(WO ₄) ₂ substrates by segmented growth showed highly efficient continuous- wave laser operation with slope efficiencies as high as 80% and 375 mW output power was demonstrated.	CFK3 • 10:45 a.m. Tutorial Photonic Crystal Fiber Tapers and De- vices, <i>Tim Birks</i> , <i>Univ. of Bath, UK.</i> Taper- ing (heat treatment after fabrication) can radically change the properties of photonic crystal fibres over centimetre lengths. Such transitions give useful fibre devices, includ- ing low-loss interfaces to dissimilar fibres, waveguides and other optical systems.	CFL3 • 10:45 a.m. Unvited Advances in Optical Coherence Tomog- raphy: Frequency Domain Technology and Applications, Seok-Hyun (Andy) Yun; Harvard Medical School and Wellman Ctr., Massachusetts General Hospital, USA. Fre- quency-domain optical coherence tomog- raphy, using rapidly-swept tunable lasers, offers dramatically-improved imaging speeds and opens up new applications such as com- prehensive microscopy in living patients. This talk reviews these recent advances.	CFM3 • 10:45 a.m. 3-D Integration of Continuum Generation and Carving on a Silicon Chip, Prakasb Koonath, Babram Jalali; Dept. of Electrical Engineering, Univ. of California at Los Angeles, USA. An attempt at creating a multi-wavelength silicon light source is reported. Self phase modulation is used to broaden the spectrum of an off-chip seed pulse. The spectrum is filtered into discrete channels using vertically-coupled micro- resonators.	JFC3 • 10:45 a.m. Single-Shot Time Resolved Measurement of Molecular Alignment in Laser-Irradi- ated Gases, Sanjay R. Varma ¹ , Yu-bsin Chen ¹ , Houard M. Milchberg ¹ , Ilya Alexeer ² ; ¹ Univ. of Maryland, USA, ² Advanced Tech- nologies and Applications, Inc., USA. We present single-shot direct measurements of nonlinear refractive index temporal dynam- ics as effective way to determine instanta- neous and non-instantaneous Raman con- tribution to n2 in molecular gases in the presence of high-intensity femtosecond la- ser pulses.	CFN2 • 10:45 a.m. High Power Continuous-Wave Green Light Generation by Quasi Phase Match- ing in MgSLT, Sergey Tovstonog, Sunao Kurimura, Kenji Kitamura; Natl. Inst. for Materials Science (NIMS), Japan. Single-pass second-harmonic generation of 7 W CW 542 nm radiation with 35.4% efficiency was achieved by QPM in Mg:SLT. The effects of laser linewidth on the SHG efficiency were investigated using a Yb-doped fiber laser.	CFO3 • 10:45 a.m. Directly Measuring the Spatio-Temporal Electric Field of Ultrashort Pulses in and near a Focus, Pamela Bowlan, Pablo Gabolde, Rick Trebino; School of Physics, Georgia Tech, USA. We present the first measurements of the spatio-temporal inten- sity and phase of an ultrashort pulse in and near a focus. Our method uses a variant of spectral interferometry (SEA TADPOLE) that we recently introduced.	QFC3 • 10:45 a.m. Effect of Surface Plasmon Polaritons on Optical Activity in Chiral Metal Nanogratings, Kuniaki Konisbi ¹ , Tomobiro Sugimoto ¹ , Konstantins Jefimous ² , Yuri Suriko ³ , Makoto Kuwata-Gonokami ¹ , ¹ Uniu. of Tokyo, Japan, ² Paul Scherrer Inst., Swit- zerland, ² Uniu. of Joensuu, Finland. A rela- tion between the optical activity and the coupling of SPP modes localized at the dif- ferent interfaces of a chiral nanograting is obtained from the dependence of the po- larization rotation on the angle of incidence.
CFJ4 • 11:00 a.m. Tunable Laser Operation of Yb:NAY(WO ₄) ₂ , Xavier Mateos ¹ , Simon Rivier ¹ , Uwe Griebner ¹ , Valentin Petrov ¹ , Alberto García-Cortés ² , José M. Cano-Torres ² , María D. Serrano ² , Concepción Cascales ² , Carlos Zaldo ² , ¹ Max-Born-Inst., Germany, ² Inst. de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Spain. CW laser operation of Yb ^{3*} in a Czochralski-grown disordered NaY(WO ₄) ₂ crystal is demonstrated. The tunability extends from 1003.7 to 1073 nm. The maximum slope efficiency and output power are 74.6% and 463 mW, respectively.			CFM4 • 11:00 a.m. Generation of Continuous-Wave 17.6 THz Pulse Train, Shin-ichi Zaitsu ¹ , Chibiro Esbima ¹ , Kazuki Ibara ¹ , Totaro Imasaka ¹ , ² ; ¹ Dept. of Applied Chemistry, Kyushu Uniu., Japan, ² Ctr. for Future Chemistry, Kyushu Uniu., Japan. We demonstrated that 17.6-THz pulse-like intensity modulation arising from the coherent superposition of multifre- quency continuous-wave emissions gener- ated from a hydrogen-filled high-finesse cavity through a cascade stimulated Raman scattering process.	JFC4 • 11:00 a.m. Invited High Field Physics with XUV Pulses from the Free Electron Laser in Hamburg: Atoms and Clusters, Hubertus Wabnitz ¹ , Cbristoph Bostedt ² , Tim Laarmann ³ , Ekaterina Eremina ² , Mattbias Hoener ² , Heiko Thomas ³ , Rubens de Castro ¹ , Joachim Scbulz ³ , Thomas Möller ² , Kai Tiedtke ¹ , Andrei A. Sorokin ⁶ , ⁷ , Mathias Richter ² ; ¹ Hasylab at DESY, Germany, ³ Max-Born-Inst., Germany, ⁴ Brazilian Syncbotron Source LNLS, Brazil, ⁵ MAX-lab, Sweden, ⁶ Ioffe Physico-Technical Inst., Russian Federation, ⁷ Physikalisch-Technischen Bundesanstalt (7TB), Germany. Irradiation of clusters with intense VUV radiation pulses has shown unexpected high energy deposition and ionisation mechanisms different from the optical regime. The extension to shorter wavelengths (XUV) enables the direct ionisation of innershell electrons.	CFN3 • 11:00 a.m. E/O Tunable Second-Harmonic-Genera- tion Gratings in Ion-Exfoliated Thin Films of Periodically Poled LiNbO ₃ , Djordje Djukic ¹ , Guiem Cerda-Pons ¹ , Ryan M. Rotb ¹ , Ricbard M. Osgood ¹ , Sasba Bakbru ² , Hassaram Bakbru ² , ¹ Columbia Univ., USA, ² College of Nanoscale Science and Engineering, State Univ. of New York at Albany, USA. We demonstrate for the first time that thin, single-crystal films fabricated by ion-exfoliation of a bulk PPLN crystal will reduce tuning voltage for electro-optically tunable harmonic generation in PPLN de- vices.	CFO4 • 11:00 a.m. Exact Solution for Sub-Cycle Pulsed Fo- cused Vector Beams, Qiang Lin ^{1,2} , Jian Zheng ¹ , Wilbelm Becker ² ; ¹ Zbejiang Univ., China, ² Max-Born-Inst, Germany. An ac- curate description of a sub-cycle pulsed beam is presented, which are exact solu- tions of Maxwell's equations, and applicable to a focused pulsed beam with a pulse du- ration down to and below one cycle.	QFC4 • 11:00 a.m. Surface Plasmon Cavity Ring Down, Eric R. Eliel, Nikolay V. Kuzmin, Gert W. † Hooft; Leiden Univ., Netberlands. We experimen- tally explore the dynamics of surface plasmons propagating along a smooth gold film as they bounce between two sub-wave- length slits. We observe ring-down features reminiscent of an optical beam in a Fabry- Perot resonator.

Friday, May 11

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		C L	EO	
QFD • Dynamics of Dots, Wires and Tubes— Continued	CFP • PMD and Microwave Photonics—Continued	CFQ • High- <i>Q</i> Microresonators and Devices II—Continued	CFR • Ultrashort Pulse Microfabrication and Ablation—Continued	CFS • THz Spectroscopy— Continued
QFD3 • 10:45 a.m. Spin Relaxation in Charge Tunable InP Quantum Dots, Yasuaki Masumoto, Bipul Pal, Shubei Oguchi, Michio Ikezaua; Inst. of Physics, Univ. of Tsukuba, Japan. Opti- cally pumped spins of doped electrons are partially preserved up to submillisecond and its dephasing time is 1.7ns. Spin relaxation in charge tunable InP quantum dots was extensively studied by dynamical and static optical orientation.	CFP3 • 10:45 a.m. Optical Control of Microwave Phase, Marc Currie, Janet W. Lou, Jgor Vurgafiman; NRI, USA. The detected phase of a micro- wave signal modulated on an optical car- rier can be modified by driving the photo- detector into saturation. We demonstrate a phase change of ~60 degrees at 20 GHz.	CFQ2 • 10:45 a.m. Ultra Fast Nonlinear Optical Tuning of Photonic Crystal Cavities, Ilya Fushmarl, Dirk Englund ¹ , Jelena Yuckovic ¹ , Edo Waks ² , Nick Stoltz ³ , Pierre Petroff ⁵ , ¹ Stanford Univ., USA, ² Univ. of Maryland, USA, ³ Univ. of Cali- fornia at Santa Barbara, USA. We demon- strate fast (up to 20 GHz), low power (5 microwatt) modulation of photonic crystal cavities in GaAs containing InAs quantum dots. Modulation is achieved via free carrier injection by an above-band picosecond la- ser pulse.	CFR2 • 10:45 a.m. Variable Pressure Hollow-Core Band- Gap Fiber Cell Produced Using Fentosecond Laser Micromachining, Christopher J. Hensley, Daniel H. Broaddus, Chris B. Schaffer, Alexander L. Gaeta; Cornell Univ., USA. We fabricate a high-trans- mission, variable-pressure gas fiber cell that can operate at low and high pressures. The cell is formed by using fentosecond pulses to drill micrometer-diameter radial capillar- ies through a hollow-core photonic band- gap fiber.	CFS2 • 10:45 a.m. Accurate Modeling of Inter- and Intra- molecular Interactions in 1,4- phydroxynaphthalene in the 0.5-6 Terahertz Region, Carlito S. Ponseca ^{1,2} , Marilou Cadatal ^{1,2} , Romeric Pobre ³ , Reuben Quiroga ² , Hidetosbi Murakami ⁴ , Sbingo On ⁵ , Nobubiko Sarukura ⁴ , Junichi Nisbizaua ⁶ , Ken Suto ⁶ , Tetsuo Sasak ⁶ , Tabenori Tanno ⁶ , Keisuke Tominaga ² , ¹ Inst. for Molecular Science, Japan, ² Graduate Univ. for Advanced Studies, Japan, ³ De La Salle Univ., Philippines, ⁴ Inst. of Laser Engi- neering, Osaba Univ., Japan, ⁵ Nagoya Inst. of Technology, Japan, ⁶ Semiconductor Res. Inst., Japan, ⁷ Molecular Photoscience Res. Ctr., Kobe Univ., Japan, Semi-empirical cal- culations successfully predicted the terahertz (THz) absorption spectrum associated with intra- and intermolecular interactions in 1,4- dihydroxynaphthalene. Results are in excel- lent agreement with spectroscopy data in the 0,5-6 THz region using GaP wave THz source.
QED4 • 11:00 a.m. Excitonic and Semiconductor Bloch Equation Approaches to Carrier Dynam- ics in Semiconductors, Dauev Wang, Marc M. Dignam; Queen's Univ., Canada. We compare the ultrafast optical response of a nanoring using the semiconductor Bloch equations and our excitonic equations, where phase space filling is included. We demonstrate the potential advantages of the excitonic approach.	CFP4 • 11:00 a.m. Hybrid Optical Access Network Integrat- ing Baseband and Radio Signals Trans- mitted on a Single Wavelength, Chun- Ting Lin ¹ , Peng-Chun Peng ² , Jason (Jyebong) Chen ¹ , Cheng-Feng Peng ² , Wei-Ren Peng ¹ , Bi-Sbiou Chiou ³ , Sien Chi ^{1,4} , ¹ Inst. of Electro- Optical Engineering, Natl. Chiao-Tung Univ., Taiwan, ² Natl. Chi Nan Univ., Tai- wan, ³ Dept. of Electronics Engineering and Inst. of Electronics, Natl. Chiao-Tung Univ., Taiwan, ⁴ Yuan Ze Univ., Taiwan. We pro- pose a hybrid optical access network inte- grating FTTH and RoF systems sharing a single distributed infrastructure. After trans- mission over 50km optical fiber, power pen- alties of baseband and RF signals are less than 0.2dB.	CFQ3 • 11:00 a.m. Free UH-Q Microtoroids, New Tools for Designing Photonic Devices, Mani Hosein-Zadeb, Kerry J. Vabala; Callech, USA. We describe techniques that enable fabrication of free UH-Q silica microtoroids. Preliminary results show that free resona- tors with Qs above 30 million can be fabri- cated and transferred to different platforms for integration with photonic devices.	CFR3 • 11:00 a.m. Heat Accumulation Effects in Fem- tosecond Laser Ablation of ITO Thin Films for DEP Trapping Devices , <i>M. Y.</i> <i>Xu, S. A. Hosseini, H. Zhang, S. M. Eaton, L.</i> <i>D. Lilge, P. R. Herman; Univ. of Toronto,</i> <i>Canada.</i> Heat accumulation effects, during high repetition rate (0.1 to 2.0 MHz) Yb fi- ber femtosecond laser ablation of transpar- ent ITO films, are advantageous to pattern transparent microelectrodes for dielectrophoretic trapping of micropheres on a biochip.	CFS3 • 11:00 a.m. High Resolution Terahertz Spectroscopy of Organic Polycrystalline Thin Films Using a Parallel Metal Plate Waveguide, Josepb S. Melinger ¹ , N. Laman ² , S. Sree Harsba ² , D. Griscbkowsky ² , ¹ /NRL, USA, ² Oklaboma State Univ., USA. A vibrational line narrowing effect is observed for organic polycrystalline films cast onto the surface of a parallel plate waveguide and results in a more informative THz absorption spec- trum when compared to conventional THz spectroscopy.

Friday, May 11

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	C L	EO		JOINT	C L	E 0	QELS
CFJ • Yb Lasers— Continued	CFK • Tapered Photonic Crystal Fibers—Continued	CFL • Optical Coherence Tomography—Continued	CFM • Miscellaneous NLO—Continued	JFC • Atoms and Molecules in Strong Fields— Continued	CFN • Quasi-Phase- Matched Materials/ Ferroelectrics—Continued	CFO • Ultrashort Pulse Characterization II— Continued	QFC • Plasmons and Cavities—Continued
CFJ5 • 11:15 a.m. Composite Yb:YAG/Cr:YAG Ceramics Self-Q-Switched Laser, Jun Dong ¹ , Akira Shirakawa ¹ , Ken-ichi Ueda ¹ , Hideki Yagi ² , Takagimi Yanagitani ² , Alexander A. Kaminskii ³ ; ¹ Inst. for Laser Science, Univ. Electro-Communications, Japan, ³ Inst. of Crystallography, Russian Acad. of Sciences, Russian Federation. Composite Yb:YAG/ Cr:YAG ceramics was fabricated successfully by using vacuum sintering technique and nanocrystalline technology. Self-Q-switched lasers with pulse energy of 125 µJ, and peak power of 105 kW have been demonstrated for the first time.		CFL4 • 11:15 a.m. Real-Time Imaging of Biological Tissues Using High Resolution Line-Scanning Optical Coherence Microscopy, Yu Chen, Shu-Wei Huang, Aaron D. Aguirre, James G. Fujimoto; MIT, USA. A novel line-scan- ning optical coherence microscope with 2µm x 3µm resolution (transverse x axial), 250µm x 250µm field of view, and 90 dB sensitivity is presented for real time, cellular level im- aging.	CFM5 • 11:15 a.m. Envited Energy Harvesting in Silicon Photonics, <i>Babram Jalali, Sasan Fathpour, Kevin K.</i> <i>Tsia; Univ. of California at Los Angeles, USA.</i> Two-photon absorption is the central prob- lem in silicon photonic devices. Two-pho- ton photovoltaic effect can be used to har- vest the lost optical power into useful elec- trical power.		CFN4 • 11:15 a.m. Broadly Tunable mW Level UV Light Generated by Intracavity SFG in a Com- pact High-Q PPMgSLT OPO, Sbib-Yu Tu ¹ , A. H. Kung ¹ , ² , Sunao Kurimura ³ , Kenji Kitamura ³ , Takesbi Ikegami ⁴ ; ¹ Inst. of Atomic and Molecular Sciences, Academia Sinica, Taiwan, ² Dept. of Pbotonics, Natl. Cbiao- Tung Univ., Taiwan, ³ Natl. Inst. of Advanced Industrial Science and Technology, Japan. A compact multi-kHz UV source tunable from 363nm to 378nm is realized by intracavity SFG in a PPMgSLT OPO. Phase- matched peaks at 334nm and 370nm are observed. A full tuning range of ~58nm is predicted.	CFO5 • 11:15 a.m. Direct UV Pulse Shaping Applied to 3ps Square and Parabolic Pulses, Thomas Oksenbendler ¹ , Nicolas Forget ¹ , David Garzella ² , Olivier Gobert ² , Richard Herzog ¹ , Pbilippe Hollander ² , Fabien Lepetit ² ; ¹ Fastlite, France, ² CEA SPAM, France. Direct UV pulse shaping of square pulses and their measure- ments are experimentally demonstrated and discussed. We focus on single shot measure- ment and pulse shaping accuracy.	QFC5 • 11:15 a.m. Colloidal Quantum Dots in High-Q Pil- lar Microcavities, Mattbias Kabl ¹⁷ , Tim Tbomay ¹ , Verena Kobnle ¹ , Katja Beba ¹ , Joerg Merlein ¹ , Mattbias Hagner ¹ , Andres Halm ¹ , Alfred Leitenstorfer ¹ , Rudolf Bratscbitscb ¹ , Jan Ziegler ³ , Tbomas Nam ² , Yurij Fedutik ¹ , Mikbail Artemyev ³ , Ulrike Woggon ³ , Fabian Pérez-Willard ¹ , 'Univ. Konstanz, Germany, ² Materialforschungsinstitut Freiburg, Ger- many, ³ Univ. Dortmund, Germany, ⁴ Lab fuer Elektronenmikroskopie, Univ. of Karlsrube, Germany. We have fabricated high-Q pillar resonators with colloidal CdSe/ ZnS quantum dots or rods as light emitters by focused ion beam milling. Cavities with elliptical cross section show higher Q-val- ues compared to circular resonators.
CFJ6 • 11:30 a.m. Up-Conversion to the Conduction Band in Highly Doped Yb:YAG and Yb:Y ₂ O, and Its Effect on Thin-Disk Lasers, Susanne T. Fredricb-Thornton ¹ , ² , Jean- Francois Bisson ¹ , Dmitrii Kouznetsou ¹ , Ken- icbi Ueda ¹ , Klaus Petermann ² , Guenter Huber ³ , ¹ Inst. of Laser Science, Japan, ² Insilut fuer Laser-Physik, Germany. The photocon- ductivity of high Yb-concentration YAG and Y ₂ O ₃ samples has been measured, confirm- ing the occurrence of up-conversion in these materials. High intensity pumping reveals a very broadband emission spectrum that ex- hibits avalanche behaviour.		CFL5 • 11:30 a.m. Novel S+C+L Broadband Source Based on Semiconductor Optical Amplifiers and Erbium-Doped Fiber for Optical Coherence Tomography, David Beitel ¹ , Lionel Carrior ² , Ka-Lun Lee ² , Apurva Jain ¹ , Lawrence R. Chen ¹ , Romain Maciejko ² , Thas A. Nirmalathas ³ ; 'Dept. of Electrical and Computer Engineering, McGill Univ., Canada, ² Dept. de Génie Physique, Ecole Polytecbnique de Montreal, Canada, ³ Dept. of Electrical and Electronics Engineering, Univ. of Melbourne, Australia. We have de- veloped a novel, spectrally-falt S+C+L band source with > 120 nm bandwidth and 4 mW output power based on semiconductor op- tical amplifiers and an Erbium-doped fiber amplifier for optical coherence tomography imaging applications.		JFC5 • 11:30 a.m. Dramatic Enhancement of High-Order Harmonic Generation in Mixed Gases, <i>Eiji J. Takabashi', Tsuneto Kanai', Yasuo</i> <i>Nabekawa', Katsumi Midorikawa', Kenichi L. Ishikawa^{2,3}; 'IKKEN, Japan, ²Unit. of To- kyo, Japan, ³PRESTO (Precursory Res. for Embryonic Science and Technology), Japan. We demonstrate experimental evidence of the dramatic enhancement effect in a pro- cess of high-order harmonic generation. The harmonic yield generated from He atoms increased by a factor of 4000 with booster high-order harmonics from Xe.</i>	CFN5 • 11:30 a.m. Thin Film Pyrolectric Detector Coated with Multiwall Carbon Nanotubes: Ab- sorptivity and Frequency Response, John H. Lebman ¹ , Katherine E. Hurst ¹ , Antonije M. Radojevic ² , Anne C. Dillon ⁷ , Richard M. Osgood ¹ ; ¹ NIST, USA, ² Charles Stark Draper Lab, USA, ³ Natl. Renewable Energy Laboratory, USA, ⁴ Columbia Univ., USA. The spectral responsivity (600 nm to 1800 nm) of a pyroelectric detector fabricated from crystal ion slicing (CIS) is enhanced by a MWNT coating without substantial penalty to the low-frequency response (4 to 100 Hz).	CFO6 • 11:30 a.m. Shaped Ultrafast Laser Pulses in the Deep Ultraviolet, <i>Brett J. Pearson, Thomas</i> <i>C. Weinacht; Stony Brook Univ., USA.</i> We use an acousto-optic pulse shaper to programmably control the phase and am- plitude of femtosecond laser pulses in the deep ultraviolet (260 nm). These pulses will be used in molecular coherent control ex- periments.	QFC6 • 11:30 a.m. Surface Plasmon Cavities for Solid-State Cavity Quantum Electrodynamics, <i>Yiyang Gong, Jelena Vuckovic; Stanford Univ, USA.</i> We propose a cavity based on surface plasmon modes confined by metal- lic distributed Bragg reflectors and analyze the interaction of the cavity mode with quan- tum dots (QD). The system exhibits strong Purcell enhancement.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341
QELS		C L	E 0	
QFD • Dynamics of Dots, Wires and Tubes— Continued		CFQ • High- <i>Q</i> Microresonators and Devices II—Continued	CFR • Ultrashort Pulse Microfabrication and Ablation—Continued	CFS • THz Spectroscopy— Continued
QFD5 • 11:15 a.m. Chiral-Selective Excitation of Lattice Vi- brations in Carbon Nanotubes Using Femtosecond Pulse Shaping , Kiju Yee', Ji-Hee Kim', Yong-Sik Lin?, Erik H. Haroz ⁵ , Kang-Jeon Han', Junicbiro Kono', Robert H. Hauge', Richard E. Smalley ⁵ , 'Chungnanm Natl. Univ., Republic of Korea, ³ Rice Univ., USA. Multiple pulse trains produced by femtosecond pulse shaping were used for chiral-selective excitation of coherent radial breading modes (RBM) in carbon nanotubes. Detection scheme and chirality-dependent phonon lifetimes are discussed.		CFQ4 • 11:15 a.m. Demonstration of Silicon Microdisk Resonators Compatible with Active In- tegration: Ultra-high Q and Efficient Waveguide Resonator Coupling, Moham- mad Soltani, Siva Yegnanarayanan, Ali Adibi; Georgia Tech, USA. Silicon-on-insu- lator microdisk resonators with efficient pla- nar-integrated input-output coupling are demonstrated. Two structures of fully-etched and partially-etched microdisk-on-substrate, compatible with active integration are fab- ricated and compared. Experimental qual- ity factors about 2.5x106 and critical cou- pling are observed.	CFR4 • 11:15 a.m. Combining 5-D Microscopy with 3-D Femtosecond Laser Nanoprocessing, Jianzbao Li, Peter R. Herman, Shane Eaton, Haibin Zbang, Amir H. Najadmalayeri, Abbas Hosseini; Univ. of Toronto, Canada. An ultrafast-laser optical system is presented that combines nano-machining at high pulse energy (~1u]) with five-dimensional (xyz, time, wavelength) optical microscopy at low energy (~1n]) to enable on-the-fly and post- process optimization of femtosecond laser interactions.	CFS4 • 11:15 a.m. Narrow-Line THz Absorption Spectra of Deoxycytidine and D-Glucose Films in Parallel Plate Waveguides, Norman Laman ¹ , Sree Harsba Srikantaiab ¹ , Daniel Grischbausky ¹ , Joseph S. Melinger ² ; ¹ Okla- boma State Univ., USA, ² NRL, USA. THz ab- sorption spectra of planar polycrystalline films of Deoxycytidine and D-Glucose were measured at 295 K and 77 K via parallel plate waveguides. The observed linewidths are considerably narrower compared to con- ventional THz spectroscopy.
QFD6 • 11:30 a.m. Ultrafast Carrier Dynamics in Semicon- ductor Nanowires, Robit P. Prasankumar ¹ , George T. Wang ² , Teresa Clement ⁴ , Sukgeun G. Choi ¹ , Samuel T. Picraux ¹ , ³ , Antoinette J. Taylor ¹ , ¹ los Alamos Natl. Lab, USA, ² Sandia Natl. Lab, USA, ³ Arizona State Univ., USA. Time-resolved measurements of carrier dy- namics in Ge and GaN nanowires reveal that carrier relaxation in these systems is gov- emed by surface states and defects. This has significant implications for nanowire-based devices in photonics and thermoelectrics.		CFQ5 • 11:30 a.m. Low Power Thermal Tuning of Second- Order Microring Resonators, <i>Reja</i> <i>Amatya, Charles W. Holzwarhb, Fuwan Gan,</i> <i>Henry I. Smith, Franz Kärtner, Rajeev J.</i> <i>Ram, Milos A. Popovic; MIT, USA.</i> Efficient thermal tuning of 36pm/K and 60µW/GHz is shown for high-index-contrast silicon ni- tride second-order filters. Their compact size, large free-spectral range, low tuning power, and silicon compatibility make these reso- nators attractive for photonic integration.	CFR5 • 11:30 a.m. Fabrication of a Multilayer Polymer Light-Emitting Diode by Resonant Infra- red Laser Ablation, <i>Stephen L. Johnson!</i> , <i>Christopher T. Bowie'</i> , Borislav Itanov', Hee K. Park', Richard F. Haglund', 'Vanderbilt Univ., USA, 'Appliftex LLC, USA. Multi-layer polymer light-emitting diodes have been fabricated in vacuum by infrared laser abla- tion of conducting and light-emitting poly- mers. The spectral output of the devices resembles that of similar spin-coated devices, but shows some fluence dependence.	CFS5 • 11:30 a.m. Dielectric Measurements for Powder- Shape Samples Using Terahertz Time- Domain Attenuated Total Reflection Technique, Hiroyuki Yada, Masaya Nagai, Koichiro Tanaka; Depl. of Physics, Gradu- ate Scbool of Science, Kyoto Uniu, Japan. We have demonstrated that terahertz time- domain attenuated total reflection spectros- copy is a powerful tool of measuring the dielectric constants of various organic pow- der samples.

R00M 318-320	R00M 321-323	R00M 324-326	R00M 314	R00M 315	R00M 316	R00M 317	R00M 336
	C L	E 0		JOINT	C L	E 0	QELS
CFJ • Yb Lasers— Continued	CFK • Tapered Photonic Crystal Fibers—Continued	CFL • Optical Coherence Tomography—Continued	CFM • Miscellaneous NLO—Continued	JFC • Atoms and Molecules in Strong Fields— Continued	CFN • Quasi-Phase- Matched Materials/ Ferroelectrics—Continued	CFO • Ultrashort Pulse Characterization II— Continued	QFC • Plasmons and Cavities—Continued
CFJ7 • 11:45 a.m. High-Power Diode-Pumped Lasers Based on Yb:YAl₃(BO₃)₄ Crystals Cut along the Crystallographic Axes , <i>Junbai Liu¹</i> , <i>Xavier</i> <i>Mateos¹</i> , <i>Valentin Petror¹</i> , <i>Huaijin Zbang²</i> , <i>Jing Li²</i> , <i>Jiyang Wang²</i> , <i>'Max-Born-Inst</i> , <i>Germany</i> , <i>'Sbandong Univ</i> , <i>Cbina</i> . Con- tinuous-wave laser operation near 1 µm is studied at room temperature with c-cut and a-cut Yb: YAl ₃ (BO ₃) ₄ crystals end-pumped by a fiber-coupled diode-laser achieving an output power of 10.6 W and a slope effi- ciency of 72%.	CFK4 • 11:45 a.m. Analytical Relation between Effective Mode Field Area and Waveguide Disper- sion in Microstructure Fibers, Mathias Moenster ¹ , Günter Steinmeyer ¹ , Rumen Iliew ² , Falk Lederer ² , Klaus Petermann ³ ; ¹ Max-Born-Inst., Germany, ² Inst. für Festkörpertbeorie und -optik, Germany, ³ Technische Uniu. Berlin, Germany, For non- radially symmetric fibers, we demonstrate the extended usefulness of a simple ana- lytic relation connecting waveguide disper- sion and mode-field radius, allowing for immediate estimation of soliton properties and supercontinuum generation efficiency in microstructure fibers.	CFL6 • 11:45 a.m. Fiber-Broadened Passively Modelocked Er:Yb:Glass Laser for High-Resolution Optical Coherence Tomography, Max C. Stumpf ⁴ , Simon C. Zeller ⁴ , Adrian Schlatter ⁴ , Thomas Südmeyer ⁴ , Ursula Keller ⁴ , Tosbiaki Okuno ² ; ¹ ETH Zurich, Switzerland, ² Optical Communications R&D Labs, Sumitomo Elec- tric Industries Ltd., Japan, Japan. We dem- onstrate a low coherence light source by directly launching the output of a femtosecond diode-pumped modelocked Er:Yb:glass laser into a highly-nonlinear fi- ber. The measured interferogram supports a depth resolution of 4 µm in air.	CFM6 • 11:45 a.m. Nanometric Three-Dimensional Sub- Surface Imaging of a Silicon Flip-Chip, Euan Ramsay, Keith A. Serrels, Martin J. Thomson, Andrew J. Waddie, Richard J. Warburton, Mobammed R. Tagbizadeb, Derryck T. Reid; School of Engineering and Physical Sciences, Heriot-Watt Univ., UK. By implementing two-photon optical-beam-in- duced-current microscopy using a solid-im- mersion lens, imaging inside a silicon flip chip is reported with 166nn lateral resolu- tion and an axial resolution capable of re- solving features only 100nm deep.	JFC6 • 11:45 a.m. Two-Quantum-Path Interferences in High Order Harmonic Generation, Amelle Zaïr ¹ , Mirko Holler ¹ , Annalisa Guandalini ¹ , Florian Schöpper ¹ , Jens Biegert ¹ , Ursula Keller ¹ , Pascal Salieres ² , Thierry Auguste ² , Eric Cormie ² , Adam Wyatt ⁴ , Antoine Monmayrant ⁴ , Ian A. Walmsley ⁴ , ¹ /QE, Suitzerland, ² CEA, France, ³ CELIA, France, ⁴ Clarendon Lab, UK. We have investigated intensity dependent high- harmonic generation, when short and long trajectories are both visible in the generated signal. We have measured a plateau-har- monic spectral broadening and yield modu- lations consistent with quantum-paths inter- ferences calculations.	CFN6 • 11:45 a.m. Patterning Sub-Micrometer Domain in MgO:LiNbO, Ridge Waveguides by Fo- cused Ion Beam for QPM Nonlinear Op- tical Devices, Xijun Li ¹ , Atsusi Watanabe ¹ , Hideki Hatano ² , Kazuya Terabe ² , Kenji Kitamura ² , 'Corporate R&D Labs, Pioneer Corp., Japan, ² Natl. Insitute for Materials Science, Japan. Ferroelectric domain struc- ture with pitch sizes of sub-micrometer has been fabricated by focused ion beam di- rectly in MgO:LiNO ₃ fidge waveguides. This result opens a new way to engineering do- main in structures with an irregular surface.	CFO7 • 11:45 a.m. Toward Programmable Ultrashort Pulse Characterization , <i>Nicolas Forget¹</i> , <i>Manuel</i> <i>Joffre²</i> , <i>Sébastien Coudreau¹</i> , <i>Thomas</i> <i>Oksenbendler¹</i> ; <i>Fastlite</i> , <i>France</i> , ² LOB, <i>Ecole</i> <i>Polytechnique</i> , <i>CNRS</i> , <i>INSERM</i> , <i>France</i> . We demonstrate a programmable pulse charac- terization device based on an acousto-optic programmable dispersive filter. Both SH- FROG and SPIDER signals are obtained with a single optical setup. Experimental dem- onstration is provided on an amplified femtosecond system.	QFC7 • 11:45 a.m. Photon Emission Statistics and Coher- ence Properties of High-β Semiconduc- tor Microcavity Lasers, <i>Sven M. Ulrich¹,</i> <i>Christopher Gies², Serkan Ales¹, Jan Wiersig²,</i> <i>Stepban Reitzenstein³, Carolin Hofmann³,</i> <i>Andreas Löffler⁹, Alfred Forchel⁹, Frank</i> <i>Jabnke², Peter Michler¹, ¹Univ. Stuttgart, Inst.</i> <i>für Strahlenphysik, Germany, ²Univ.</i> <i>Bremen, Inst. für Theoretische Physik, Ger-</i> <i>many, ³Univ. Würzburg, Technische Physik,</i> <i>Germany, ²Univ.</i> <i>Gremany.</i> Complementary first- and second- order correlation experiments on high-β micropillar lasers are presented, which trace a smooth transition from spontaneous to stimulated emission. Our observations ac- cord with refined theoretical calculations on semiconductor microlaser emission charac-

teristics.

R00M 337	R00M 338	R00M 339	R00M 340	R00M 341		
QELS	C L E O					
QFD • Dynamics of Dots, Wires and Tubes— Continued		CFQ • High- <i>Q</i> Microresonators and Devices II—Continued	CFR • Ultrashort Pulse Microfabrication and Ablation—Continued	CFS • THz Spectroscopy— Continued		
QFD7 • 11:45 a.m. Time-Resolved Photoluminescence of GaN Nanowires of Different Crystallo- graphic Orientations, Alan Chin', Tai Abn', Hongwei Li', Sreeram Vaddiraju', Chris Bardeen', Cun-Zbeng Ning', Mabendra Sunkara', 'ELORET Corp., USA, 'Univ. of California at Riverside, USA, 'Univ. of Louisville, USA, 'NASA Ames Res. Ctr., USA. Our studies of time-integrated and time-re- solved photoluminescence of a-axis and c- axis GaN nanowires demonstrate that the blue-shifted ultraviolet photoluminescence in a-axis GaN nanowires relative to c-axis GaN nanowires can be attributed to surface state emission.		CFQ6 • 11:45 a.m. Highly Compact High-Order Micro-Ring Filters, Shijun Xiao, Maroof H. Khan, Hao Shen, Minghao Qi; Purdue Univ., USA. We fabricate and characterize highly compact second-order and third-order silicon ring (radii ~ 2.5 um) filters with large free spec- tral ranges over 30 nm and high drop filter- ing contrast ratios over ~40 dB.	CFR6 • 11:45 a.m. Effect of Pulse Shaping on Silicon Micromachining Monitored by Laser In- duced Breakdown Spectroscopy and Surface Second Harmonic Generation, <i>Tissa C. Gunarathe, Xin Zbu, Vadim V.</i> <i>Lozovoy, Marcos Dantus; Micbigan State</i> <i>Univ., USA.</i> Pulse shaping on silicon micromachining is explored using laser in- duced breakdown spectroscopy and surface second harmonic generation as diagnostics. The morphology of ablated holes for differ- ent shaped pulses will be discussed.	CFS6 • 11:45 a.m. THz Vibrational Spectra of Hydrated and Dehydrated Samples by Time-Domain Spectroscopy, Haruko Yoneyama ¹ , Masatsugu Yamashita ¹ , Shintaro Kasati ^{1,2} , Kodo Kawase ¹ , Hiromasa Ito ¹ , Toshihiko Ouchi ^{1,2} ; ¹ RIKEN, Japan, ² Canon Res. Ctr., Canon Inc., Japan. We observed the vibra- tional modes of nucleoside related samples in hydrated and dehydrated states by terahertz (THz) time-domain spectroscopy. Several measured spectra indicated slight differences in the vibrational modes between hydrated and dehydrated samples.		

CLEO/QELS and PhAST 2007, May 6-11, 2007 • Baltimore Convention Center, Baltimore, Maryland