Technical Conference:
14 – 19 May 2017
CLEO:EXPO:
16 – 18 May 2017

SC378 - Introduction to Ultrafast Optics

Monday, 15 May
12:30 - 16:30

Short Course Level: Beginner

Instructor: Rick Trebino, Georgia Institute of Technology, USA

Short Course Description:

Ultrafast Optics—the science and technology of ultrashort laser pulses—is one of the most exciting and dynamic fields of science. While ultrashort laser pulses seem quite exotic (they're the shortest events ever created!), their applications are many, ranging from the study of ultrafast fundamental events to telecommunications to micro-machining to biomedical imaging - to name a few. Interestingly, these lasers are readily available, and they are easy to understand. But their use requires some sophistication. This course is a basic introduction to the nature of these lasers and the pulses they generate. It will discuss the principles of their generation and amplification and describe their most common distortions in space and time and how to avoid them—or take advantage of them. In addition, it will cover the nonlinear optics of ultrashort pulses for converting pulses to almost any color, as well as the additional interesting and potentially deleterious effects nonlinear optical processes can cause. Finally, it will cover techniques for ultrashort-pulse measurement.

Short Course Benefits:

This course should enable the participants to:

  • Explain how ultrashort-pulse lasers and amplifiers work.

  • Describe and describe ultrashort pulses and their many distortions.

  • Use nonlinear optics to an convert ultrashort laser pulse to virtually any wavelength.

  • Take advantage of—or avoid—nonlinear-optical high-intensity effects.

  • Meaningfully measure ultrashort pulses.

Short Course Audience:

Any scientist or engineer interested in the science and technology of the shortest events ever created, especially those new to it.

Instructor Biography:

Rick Trebino is the Georgia Research Alliance-Eminent Scholar Chair of Ultrafast Optical Physics at the School of Physics at the Georgia Institute of Technology.  His research focuses on the use and measurement of ultrashort laser pulses.  He is best known for his invention and development of Frequency-Resolved Optical Gating (FROG), the first general method for measuring the intensity and phase evolution of an ultrashort laser pulse, and which is rapidly becoming the standard technique for measuring such pulses.  He has also invented techniques for measuring ultraweak ultrashort pulses, ultracomplex pulses, ultrafast polarization variation, and the complete spatio-temporal measurement of ultrashort pulses. He has also developed pulse compressors and a general theory of spatio-temporal distortions of ultrashort pulses.

Sponsored by: